1
|
Xie H, Lu Y, Pan J, Zeng H, Zhang Z, Yin J, Zhu J, Luo B, Guo D, Wu C, Zeng C, Shao Y, Bai X, Cai D, Zhang H. MiR-335-5p Escaped from CircKIAA0586 Adsorption Contributes to Mechanical Overloading-Induced Cartilage Degeneration by Targeting Lymphoid-Specific Helicase. RESEARCH (WASHINGTON, D.C.) 2025; 9:0694. [PMID: 40342810 PMCID: PMC12059312 DOI: 10.34133/research.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Mechanical overload is a critical contributor to cartilage degeneration in osteoarthritis (OA) pathogenesis. Circular RNA (circRNA) is expected to provide a long-lasting therapy for OA. However, the involvement of the circRNA-associated competitive endogenous RNA network in chondrocyte senescence induced by mechanical overloading remains unestablished. A mechanical overloading-induced chondrocyte senescence model in human primary chondrocytes is constructed, and differences in the expression of circRNAs and miRNAs were analyzed. The biological roles of circKIAA0586/miR-335-5p in chondrocyte senescence and OA progression under mechanical overloading and its downstream targets were determined using gain- and loss-of-function experiments in various biochemical assays in human chondrocytes. The in vivo effects of circKIAA0586 overexpression were also determined in destabilization of the medial meniscus (DMM) OA mice and aged spontaneous OA mice. The mechanical overloading-induced chondrocyte senescence was aggravated by miR-335-5p or circKIAA0586 knockdown. Accumulated DNA damage response was observed following mechanical overloading, which reduced after miR-335-5p inhibition or circKIAA0586 supplementation. MiR-335-5p was regulated by circKIA0586 adsorption. HELLS was prominently down-regulated following mechanical overloading treatment. Moreover, miR-335-5p bound to lymphoid-specific helicase (HELLS) mRNA during mechanical overloading was demonstrated to mediate the nonhomologous end joining (NHEJ) pathway, thereby inducing DNA damage and senescence. In addition, the senescence delaying and cartilage protective functions of circKIAA0586 and HELLS were validated in DMM OA mice and aged spontaneous OA mice. Our findings suggest that miR-335-5p, which escapes circKIAA0586 adsorption, facilitates mechanical overloading-induced chondrocyte senescence and OA progression by impairing the NHEJ pathway through HELLS inhibition. Overall, targeting circKIAA0586/miR-335-5p/HELLS signaling provides a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Haoyu Xie
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Yuheng Lu
- Department of Rehabilitation Medicine, Xijing Hospital,
Fourth Military Medical University, Xi ’an 710032, China
| | - Jianying Pan
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Hua Zeng
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Zhicheng Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Jianbin Yin
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Jinjian Zhu
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Bingsheng Luo
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Dong Guo
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Chunyu Wu
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Chun Zeng
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- The Third School of Clinical Medicine,
Southern Medical University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou 510630, China
| |
Collapse
|
2
|
Taudien JE, Bracht D, Olbrich H, Swirski S, D’Abrusco F, Van der Zwaag B, Möller M, Lücke T, Teig N, Lindberg U, Wohlgemuth K, Wallmeier J, Blanque A, Gatsogiannis C, George S, Jüschke C, Owczarek-Lipska M, Veer D, Kroes HY, Valente EM, Korenke GC, Omran H, Neidhardt J. Pathogenic KIAA0586/TALPID3 variants are associated with defects in primary and motile cilia. iScience 2025; 28:111670. [PMID: 39898050 PMCID: PMC11783387 DOI: 10.1016/j.isci.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Pathogenic variants in KIAA0586/TALPID3 are associated with the ciliopathy Joubert syndrome (JS). We report individuals with KIAA0586/TALPID3 variants affected by primary and motile cilia defects leading to JS and chronic destructive airway disease. DNA variants were detected in three families by sequencing. In two unrelated families, a deep-intronic variant (KIAA0586/TALPID3:c.3990 + 3186G>A) activated a cryptic exon. We performed histological and functional analyses in native and air-liquid interface (ALI) cultured respiratory cells. Primary cilia lengths were measured in patient-derived fibroblasts. Our data associate KIAA0586/TALPID3 variants with a syndrome combining JS and chronic destructive airway disease, reduced number of motile cilia, disorganized basal body location, and ciliary clearance malfunction. Additionally, patient-derived cell lines showed primary cilia defects. Disease causing KIAA0586/TALPID3 variants, including a deep-intronic sequence variant, were associated with primary and motile cilia defects in JS patients. The combination of JS and respiratory symptoms should be considered indicative for KIAA0586/TALPID3 sequence alterations.
Collapse
Affiliation(s)
- Jacqueline E. Taudien
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Diana Bracht
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Sebastian Swirski
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Fulvio D’Abrusco
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Bert Van der Zwaag
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maike Möller
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Lücke
- Department of Neuropaediatrics and Social Paediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Norbert Teig
- Department of Neonatalogy, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ulrika Lindberg
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund, Sweden
| | - Kai Wohlgemuth
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Anja Blanque
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms University Münster, 48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms University Münster, 48149 Münster, Germany
| | - Sebastian George
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Christoph Jüschke
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Dorothee Veer
- Social-pediatric Outpatient and Therapy Center, Hospital Ludmillenstift, 49716 Meppen, Germany
| | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, the Netherlands
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - G. Christoph Korenke
- University Children’s Hospital Oldenburg, Department of Neuropaediatric and Metabolic Diseases, 26133 Oldenburg, Germany
| | - Heymut Omran
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - John Neidhardt
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Deconte D, Diniz BL, Hartmann JK, de Souza MA, Zottis LFF, Zen PRG, Rosa RFM, Fiegenbaum M. Expanding the Phenotypic Spectrum of Pathogenic KIAA0586 Variants: From Joubert Syndrome to Hydrolethalus Syndrome. Int J Mol Sci 2024; 25:7900. [PMID: 39063141 PMCID: PMC11277298 DOI: 10.3390/ijms25147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
KIAA0586 variants have been associated with a wide range of ciliopathies, mainly Joubert syndrome (JS, OMIM #616490) and short-rib thoracic dysplasia syndrome (SRTD, OMIM #616546). However, the hypothesis that this gene is involved with hydrolethalus syndrome (HSL, OMIM #614120) and orofaciodigital syndrome IV (OMIM #258860) has already been raised. Ciliopathies' clinical features are often overlapped despite differing in phenotype severity. Besides KIAA0586, HYLS1 and KIF7 are also known for being causative of ciliopathies, indicating that all three genes may have similar or converging genomic pathways. Overall, the genotypic and phenotypic spectrum of ciliopathies becomes wider and conflicting while more and more new variants are added to this group of disorders' molecular pot. In this case report we discuss the first Brazilian individual clinically diagnosed with hydrolethalus syndrome and molecular findings that demonstrate the role of KIAA0586 as a causative gene of a group of genetic disorders. Also, recent reports on individuals with intronic and exonic variants combined leading to ciliopathies support our patient's molecular diagnosis. At the same time, we discuss variable expressivity and overlapping features in ciliopathies.
Collapse
Affiliation(s)
- Desirée Deconte
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (D.D.); (B.L.D.)
| | - Bruna Lixinski Diniz
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (D.D.); (B.L.D.)
| | - Jéssica K. Hartmann
- Faculty of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (J.K.H.); (M.A.d.S.); (L.F.F.Z.)
| | - Mateus A. de Souza
- Faculty of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (J.K.H.); (M.A.d.S.); (L.F.F.Z.)
| | - Laira F. F. Zottis
- Faculty of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (J.K.H.); (M.A.d.S.); (L.F.F.Z.)
| | - Paulo Ricardo Gazzola Zen
- Departamento de Clínica Médica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (P.R.G.Z.)
| | - Rafael F. M. Rosa
- Departamento de Clínica Médica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil; (P.R.G.Z.)
| | - Marilu Fiegenbaum
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
4
|
Kamarck ML, Trimmer C, Murphy NR, Gregory KM, Manoel D, Logan DW, Saraiva LR, Mainland JD. Identifying candidate genes underlying isolated congenital anosmia. Clin Genet 2024; 105:376-385. [PMID: 38148624 PMCID: PMC10932857 DOI: 10.1111/cge.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.
Collapse
Affiliation(s)
- Marissa L. Kamarck
- Monell Chemical Senses Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | - Luis R. Saraiva
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University; Doha, Qatar
| | - Joel D. Mainland
- Monell Chemical Senses Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Topa A, Rohlin A, Fehr A, Lovmar L, Stenman G, Tarnow P, Maltese G, Bhatti-Søfteland M, Kölby L. The value of genome-wide analysis in craniosynostosis. Front Genet 2024; 14:1322462. [PMID: 38318288 PMCID: PMC10839781 DOI: 10.3389/fgene.2023.1322462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Background: This study assessed the diagnostic yield of high-throughput sequencing methods in a cohort of craniosynostosis (CS) patients not presenting causal variants identified through previous targeted analysis. Methods: Whole-genome or whole-exome sequencing (WGS/WES) was performed in a cohort of 59 patients (from 57 families) assessed by retrospective phenotyping as having syndromic or nonsyndromic CS. Results: A syndromic form was identified in 51% of the unrelated cases. A genetic cause was identified in 38% of syndromic cases, with novel variants detected in FGFR2 (a rare Alu insertion), TWIST1, TCF12, KIAA0586, HDAC9, FOXP1, and NSD2. Additionally, we report two patients with rare recurrent variants in KAT6A and YY1 as well as two patients with structural genomic aberrations: one with a 22q13 duplication and one with a complex rearrangement involving chromosome 2 (2p25 duplication including SOX11 and deletion of 2q22). Moreover, we identified potentially relevant variants in 87% of the remaining families with no previously detected causal variants, including novel variants in ADAMTSL4, ASH1L, ATRX, C2CD3, CHD5, ERF, H4C5, IFT122, IFT140, KDM6B, KMT2D, LTBP1, MAP3K7, NOTCH2, NSD1, SOS1, SPRY1, POLR2A, PRRX1, RECQL4, TAB2, TAOK1, TET3, TGFBR1, TCF20, and ZBTB20. Conclusion: These results confirm WGS/WES as a powerful diagnostic tool capable of either targeted in silico or broad genomic analysis depending on phenotypic presentation (e.g., classical or unusual forms of syndromic CS).
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Tarnow
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Giovanni Maltese
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Madiha Bhatti-Søfteland
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
8
|
Owens JW, Hopkin RJ, Martin LJ, Kodani A, Simpson BN. Phenotypic variability in Joubert syndrome is partially explained by ciliary pathophysiology. Ann Hum Genet 2024; 88:86-100. [PMID: 37921557 DOI: 10.1111/ahg.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Joubert syndrome (JS) arises from defects of primary cilia resulting in potential malformations of the brain, kidneys, eyes, liver, and limbs. Several of the 35+ genes associated with JS have recognized genotype/phenotype correlations, but most genes have not had enough reported individuals to draw meaningful conclusions. METHODS A PubMed literature review identified 688 individuals with JS across 32 genes and 112 publications to bolster known genotype/phenotype relationships and identify new correlations. All included patients had the "molar tooth sign" and a confirmed genetic diagnosis. Individuals were categorized by age, ethnicity, sex and the presence of developmental disability/intellectual disability, hypotonia, abnormal eye movements, ataxia, visual impairment, renal impairment, polydactyly, and liver abnormalities. RESULTS Most genes demonstrated unique phenotypic profiles. Grouping proteins based on physiologic interactions established stronger phenotypic relationships that reflect known ciliary pathophysiology. Age-stratified data demonstrated that end-organ disease is progressive in JS. Most genes demonstrated a significant skew towards having variants with either residual protein function or no residual protein function. CONCLUSION This cohort demonstrates that clinically meaningful genotype/phenotype relationships exist within most JS-related genes and can be referenced to allow for more personalized clinical care.
Collapse
Affiliation(s)
- Joshua W Owens
- UPMC Children's Hospital of Pittsburgh Division of Genetic and Genomic Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa J Martin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew Kodani
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brittany N Simpson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
11
|
Serpieri V, Mortarini G, Loucks H, Biagini T, Micalizzi A, Palmieri I, Dempsey JC, D'Abrusco F, Mazzotta C, Battini R, Bertini ES, Boltshauser E, Borgatti R, Brockmann K, D'Arrigo S, Nardocci N, Fischetto R, Agolini E, Novelli A, Romano A, Romaniello R, Stanzial F, Signorini S, Strisciuglio P, Gana S, Mazza T, Doherty D, Valente EM. Recurrent, founder and hypomorphic variants contribute to the genetic landscape of Joubert syndrome. J Med Genet 2023; 60:885-893. [PMID: 36788019 PMCID: PMC10447400 DOI: 10.1136/jmg-2022-108725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.
Collapse
Affiliation(s)
| | - Giulia Mortarini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hailey Loucks
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ilaria Palmieri
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Fulvio D'Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Eugen Boltshauser
- Departement of Pediatric Neurology, University Children's Hospital Zürich, Zurich, Switzerland
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Knut Brockmann
- Interdisciplinary Pediatric Centre for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Centre, Georg August University, Göttingen, Germany
| | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "C Besta", Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico "C Besta", Milan, Italy
| | - Rita Fischetto
- Clinical Genetics Unit, Department of Pediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alfonso Romano
- Section of Pediatrics, Department of Medical Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bozen, Bozen, Italy
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Strisciuglio
- Section of Pediatrics, Department of Medical Translational Sciences, University of Naples Federico II, Naples, Italy
| | - Simone Gana
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Zhao Q, Xu B, Xiang Q, Tan Y, Xie H, Gao Q, Wen L, Wang H, Yang M, Liu S. Compound heterozygous splicing variants in KIAA0586 cause fetal short-rib thoracic dysplasia and cerebellar malformation: Use of exome sequencing in prenatal diagnosis. Mol Genet Genomic Med 2023; 11:e2124. [PMID: 36538006 PMCID: PMC10009908 DOI: 10.1002/mgg3.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Short-rib thoracic dysplasia (SRTD) and Joubert syndrome (JS) are rare genetic ciliopathies, and individuals with either syndrome can manifest cerebellar malformation and variable developmental delays. However, neither of these conditions is easily diagnosed during pregnancy due to a limited fetal phenotype. Here, we investigated a fetus that was initially observed to have short limbs and polydactyly and discovered a compound heterozygous pathogenesis through exome sequencing (ES). METHODS Simultaneous trio-ES and chromosome microarray analysis was provided for the fetus. The presence and effects of these variants on splicing were further validated at the DNA and RNA levels. RESULTS Only short limbs and post-axial polydactyly of the fetus were detected during the second trimester. Two variants (c.3940+1G>A and c.3303G>A), affecting splicing of KIAA0586, were identified from amniocytes through ES and validated by Sanger sequencing. More intensive fetal monitoring was applied, and the fetus was also found to have deformed cerebellar malformation and a constricted thoracic cage. CONCLUSIONS Herein, we report the genetic pathogenesis of SRTD and/or JS associated with KIAA0586 in a fetus. The novel splicing variants observed expand the spectrum of KIAA0586 in SRTD and/or JS. Based on the genetic data and the distinct corresponding phenotypes discovered by imaging examination, a comprehensive diagnosis was made during pregnancy and more valuable prognostic information was provided for the parents.
Collapse
Affiliation(s)
- Qianying Zhao
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Bocheng Xu
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Qinqin Xiang
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Yu Tan
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Hanbing Xie
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Qianqian Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
- Department of UltrasoundWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Lingyi Wen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
- Department of RadiologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - He Wang
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Mei Yang
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| | - Shanling Liu
- Department of Obstetrics & GynecologyWest China Second University Hospital, Sichuan UniversityChengduChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengduChina
| |
Collapse
|
13
|
Shen Y, Lu C, Cheng T, Cao Z, Chen C, Ma X, Gao H, Luo M. A novel 1.38-kb deletion combined with a single nucleotide variant in KIAA0586 as a cause of Joubert syndrome. BMC Med Genomics 2023; 16:4. [PMID: 36635699 PMCID: PMC9838056 DOI: 10.1186/s12920-023-01438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND KIAA0586, also known as Talpid3, plays critical roles in primary cilia formation and hedgehog signaling in humans. Variants in KIAA0586 could cause some different ciliopathies, including Joubert syndrome (JBTS), which is a clinically and genetically heterogeneous group of autosomal recessive neurological disorders. METHODS AND RESULTS A 9-month-old girl was diagnosed as JBTS by the "molar tooth sign" of the mid-brain and global developmental delay. By whole-exome sequencing, we identified a single nucleotide variant c.3303G > A and a 1.38-kb deletion in KIAA0586 in the proband. These two variants of KIAA0586 were consistent with the mode of autosomal recessive inheritance in the family, which was verified using Sanger sequencing. CONCLUSIONS This finding of a compound heterozygote with a 1.38-kb deletion and c.3303G > A gave a precise genetic diagnosis for the patient, and the novel 1.38-kb deletion also expanded the pathogenic variation spectrum of JBTS caused by KIAA0586.
Collapse
Affiliation(s)
- Yue Shen
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Chao Lu
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Tingting Cheng
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Zongfu Cao
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Cuixia Chen
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Xu Ma
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Huafang Gao
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Minna Luo
- grid.453135.50000 0004 1769 3691National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
14
|
Aksu Uzunhan T, Ertürk B, Aydın K, Ayaz A, Altunoğlu U, Yarar MH, Gezdirici A, İçağasıoğlu DF, Gökpınar İli E, Uyanık B, Eser M, Kutbay YB, Topçu Y, Kılıç B, Bektaş G, Arduç Akçay A, Ekici B, Chousein A, Avcı Ş, Yüksel A, Kayserili H. Clinical and genetic spectrum from a prototype of ciliopathy: Joubert syndrome. Clin Neurol Neurosurg 2022; 224:107560. [PMID: 36580738 DOI: 10.1016/j.clineuro.2022.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Joubert syndrome is a neurodevelopmental disorder with a distinctive hindbrain malformation called molar tooth sign, causing motor and cognitive impairments. More than 40 genes have been associated with Joubert syndrome. We aim to describe a group of Joubert syndrome patients clinically and genetically emphasizing organ involvement. METHODS We retrospectively collected clinical information and molecular diagnosis data of 22 patients with Joubert syndrome from multiple facilities. Clinical exome or whole-exome sequencing were performed to identify causal variations in genes. RESULTS The most common variants were in the CPLANE1, CEP290, and TMEM67 genes, and other causative genes were AHI1, ARMC9, CEP41, CSPP1, HYLS1, KATNIP, KIAA0586, KIF7, RPGRIP1L, including some previously unreported variants in these genes. Multi-systemic organ involvement was observed in nine (40%) patients, with the eye being the most common, including Leber's congenital amaurosis, ptosis, and optic nerve coloboma. Portal hypertension and esophageal varices as liver and polycystic kidney disease and nephronophthisis as kidney involvement was encountered in our patients. The HYLS1 gene, which commonly causes hydrolethalus syndrome 1, was also associated with Joubert syndrome in one of our patients. A mild phenotype with hypophyseal hormone deficiencies without the classical molar tooth sign was observed with compound heterozygous and likely pathogenic variants not reported before in the KATNIP gene. CONCLUSION Some rare variants that display prominent genetic heterogeneity with variable severity are first reported in our patients. In our study of 22 Joubert syndrome patients, CPLANE1 is the most affected gene, and Joubert syndrome as a ciliopathy is possible without a classical molar tooth sign, like in the KATNIP gene-affected patients.
Collapse
Affiliation(s)
- Tuğçe Aksu Uzunhan
- Department of Pediatric Neurology, Prof. Dr. Cemil Taşcıoğlu City Hospital, İstanbul, Türkiye.
| | - Biray Ertürk
- Department of Medical Genetics, Prof. Dr. Cemil Taşcıoğlu City Hospital, İstanbul, Türkiye
| | - Kürşad Aydın
- Department of Pediatric Neurology, Medipol University, İstanbul, Türkiye
| | - Akif Ayaz
- Department of Medical Genetics, Medipol University, İstanbul, Türkiye
| | - Umut Altunoğlu
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), Istanbul, Turkey
| | - Murat Hakkı Yarar
- Department of Medical Genetics, Ümraniye Research and Training Hospital, İstanbul, Türkiye
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam ve Sakura City Hospital, İstanbul, Türkiye
| | | | - Ezgi Gökpınar İli
- Department of Medical Genetics, Başakşehir Çam ve Sakura City Hospital, İstanbul, Türkiye
| | - Bülent Uyanık
- Department of Medical Genetics, BezmiAlem Vakif University, İstanbul, Türkiye
| | - Metin Eser
- Department of Medical Genetics, Ümraniye Research and Training Hospital, İstanbul, Türkiye
| | - Yaşar Bekir Kutbay
- Department of Medical Genetics, İzmir Tepecik Research and Training Hospital, İstanbul, Türkiye
| | - Yasemin Topçu
- Department of Pediatric Neurology, Medipol University, İstanbul, Türkiye
| | - Betül Kılıç
- Department of Pediatric Neurology, Medipol University, İstanbul, Türkiye
| | - Gonca Bektaş
- Department of Pediatric Neurology, Bakırköy Dr. Sadi Konuk Research and Training Hospital, İstanbul, Türkiye
| | - Ayfer Arduç Akçay
- Department of Pediatric Neurology, Koç University School of Medicine (KUSOM), İstanbul, Türkiye
| | - Barış Ekici
- Pediatric Neurology Clinic, İstanbul, Türkiye
| | - Amet Chousein
- Department of Pediatrics, Biruni University, İstanbul, Türkiye
| | - Şahin Avcı
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), Istanbul, Turkey
| | - Atıl Yüksel
- Department of Obstetrics and Gynecology, İstanbul University, İstanbul Faculty of Medicine, İstanbul, Türkiye
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), Istanbul, Turkey
| |
Collapse
|
15
|
Chelu A, Williams SG, Keavney BD, Talavera D. Joint analysis of functionally related genes yields further candidates associated with Tetralogy of Fallot. J Hum Genet 2022; 67:613-615. [PMID: 35718831 PMCID: PMC7613636 DOI: 10.1038/s10038-022-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Although several genes involved in the development of Tetralogy of Fallot have been identified, no genetic diagnosis is available for the majority of patients. Low statistical power may have prevented the identification of further causative genes in gene-by-gene survey analyses. Thus, bigger samples and/or novel analytic approaches may be necessary. We studied if a joint analysis of groups of functionally related genes might be a useful alternative approach. Our reanalysis of whole-exome sequencing data identified 12 groups of genes that exceedingly contribute to the burden of Tetralogy of Fallot. Further analysis of those groups showed that genes with high-impact variants tend to interact with each other. Thus, our results strongly suggest that additional candidate genes may be found by studying the protein interaction network of known causative genes. Moreover, our results show that the joint analysis of functionally related genes can be a useful complementary approach to classical single-gene analyses.
Collapse
Affiliation(s)
- Alexandru Chelu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Zhao W, Ye G, Li Q, Zhou Y, Yu X, Li Y, Yu M, Wang H. Pathogenic variant of
DYNC2H1
associated with lingual hamartoma in a Chinese pedigree. J Oral Pathol Med 2022; 51:755-761. [DOI: 10.1111/jop.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Wenquan Zhao
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang China
| | - Guanchen Ye
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Qi Li
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Yu Zhou
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Xiaowen Yu
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Yining Li
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang China
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
17
|
Hasanain AA, Soliman MAR, Elwy R, Ezzat AAM, Abdel-Bari SH, Marx S, Jenkins A, El Refaee E, Zohdi A. An eye on the future for defeating hydrocephalus, ciliary dyskinesia-related hydrocephalus: review article. Br J Neurosurg 2022; 36:329-339. [PMID: 35579079 DOI: 10.1080/02688697.2022.2074373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 05/31/2021] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
Abstract
Congenital hydrocephalus affects approximately one in 1000 newborn children and is fatal in approximately 50% of untreated cases. The currently known management protocols usually necessitate multiple interventions and long-term use of healthcare resources due to a relatively high incidence of complications, and many of them mostly provide a treatment of the effect rather than the cause of cerebrospinal fluid flow reduction or outflow obstruction. Future studies discussing etiology specific hydrocephalus alternative treatments are needed. We systematically reviewed the available literature on the effect of ciliary abnormality on congenital hydrocephalus pathogenesis, to open a discussion on the feasibility of factoring ciliary abnormality in future research on hydrocephalus treatment modalities. Although there are different forms of ciliopathies, we focused in this review on primary ciliary dyskinesia. There is growing evidence of association of other ciliary syndromes and hydrocephalus, such as the reduced generation of multiple motile cilia, which is distinct from primary ciliary dyskinesia. Data for this review were identified by searching PubMed using the search terms 'hydrocephalus,' 'Kartagener syndrome,' 'primary ciliary dyskinesia,' and 'immotile cilia syndrome.' Only articles published in English and reporting human patients were included. Seven studies met our inclusion criteria, reporting 12 cases of hydrocephalus associated with primary ciliary dyskinesia. The patients had variable clinical presentations, genetic backgrounds, and ciliary defects. The ependymal water propelling cilia differ in structure and function from the mucus propelling cilia, and there is a possibility of isolated non-syndromic ependymal ciliopathy causing only hydrocephalus with growing evidence in the literature for the association ependymal ciliary abnormality and hydrocephalus. Abdominal and thoracic situs in children with hydrocephalus can be evaluated, and secondary damage of ependymal cilia causing hydrocephalus in cases with generalized ciliary abnormality can be considered.
Collapse
Affiliation(s)
| | - Mohamed A R Soliman
- Department of Neurosurgery, Cairo University, Cairo, Egypt
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA
| | - Reem Elwy
- Department of Neurosurgery, Cairo University, Cairo, Egypt
| | | | | | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Alistair Jenkins
- Department of Neurosurgery Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| | - Ehab El Refaee
- Department of Neurosurgery, Cairo University, Cairo, Egypt
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Ahmed Zohdi
- Department of Neurosurgery, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Wallmeier J, Dallmayer M, Omran H. The role of cilia for hydrocephalus formation. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:47-56. [PMID: 35470956 DOI: 10.1002/ajmg.c.31972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Hydrocephalus is a common finding in newborns. In most cases, it is caused by intraventricular hemorrhage associated with prematurity, whereas in some patients the cause of hydrocephalus can be traced back to genetic changes, associated with disease syndromes such as RASopathies, lysosomal storage diseases, dystroglycanopathies, craniosynostosis but also ciliopathies. Ciliopathies are a group of diseases that can affect multiple organ systems due to dysfunction or the absence of cilia. Cilia are small organelles, extending from the cell surface. Nonmotile monocilia are ubiquitously present during cell development fulfilling chemosensory functions, whereas specialized epithelia such as the ependyma, lining the inner surface of the brain ventricles, exhibit multiciliated cells propelling fluids along the cell surface. This review highlights ciliopathies and their pathophysiology in congenital hydrocephalus. While nonmotile ciliopathies are often associated with severe prenatal hydrocephalus combined with other severe congenital brain malformations, motile ciliopathies, especially those associated with defects in multiciliogenesis can cause hydrocephalus and chronic lung disease.
Collapse
Affiliation(s)
- Julia Wallmeier
- Department of General Pediatrics, University Clinic Muenster, Münster, Germany
| | - Marlene Dallmayer
- Department of General Pediatrics, University Clinic Muenster, Münster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Clinic Muenster, Münster, Germany
| |
Collapse
|
19
|
Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:72-88. [PMID: 35238134 PMCID: PMC9314610 DOI: 10.1002/ajmg.c.31963] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 01/20/2023]
Abstract
Joubert syndrome (JS) is a genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the “molar tooth sign,” and variable organ involvement. Over 40 causative genes have been identified to date, explaining up to 94% of cases. To date, gene‐phenotype correlates have been delineated only for a handful of genes, directly translating into improved counseling and clinical care. For instance, JS individuals harboring pathogenic variants in TMEM67 have a significantly higher risk of liver fibrosis, while pathogenic variants in NPHP1, RPGRIP1L, and TMEM237 are frequently associated to JS with renal involvement, requiring a closer monitoring of liver parameters, or renal functioning. On the other hand, individuals with causal variants in the CEP290 or AHI1 need a closer surveillance for retinal dystrophy and, in case of CEP290, also for chronic kidney disease. These examples highlight how an accurate description of the range of clinical symptoms associated with defects in each causative gene, including the rare ones, would better address prognosis and help guiding a personalized management. This review proposes to address this issue by assessing the available literature, to confirm known, as well as to propose rare gene‐phenotype correlates in JS.
Collapse
Affiliation(s)
- Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
21
|
Boschen KE, Fish EW, Parnell SE. Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod Toxicol 2021; 105:136-147. [PMID: 34492310 PMCID: PMC8529623 DOI: 10.1016/j.reprotox.2021.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Neurulation-stage alcohol exposure (NAE; embryonic day [E] 8-10) is associated with midline craniofacial and CNS defects that likely arise from disruption of morphogen pathways, such as Sonic hedgehog (Shh). Notably, midline anomalies are also a hallmark of genetic ciliopathies such as Joubert syndrome. We tested whether NAE alters Shh pathway signaling and the number and function of primary cilia, organelles critical for Shh pathway transduction. Female C57BL/6 J mice were administered two doses of alcohol (2.9 g/kg/dose) or vehicle on E9. Embryos were collected 6, 12, or 24 h later, and changes to Shh, cell cycle genes, and primary cilia were measured in the rostroventral neural tube (RVNT). Within the first 24 h post-NAE, reductions in Shh pathway and cell cycle gene expression and the ratio of Gli3 forms in the full-length activator state were observed. RVNT volume and cell layer width were reduced at 12 h. In addition, altered expression of multiple cilia-related genes was observed at 6 h post-NAE. As a further test of cilia gene-ethanol interaction, mice heterozygous for Kif3a exhibited perturbed behavior during adolescence following NAE compared to vehicle-treated mice, and Kif3a heterozygosity exacerbated the hyperactive effects of NAE on exploratory activity. These data demonstrate that NAE downregulates the Shh pathway in a region of the neural tube that gives rise to alcohol-sensitive brain structures and identifies disruption of primary cilia function, or a "transient ciliopathy", as a possible cellular mechanism of prenatal alcohol pathogenesis.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Parnell
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci U S A 2021; 118:2106770118. [PMID: 34548398 PMCID: PMC8488674 DOI: 10.1073/pnas.2106770118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are tubulin-based cellular appendages, and their dysfunction has been linked to a variety of genetic diseases. Ciliary chondrodysplasia is one such condition that can co-occur with cystic kidney disease and other organ manifestations. We modeled skeletal ciliopathies by mutating two established disease genes in Xenopus tropicalis frogs. Bioinformatic analysis identified ttc30a as a ciliopathy network component, and targeting it replicated skeletal malformations and renal cysts as seen in patients and the amphibian models. A loss of Ttc30a affected cilia by altering posttranslational tubulin modifications. Our findings identify TTC30A/B as a component of ciliary segmentation essential for cartilage differentiation and renal tubulogenesis. These findings may lead to novel therapeutic targets in treating ciliary skeletopathies and cystic kidney disease. Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.
Collapse
|
23
|
Bizzari S, Nair P, Deepthi A, Hana S, Al-Ali MT, Megarbané A, El-Hayek S. Catalogue for Transmission Genetics in Arabs (CTGA) Database: Analysing Lebanese Data on Genetic Disorders. Genes (Basel) 2021; 12:1518. [PMID: 34680914 PMCID: PMC8535931 DOI: 10.3390/genes12101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Lebanon has a high annual incidence of birth defects at 63 per 1000 live births, most of which are due to genetic factors. The Catalogue for Transmission Genetics in Arabs (CTGA) database, currently holds data on 642 genetic diseases and 676 related genes, described in Lebanese subjects. A subset of disorders (14/642) has exclusively been described in the Lebanese population, while 24 have only been reported in CTGA and not on OMIM. An analysis of all disorders highlights a preponderance of congenital malformations, deformations and chromosomal abnormalities and demonstrates that 65% of reported disorders follow an autosomal recessive inheritance pattern. In addition, our analysis reveals that at least 58 known genetic disorders were first mapped in Lebanese families. CTGA also hosts 1316 variant records described in Lebanese subjects, 150 of which were not reported on ClinVar or dbSNP. Most variants involved substitutions, followed by deletions, duplications, as well as in-del and insertion variants. This review of genetic data from the CTGA database highlights the need for screening programs, and is, to the best of our knowledge, the most comprehensive report on the status of genetic disorders in Lebanon to date.
Collapse
Affiliation(s)
- Sami Bizzari
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Pratibha Nair
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Asha Deepthi
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Sayeeda Hana
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - Mahmoud Taleb Al-Ali
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| | - André Megarbané
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 13-5053, Lebanon;
| | - Stephany El-Hayek
- Centre for Arab Genomic Studies, Dubai 22252, United Arab Emirates; (S.B.); (P.N.); (A.D.); (S.H.); (M.T.A.-A.)
| |
Collapse
|
24
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
25
|
Ghesh L, Musquer MD, Devisme L, Stichelbout M, Boutaud L, Elkhartoufi N, Vaast P, Boute O, Riteau AS, Le Vaillant C, Winer N, Joubert M, Bezieau S, Thomas S, Attie-Bitach T, Beneteau C. The first two non-Finnish HYLS1 variants: Expanding the phenotypic spectrum of hydrolethalus syndrome. Clin Genet 2021; 100:462-467. [PMID: 34212369 DOI: 10.1111/cge.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Hydrolethalus syndrome (HLS) is a rare lethal fetal malformation disorder related to ciliogenesis disruption. This condition is more frequent in Finland where a founder missense variant in the HYLS1 gene was identified. No other HYLS1 variant has hitherto been implicated in HLS. We report two unrelated French fetuses presenting with a phenotype of HLS with brain abnormalities, limbs malformations with pre and postaxial hexadactyly and abnormal genitalia. These two fetuses have compound heterozygous variants in HYLS1. The first allele carries the same Finnish missense variant (NM_145014.2: c.632A > G, p.[Asp211Gly]) in both fetuses and the second allele carries a new missense variant (c.662G > C, p.[Arg221Pro]) in the first fetus, and a new nonsense variant (c.613C > T, p.[Arg205*]) in the second fetus. This is the first report of HYLS1 mutated cases outside Finland. Both cases presented here are consistent with HLS with additional malformations, allowing expansion of the phenotypic presentation previously described.
Collapse
Affiliation(s)
- Leïla Ghesh
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France
| | - Marie Denis Musquer
- UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France.,Service d'Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Louise Devisme
- Service d'Anatomie et Cytologie Pathologiques, CHRU de Lille, Lille, France
| | | | - Lucile Boutaud
- Service d'Histo-Embryologie et de Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris, Paris, France.,Institut Imagine, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Nadia Elkhartoufi
- Service d'Histo-Embryologie et de Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pascal Vaast
- Service d'Echographie Fœtale et de Médecine Fœtale, CHRU de Lille, Lille, France
| | - Odile Boute
- Service de Génétique Médicale, CHRU de Lille, Lille, France
| | - Anne-Sophie Riteau
- Service de Gynécologie-Obstétrique, CHU Nantes, Nantes, France.,Service de Gynécologie-Obstétrique, Clinique Jules Vernes, Nantes, France
| | | | - Norbert Winer
- Service de Gynécologie-Obstétrique, CHU Nantes, Nantes, France.,UMR PhAN 1280 NUN INRAE F-44000, Université de Nantes, Nantes, France
| | - Madeleine Joubert
- UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France.,Service d'Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Stéphane Bezieau
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,L'institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU de Nantes, Nantes, France
| | - Sophie Thomas
- Institut Imagine, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Tania Attie-Bitach
- Service d'Histo-Embryologie et de Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker Enfants-Malades, Assistance Publique Hôpitaux de Paris, Paris, France.,Institut Imagine, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France
| |
Collapse
|
26
|
Marquez J, Mann N, Arana K, Deniz E, Ji W, Konstantino M, Mis EK, Deshpande C, Jeffries L, McGlynn J, Hugo H, Widmeier E, Konrad M, Tasic V, Morotti R, Baptista J, Ellard S, Lakhani SA, Hildebrandt F, Khokha MK. DLG5 variants are associated with multiple congenital anomalies including ciliopathy phenotypes. J Med Genet 2021; 58:453-464. [PMID: 32631816 PMCID: PMC7785698 DOI: 10.1136/jmedgenet-2019-106805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nina Mann
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathya Arana
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julie McGlynn
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah Hugo
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Konrad
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children's Hospital, Skopje, North Macedonia
| | - Raffaella Morotti
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, Exeter, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, Exeter, UK
| | - Saquib Ali Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
Affiliation(s)
- K S Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - L Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - P Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - C Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M R Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - D-K Kim
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - K Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - M Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - A Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - S Lee
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J Gleeson
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - A C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Tischer J, Carden S, Gergely F. Accessorizing the centrosome: new insights into centriolar appendages and satellites. Curr Opin Struct Biol 2021; 66:148-155. [PMID: 33279729 DOI: 10.1016/j.sbi.2020.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Centrosomes comprise two centrioles, the mother and daughter, embedded within a multi-layered proteinaceous matrix known as the pericentriolar material. In proliferating cells, centrosomes duplicate once per cell cycle and organise interphase and mitotic microtubule arrays, whereas in quiescent cells, the mother centriole templates primary cilium formation. Centrosomes have acquired various accessory structures to facilitate these disparate functions. In some eukaryotic lineages, mother centrioles can be distinguished from their daughter by the presence of appendages at their distal end, which anchor microtubule minus ends and tether Golgi-derived vesicles involved in ciliogenesis. Moreover, in vertebrate cells, centrosomes are surrounded by a system of cytoplasmic granules known as centriolar satellites. In this review, we will discuss these centriolar accessories and outline recent findings pertaining to their composition, assembly and regulation.
Collapse
Affiliation(s)
- Julia Tischer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah Carden
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, UK.
| |
Collapse
|
29
|
Centrosome dysfunction in human diseases. Semin Cell Dev Biol 2021; 110:113-122. [DOI: 10.1016/j.semcdb.2020.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
30
|
McKnight I, Hart C, Park IH, Shim JW. Genes causing congenital hydrocephalus: Their chromosomal characteristics of telomere proximity and DNA compositions. Exp Neurol 2021; 335:113523. [PMID: 33157092 PMCID: PMC7750280 DOI: 10.1016/j.expneurol.2020.113523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Congenital hydrocephalus (CH) is caused by genetic mutations, but whether factors impacting human genetic mutations are disease-specific remains elusive. Given two factors associated with high mutation rates, we reviewed how many disease-susceptible genes match with (i) proximity to telomeres or (ii) high adenine and thymine (A + T) content in human CH as compared to other disorders of the central nervous system (CNS). We extracted genomic information using a genome data viewer. Importantly, 98 of 108 genes causing CH satisfied (i) or (ii), resulting in >90% matching rate. However, such a high accordance no longer sustained as we checked two factors in Alzheimer's disease (AD) and/or familial Parkinson's disease (fPD), resulting in 84% and 59% matching, respectively. A disease-specific matching of telomere proximity or high A + T content predicts causative genes of CH much better than neurodegenerative diseases and other CNS conditions, likely due to sufficient number of known causative genes (n = 108) and precise determination and classification of the genotype and phenotype. Our analysis suggests a need for identifying genetic basis of both factors before human clinical studies, to prioritize putative genes found in preclinical models into the likely (meeting at least one) and more likely candidate (meeting both), which predisposes human genes to mutations.
Collapse
Affiliation(s)
- Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - Christoph Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
31
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
32
|
Bosakova M, Abraham SP, Nita A, Hruba E, Buchtova M, Taylor SP, Duran I, Martin J, Svozilova K, Barta T, Varecha M, Balek L, Kohoutek J, Radaszkiewicz T, Pusapati GV, Bryja V, Rush ET, Thiffault I, Nickerson DA, Bamshad MJ, University of Washington Center for Mendelian Genomics, Rohatgi R, Cohn DH, Krakow D, Krejci P. Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol Med 2020; 12:e11739. [PMID: 33200460 PMCID: PMC7645380 DOI: 10.15252/emmm.201911739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Collapse
Affiliation(s)
- Michaela Bosakova
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Sara P Abraham
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Alexandru Nita
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Eva Hruba
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - S Paige Taylor
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Ivan Duran
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Jorge Martin
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Katerina Svozilova
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Tomas Barta
- Department of Histology and EmbryologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Miroslav Varecha
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Lukas Balek
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | | | - Tomasz Radaszkiewicz
- Institute of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ganesh V Pusapati
- Department of BiochemistryStanford UniversityPalo AltoCAUSA
- Department of MedicineStanford UniversityPalo AltoCAUSA
| | - Vitezslav Bryja
- Institute of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Eric T Rush
- Children's Mercy Kansas City, Center for Pediatric Genomic MedicineKansas CityMOUSA
- Department of PediatricsUniversity of MissouriKansas CityMOUSA
| | - Isabelle Thiffault
- Children's Mercy Kansas City, Center for Pediatric Genomic MedicineKansas CityMOUSA
- Department of PediatricsUniversity of MissouriKansas CityMOUSA
| | | | - Michael J Bamshad
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of PediatricsUniversity of WashingtonSeattleWAUSA
- Division of Genetic MedicineSeattle Children's HospitalSeattleWAUSA
| | | | - Rajat Rohatgi
- Department of BiochemistryStanford UniversityPalo AltoCAUSA
- Department of MedicineStanford UniversityPalo AltoCAUSA
| | - Daniel H Cohn
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Molecular Cell and Developmental BiologyUniversity of California at Los AngelesLos AngelesCAUSA
| | - Deborah Krakow
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Obstetrics and GynecologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Pavel Krejci
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| |
Collapse
|
33
|
Sumathipala D, Strømme P, Gilissen C, Einarsen IH, Bjørndalen HJ, Server A, Corominas J, Hassel B, Fannemel M, Misceo D, Frengen E. Sudden death in epilepsy and ectopic neurohypophysis in Joubert syndrome 23 diagnosed using SNVs/indels and structural variants pipelines on WGS data: a case report. BMC MEDICAL GENETICS 2020; 21:96. [PMID: 32381069 PMCID: PMC7204034 DOI: 10.1186/s12881-020-01024-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Background Joubert syndrome (JBTS) is a genetically heterogeneous group of neurodevelopmental syndromes caused by primary cilia dysfunction. Usually the neurological presentation starts with abnormal neonatal breathing followed by muscular hypotonia, psychomotor delay, and cerebellar ataxia. Cerebral MRI shows mid- and hindbrain anomalies including the molar tooth sign. We report a male patient with atypical presentation of Joubert syndrome type 23, thus expanding the phenotype. Case presentation Clinical features were consistent with JBTS already from infancy, yet the syndrome was not suspected before cerebral MRI later in childhood showed the characteristic molar tooth sign and ectopic neurohypophysis. From age 11 years seizures developed and after few years became increasingly difficult to treat, also related to inadequate compliance to therapy. He died at 23 years of sudden unexpected death in epilepsy (SUDEP). The genetic diagnosis remained elusive for many years, despite extensive genetic testing. We reached the genetic diagnosis by performing whole genome sequencing of the family trio and analyzing the data with the combination of one analysis pipeline for single nucleotide variants (SNVs)/indels and one for structural variants (SVs). This lead to the identification of the most common variant detected in patients with JBTS23 (OMIM# 616490), rs534542684, in compound heterozygosity with a 8.3 kb deletion in KIAA0586, not previously reported. Conclusions We describe for the first time ectopic neurohypophysis and SUDEP in JBTS23, expanding the phenotype of this condition and raising the attention on the possible severity of the epilepsy in this disease. We also highlight the diagnostic power of WGS, which efficiently detects SNVs/indels and in addition allows the identification of SVs.
Collapse
Affiliation(s)
- Dulika Sumathipala
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Petter Strømme
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Ingunn Holm Einarsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hilde J Bjørndalen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Andrés Server
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jordi Corominas
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
| | - Bjørnar Hassel
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Madeleine Fannemel
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating. Nat Commun 2020; 11:2196. [PMID: 32366837 PMCID: PMC7198521 DOI: 10.1038/s41467-020-16042-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Transition fibers (TFs) regulate cilia gating and make the primary cilium a distinct functional entity. However, molecular insights into the biogenesis of a functional cilia gate remain elusive. In a forward genetic screen in Caenorhabditis elegans, we uncover that TALP-3, a homolog of the Joubert syndrome protein TALPID3, is a TF-associated component. Genetic analysis reveals that TALP-3 coordinates with ANKR-26, the homolog of ANKRD26, to orchestrate proper cilia gating. Mechanistically, TALP-3 and ANKR-26 form a complex with key gating component DYF-19, the homolog of FBF1. Co-depletion of TALP-3 and ANKR-26 specifically impairs the recruitment of DYF-19 to TFs. Interestingly, in mammalian cells, TALPID3 and ANKRD26 also play a conserved role in coordinating the recruitment of FBF1 to TFs. We thus report a conserved protein module that specifically regulates the functional component of the ciliary gate and suggest a correlation between defective gating and ciliopathy pathogenesis. Most cells possess sensory cilia, which need to be gated properly. Here the authors show that the C. elegans proteins TALP-3 and ANKR-26 coordinate cilia gating in the context of transition fibers and that this mechanism is conserved in mammalian cells and likely implicated in certain ciliopathies.
Collapse
|
35
|
Cocciadiferro D, Agolini E, Digilio MC, Sinibaldi L, Castori M, Silvestri E, Dotta A, Dallapiccola B, Novelli A. The splice c.1815G>A variant in KIAA0586 results in a phenotype bridging short-rib-polydactyly and oral-facial-digital syndrome: A case report and literature review. Medicine (Baltimore) 2020; 99:e19169. [PMID: 32080096 PMCID: PMC7034684 DOI: 10.1097/md.0000000000019169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION KIAA0586 variants have been associated to short-rib thoracic dysplasia, an autosomal recessive skeletal ciliopathy characterized by a narrow thorax, short limbs, and radiological skeletal abnormalities. PATIENT CONCERNS Patients 1 and 2 were two Roma Gypsy siblings presenting thoracic dysplasia and a combination of oral cavity anomalies. DIAGNOSIS A custom NGS gene panel, including genes associated to skeletal ciliopathies, identified the homozygous KIAA0586 splicing variant c.1815G>A (p.Gln605Gln) in both siblings, confirming the clinical diagnosis of short-rib-polydactyly. INTERVENTION Patients were transferred to neonatal intensive care unit and received life-support treatment. OUTCOMES Patients 1 and 2 died after few hours and 1 month of birth, respectively, because of respiratory failure related with the disease. CONCLUSION We report two patients affected by short-rib polydactyly syndrome and overlapping phenotype with oral-facial-digital syndrome associated with the c.1815G>A variant in KIAA0586, suggesting a quite peculiar genotype-phenotype correlation.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Sinibaldi
- Medical Genetics, Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia)
| | - Evelina Silvestri
- Division of Pathology, Unit of Fetal and Neonatal Pathology, San Camillo-Forlanini Hospital
| | - Andrea Dotta
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital
| | - Bruno Dallapiccola
- Department of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
36
|
Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity. ACTA ACUST UNITED AC 2019; 4:25-49. [PMID: 31763177 PMCID: PMC6864416 DOI: 10.3233/trd-190041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare, typically autosomal recessive disorder characterized by cerebellar vermis hypoplasia and a distinctive malformation of the cerebellum and brainstem identified as the “molar tooth sign” on brain MRI. Other universal features include hypotonia with later ataxia and intellectual disability/developmental delay, with additional features consisting of oculomotor apraxia and abnormal respiratory pattern. Notably, other, more variable features include renal cystic disease, typically nephronophthisis, retinal dystrophy, and congenital hepatic fibrosis; skeletal changes such as polydactyly and findings consistent with short-rib skeletal dysplasias are also seen in many subjects. These pleiotropic features are typical of a number of disorders of the primary cilium, and make the identification of causal genes challenging given the significant overlap between JS and other ciliopathy conditions such as nephronophthisis and Meckel, Bardet-Biedl, and COACH syndromes. This review will describe the features of JS, characterize the 35 known genes associated with the condition, and describe some of the genetic conundrums of JS, such as the heterogeneity of founder effects, lack of genotype-phenotype correlations, and role of genetic modifiers. Finally, aspects of JS and related ciliopathies that may pave the way for development of therapeutic interventions, including gene therapy, will be described.
Collapse
Affiliation(s)
- Melissa A Parisi
- Chief, Intellectual & Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
37
|
Bachmann‐Gagescu R. A new mouse model for the neurodevelopmental ciliopathy Joubert syndrome. J Pathol 2019; 248:393-395. [DOI: 10.1002/path.5291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 11/08/2022]
|
38
|
Wang T, Xuan Z, Dou Y, Liu Y, Fu Y, Ren J, Lu L. Identification of novel mutations in preaxial polydactyly patients through whole-exome sequencing. Mol Genet Genomic Med 2019; 7:e690. [PMID: 30993914 PMCID: PMC6565585 DOI: 10.1002/mgg3.690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Polydactyly is one of the most common hereditary limb malformation characterized by additional digits in hands and/or feet. With extra fingers/toes, which could be very problematic, polydactyly patients are usually treated in early childhood by removing of extra digits with surgery. Genetically, polydactyly is caused by mutations of genes that involve in digit formation. METHODS In the current report, we performed genetic analysis for polydactyly using DNA samples from a cohort of 20 Chinese patients. All patients show preaxial polydactyly in one of their hands. RESULTS With whole-exome sequencing (WES), we have identified two novel heterozygous mutations c.G2844A in GLI3 gene (OMIM 165240) and c.1409_1410del in EVC gene (OMIM 604831). Compound heterozygous mutations that affect KIAA0586 gene (OMIM 610178) are also detected. Proteins encoded by the genes have important roles in primary cilia and regulate sonic hedgehog signaling pathway. CONCLUSION Our study highlights the important roles of primary cilia in limb development, and helps to further understand the molecular mechanisms for polydactyly formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Zhaopeng Xuan
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yichen Dou
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yang Liu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanyan Fu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jingyan Ren
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Laijin Lu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
39
|
Fraser AM, Davey MG. TALPID3 in Joubert syndrome and related ciliopathy disorders. Curr Opin Genet Dev 2019; 56:41-48. [DOI: 10.1016/j.gde.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022]
|
40
|
Bashford AL, Subramanian V. Mice with a conditional deletion of Talpid3 (KIAA0586) - a model for Joubert syndrome. J Pathol 2019; 248:396-408. [PMID: 30924151 PMCID: PMC6767539 DOI: 10.1002/path.5271] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Joubert syndrome (JS) is a ciliopathy associated with mutations in numerous genes encoding cilia components. TALPID3 encoded by KIAA0856 in man (2700049A03Rik in mouse) is a centrosomal protein essential for the assembly of primary cilia. Mutations in KIAA0856 have been recently identified in JS patients. Herein, we describe a novel mouse JS model with a conditional deletion of the conserved exons 11–12 of Talpid3 in the central nervous system which recapitulates the complete cerebellar phenotype seen in JS. Talpid3 mutant mice exhibit key hallmarks of JS including progressive ataxia, severely hypoplastic cerebellar hemispheres and vermis, together with abnormal decussation of the superior cerebellar peduncles. The Purkinje cell layer is disorganised with abnormal dendritic arborisation. The external granule layer (EGL) is thinner, lacks primary cilia, and has a reduced level of proliferation. Furthermore, we describe novel cellular defects including ectopic clusters of mature granule neurons, and abnormal parallel fibre‐derived synapses and disorientation of cells in the EGL. The defective glial scaffold results in abnormal granule cell migration which manifests as ectopic clusters of granule neurons. In addition, we show a reduction in Wnt7a expression suggesting that defects may arise not only from deficiencies in the Hedgehog (Hh) pathway but also due to the additional roles of Talpid3. The Talpid3 conditional knockout mouse is a novel JS model which fully recapitulates the JS cerebellar phenotype. These findings reveal a role for Talpid3 in granule precursor cell migration in the cerebellum (either direct or indirect) which together with defective Hh signalling underlies the JS phenotype. Our findings also illustrate the utility of creating conditional mouse models to assist in unravelling the molecular and cellular mechanisms underlying JS. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Andrew L Bashford
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
41
|
Tsai JJ, Hsu WB, Liu JH, Chang CW, Tang TK. CEP120 interacts with C2CD3 and Talpid3 and is required for centriole appendage assembly and ciliogenesis. Sci Rep 2019; 9:6037. [PMID: 30988386 PMCID: PMC6465297 DOI: 10.1038/s41598-019-42577-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Centrosomal protein 120 (CEP120) was originally identified as a daughter centriole-enriched protein that participates in centriole elongation. Recent studies showed that CEP120 gene mutations cause complex ciliopathy phenotypes in humans, including Joubert syndrome and Jeune asphyxiating thoracic dystrophy, suggesting that CEP120 plays an additional role in ciliogenesis. To investigate the potential roles of CEP120 in centriole elongation and cilia formation, we knocked out the CEP120 gene in p53-deficient RPE1 cells using the CRISPR/Cas9 editing system, and performed various analyses. We herein report that loss of CEP120 produces short centrioles with no apparent distal and subdistal appendages. CEP120 knockout was also associated with defective centriole elongation, impaired recruitment of C2CD3 and Talpid3 to the distal ends of centrioles, and consequent defects in centriole appendage assembly and cilia formation. Interestingly, wild-type CEP120 interacts with C2CD3 and Talpid3, whereas a disease-associated CEP120 mutant (I975S) has a low affinity for C2CD3 binding and perturbs cilia assembly. Together, our findings reveal a novel role of CEP120 in ciliogenesis by showing that it interacts with C2CD3 and Talpid3 to assemble centriole appendages and by illuminating the molecular mechanism through which the CEP120 (I975S) mutation causes complex ciliopathies.
Collapse
Affiliation(s)
- Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Bin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Hua Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
42
|
Cabaud O, Roubin R, Comte A, Bascunana V, Sergé A, Sedjaï F, Birnbaum D, Rosnet O, Acquaviva C. Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum Mol Genet 2019; 27:3377-3391. [PMID: 29982567 DOI: 10.1093/hmg/ddy246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. A total of 436 skeletal dysplasias are listed in the 2015 revised version of the nosology and classification of genetic skeletal disorders, of which nearly 20% are still genetically and molecularly uncharacterized. We report the clinical and molecular characterization of a lethal skeletal dysplasia of the short-rib group caused by mutation of the mouse Fop gene. Fop encodes a centrosomal and centriolar satellite (CS) protein. We show that Fop mutation perturbs ciliogenesis in vivo and that this leads to the alteration of the Hedgehog signaling pathway. Fop mutation reduces CSs movements and affects pericentriolar material composition, which probably participates to the ciliogenesis defect. This study highlights the role of a centrosome and CSs protein producing phenotypes in mice that recapitulate a short rib-polydactyly syndrome when mutated.
Collapse
Affiliation(s)
- Olivier Cabaud
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Régine Roubin
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Audrey Comte
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Virginie Bascunana
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fatima Sedjaï
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Olivier Rosnet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Claire Acquaviva
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
43
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Wang L, Failler M, Fu W, Dynlacht BD. A distal centriolar protein network controls organelle maturation and asymmetry. Nat Commun 2018; 9:3938. [PMID: 30258116 PMCID: PMC6158247 DOI: 10.1038/s41467-018-06286-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
A long-standing mystery in the centrosome field pertains to the origin of asymmetry within the organelle. The removal of daughter centriole-specific/enriched proteins (DCPs) and acquisition of distal appendages on the future mother centriole are two important steps in the generation of asymmetry. We find that DCPs are recruited sequentially, and their removal is abolished in cells lacking Talpid3 or C2CD3. We show that removal of certain DCPs constitutes another level of control for distal appendage (DA) assembly. Remarkably, we also find that Talpid3 forms a distal centriolar multi-functional hub that coordinates the removal of specific DCPs, DA assembly, and recruitment of ciliary vesicles through distinct regions mutated in ciliopathies. Finally, we show that Talpid3, C2CD3, and OFD1 differentially regulate the assembly of sub-distal appendages, the CEP350/FOP/CEP19 module, centriolar satellites, and actin networks. Our work extends the spatial and functional understanding of proteins that control organelle maturation and asymmetry, ciliogenesis, and human disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Marion Failler
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Wenxiang Fu
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA.,Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
45
|
Pauli S, Altmüller J, Schröder S, Ohlenbusch A, Dreha-Kulaczewski S, Bergmann C, Nürnberg P, Thiele H, Li Y, Wollnik B, Brockmann K. Homozygosity for the c.428delG variant in KIAA0586 in a healthy individual: implications for molecular testing in patients with Joubert syndrome. J Med Genet 2018; 56:261-264. [DOI: 10.1136/jmedgenet-2018-105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 11/03/2022]
Abstract
BackgroundJoubert syndrome (JBTS) is a rare neurodevelopmental disorder with marked phenotypic variability and genetic heterogeneity. Homozygous or compound heterozygous mutations in the KIAA0586 gene on chromosome 14q23 are known to be associated with JBTS-23. The frameshift variant c.428delG is the most frequent KIAA0586 variant reported in JBTS-23; yet, homozygosity of this variant was observed in two patients with JBTS-23. However, homozygosity of the c.428delG variant was recently reported as well in one healthy individual.ObjectiveTo clarify whether the frameshift variant c.428delG in KIAA0586 is pathogenic in the homozygous state.MethodsWhole-exome sequencing as well as RNA analysis were performed.ResultsWe identified biallelic mutations, including the variant c.428delG and a splice site variant c.1413–1G>C, in KIAA0586 in two siblings with clinical and MRI features of JBTS. The c.1413–1G>C variant was inherited from the healthy father. The c.428delG variant was found in the healthy mother in a homozygous state in blood lymphocytes, hair root cells and buccal epithelial cells. RNA analysis revealed that the transcript harbouring the c.428delG variant was expressed in blood cells from the healthy mother, indicating that transcripts harbouring this variant elude the mechanism of nonsense-mediated mRNA decay.ConclusionConsidering this and the high allele frequency of 0.003117 in the gnomAD database, we conclude that c.428delG represents a JBTS disease-causing variant only if present in compound heterozygous state with a more severe KIAA0586 variant, but not in a homozygous situation.
Collapse
|
46
|
Joseph N, Al-Jassar C, Johnson CM, Andreeva A, Barnabas DD, Freund SMV, Gergely F, van Breugel M. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis. Cell Rep 2018; 23:2805-2818. [PMID: 29847808 PMCID: PMC5990496 DOI: 10.1016/j.celrep.2018.04.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles.
Collapse
Affiliation(s)
- Nimesh Joseph
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
47
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
48
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
49
|
Quélin C, Loget P, Boutaud L, Elkhartoufi N, Milon J, Odent S, Fradin M, Demurger F, Pasquier L, Thomas S, Attié-Bitach T. Loss of function IFT27 variants associated with an unclassified lethal fetal ciliopathy with renal agenesis. Am J Med Genet A 2018; 176:1610-1613. [PMID: 29704304 DOI: 10.1002/ajmg.a.38685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 11/06/2022]
Abstract
Ciliopathies comprise a group of clinically heterogeneous and overlapping disorders with a wide spectrum of phenotypes ranging from prenatal lethality to adult-onset disorders. Pathogenic variants in more than 100 ciliary protein-encoding genes have been described, most notably those involved in intraflagellar transport (IFT) which comprises two protein complexes, responsible for retrograde (IFT-A) and anterograde transport (IFT-B). Here we describe a fetus with an unclassified severe ciliopathy phenotype including short ribs, polydactyly, bilateral renal agenesis, and imperforate anus, with compound heterozygosity for c.118_125del, p.(Thr40Glyfs*11) and a c.352 +1G > T in IFT27, which encodes a small GTPase component of the IFT-B complex. We conclude that bilateral renal agenesis is a rare feature of this severe ciliopathy and this report highlights the phenotypic overlap of Pallister-Hall syndrome and ciliopathies. The phenotype in patients with IFT27 gene variants is wide ranging from Bardet-Biedl syndrome to a lethal phenotype.
Collapse
Affiliation(s)
- Chloé Quélin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Philippe Loget
- Service d'Anatomopathologie, CHU Pontchaillou, Rennes, France
| | - Lucile Boutaud
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm U1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Nadia Elkhartoufi
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Joelle Milon
- Pôle d'imagerie médicale, CHU Hôpital Sud, Rennes, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Florence Demurger
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Sophie Thomas
- Inserm U1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Tania Attié-Bitach
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm U1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| |
Collapse
|
50
|
Bonnard C, Shboul M, Tonekaboni SH, Ng AYJ, Tohari S, Ghosh K, Lai A, Lim JY, Tan EC, Devisme L, Stichelbout M, Alkindi A, Banu N, Yüksel Z, Ghoumid J, Elkhartoufi N, Boutaud L, Micalizzi A, Brett MS, Venkatesh B, Valente EM, Attié-Bitach T, Reversade B, Kariminejad A. Novel mutations in the ciliopathy-associated gene CPLANE1 (C5orf42) cause OFD syndrome type VI rather than Joubert syndrome. Eur J Med Genet 2018; 61:585-595. [PMID: 29605658 DOI: 10.1016/j.ejmg.2018.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 01/22/2023]
Abstract
Mutations in CPLANE1 (previously known as C5orf42) cause Oral-Facial-Digital Syndrome type VI (OFD6) as well as milder Joubert syndrome (JS) phenotypes. Seven new cases from five unrelated families diagnosed with pure OFD6 were systematically examined. Based on the clinical manifestations of these patients and those described in the literature, we revised the diagnostic features of OFD6 and include the seven most common characteristics: 1) molar tooth sign, 2) tongue hamartoma and/or lobulated tongue, 3) additional frenula, 4) mesoaxial polydactyly of hands, 5) preaxial polydactyly of feet, 6) syndactyly and/or bifid toe, and 7) hypothalamic hamartoma. By whole or targeted exome sequencing, we identified seven novel germline recessive mutations in CPLANE1, including missense, nonsense, frameshift and canonical splice site variants, all causing OFD6 in these patients. Since CPLANE1 is also mutated in JS patients, we examined whether a genotype-phenotype correlation could be established. We gathered and compared 46 biallelic CPLANE1 mutations reported in 32 JS and 26 OFD6 patients. Since no clear correlation between paired genotypes and clinical outcomes could be determined, we concluded that patient's genetic background and gene modifiers may modify the penetrance and expressivity of CPLANE1 causal alleles. To conclude, our study provides a comprehensive view of the phenotypic range, the genetic basis and genotype-phenotype association in OFD6 and JS. The updated phenotype scoring system together with the identification of new CPLANE1 mutations will help clinicians and geneticists reach a more accurate diagnosis for JS-related disorders.
Collapse
Affiliation(s)
- Carine Bonnard
- Institute of Medical Biology, A*STAR, Singapore, Singapore.
| | - Mohammad Shboul
- Institute of Medical Biology, A*STAR, Singapore, Singapore; Al-Balqa Applied University, Faculty of Science, Al-Salt, Jordan
| | | | - Alvin Yu Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Kakaly Ghosh
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Angeline Lai
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jiin Ying Lim
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ene Choo Tan
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Louise Devisme
- Institute of Pathology, Centre de Biologie Pathologie, CHRU Lille, France
| | | | - Adila Alkindi
- Genetics Department, Sultan Qaboos University Hospital, Oman
| | - Nazreen Banu
- Genetics Department, Sultan Qaboos University Hospital, Oman
| | - Zafer Yüksel
- Medical Genetics Department, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Jamal Ghoumid
- Service de Génétique Clinique et Université Lille 2, CHRU de Lille, Hôpital Jeanne de Flandre, Lille, France
| | - Nadia Elkhartoufi
- Département de Génétique, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Lucile Boutaud
- Département de Génétique, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; INSERM U1163, Laboratoire d'Embryologie et Génétique des malformations congénitales, Université Paris Descartes, Sorbonne Paris Cite et Institute Imagine, Paris, France
| | | | | | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Tania Attié-Bitach
- Département de Génétique, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; INSERM U1163, Laboratoire d'Embryologie et Génétique des malformations congénitales, Université Paris Descartes, Sorbonne Paris Cite et Institute Imagine, Paris, France
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | | |
Collapse
|