1
|
Fortes-Lima CA, Diallo MY, Janoušek V, Černý V, Schlebusch CM. Population history and admixture of the Fulani people from the Sahel. Am J Hum Genet 2025; 112:261-275. [PMID: 39919708 PMCID: PMC11866953 DOI: 10.1016/j.ajhg.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 02/09/2025] Open
Abstract
The Fulani people, one of the most important pastoralist groups in sub-Saharan Africa, are still largely underrepresented in population genomic research. They speak a Niger-Congo language called Fulfulde or Pulaar and live in scattered locations across the Sahel/Savannah belt, from the Atlantic Ocean to Lake Chad. According to historical records, their ancestors spread from Futa Toro in the Middle Senegal Valley to Futa-Jallon in Guinea and then eastward into the Sahel belt over the past 1,500 years. However, the earlier history of this traditionally pastoral population has not been well studied. To uncover the genetic structure and ancestry of this widespread population, we gathered genome-wide genotype data from 460 individuals across 18 local Fulani populations, along with comparative data from both modern and ancient worldwide populations. This represents a comprehensive geographically wide-scaled genome-wide study of the Fulani. We revealed a genetic component closely associated with all local Fulani populations, suggesting a shared ancestral component possibly linked to the beginning of African pastoralism in the Green Sahara. Comparison to ancient DNA results also identified the presence of an ancient Iberomaurusian-associated component across all Fulani groups, providing additional insights into their deep genetic history. Additionally, our genetic data indicate a later Fulani expansion from the western to the eastern Sahel, characterized by a clinal pattern and admixture with several other African populations north of the equator.
Collapse
Affiliation(s)
- Cesar A Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden; McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mame Y Diallo
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Letenská 1, 118 00 Prague, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, 128 01 Prague, Czech Republic
| | - Václav Janoušek
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Letenská 1, 118 00 Prague, Czech Republic; Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Letenská 1, 118 00 Prague, Czech Republic.
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa; SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
2
|
Zhang M, Traspov A, Yang J, Zheng M, Kharzinova VR, Ai H, Zinovieva NA, Huang L. Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars. Commun Biol 2025; 8:116. [PMID: 39856249 PMCID: PMC11759952 DOI: 10.1038/s42003-025-07536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China. Demographic analysis revealed the appearance of Russian wild boars in Far East of Asia (RUA) and Europe (RUE) after the last glacial maximum till ~ 10 thousand years ago. Recent gene flow (<100 years) from RUA to RUE reflects human-mediated introductions. Cold-region wild boars exhibit strong selection signatures indicative of genetic adaptation to cold climates. Further pathway and transcriptomic analyses reveal a novel cold resistance mechanism centered on enhanced vitamin A metabolism and catalysis, involving the reuse of UGT2B31 and rhythm regulation by ANGPTL8, RLN3 and ZBTB20. This may compensate for the pig's lack of brown fat/UCP1 thermogenesis. These findings provide new insights into the molecular basis of cold adaptation and improve our understanding of Eurasian wild boar migration history.
Collapse
Affiliation(s)
- Mingpeng Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, P.R. China
| | - Aleksei Traspov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Jiawen Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Min Zheng
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Veronika R Kharzinova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| | - Natalia A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk, Russia.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
3
|
Breton G, Barham L, Mudenda G, Soodyall H, Schlebusch CM, Jakobsson M. BaTwa populations from Zambia retain ancestry of past hunter-gatherer groups. Nat Commun 2024; 15:7307. [PMID: 39181874 PMCID: PMC11344834 DOI: 10.1038/s41467-024-50733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sub-equatorial Africa is today inhabited predominantly by Bantu-speaking groups of Western African descent who brought agriculture to the Luangwa valley in eastern Zambia ~2000 years ago. Before their arrival the area was inhabited by hunter-gatherers, who in many cases were subsequently replaced, displaced or assimilated. In Zambia, we know little about the genetic affinities of these hunter-gatherers. We examine ancestry of two isolated communities in Zambia, known as BaTwa and possible descendants of recent hunter-gatherers. We genotype over two million genome-wide SNPs from two BaTwa populations (total of 80 individuals) and from three comparative farming populations to: (i) determine if the BaTwa carry genetic links to past hunter-gatherer-groups, and (ii) characterise the genetic affinities of past Zambian hunter-gatherer-groups. The BaTwa populations do harbour a hunter-gatherer-like genetic ancestry and Western African ancestry. The hunter-gatherer component is a unique local signature, intermediate between current-day Khoe-San ancestry from southern Africa and central African rainforest hunter-gatherer ancestry.
Collapse
Affiliation(s)
- Gwenna Breton
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Department of Clinical Genetics and Genomics, Centre for Medical Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lawrence Barham
- Department of Archaeology, Classics & Egyptology, University of Liverpool, Liverpool, UK
| | - George Mudenda
- Livingstone Museum, Livingstone, Zambia
- National Museums Board, Lusaka, Zambia
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
4
|
Pathak AK, Simonian H, Ibrahim IAA, Hrechdakian P, Behar DM, Ayub Q, Arsanov P, Metspalu E, Yepiskoposyan L, Rootsi S, Endicott P, Villems R, Sahakyan H. Human Y chromosome haplogroup L1-M22 traces Neolithic expansion in West Asia and supports the Elamite and Dravidian connection. iScience 2024; 27:110016. [PMID: 38883810 PMCID: PMC11177204 DOI: 10.1016/j.isci.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.
Collapse
Affiliation(s)
- Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hovann Simonian
- Armenian DNA Project at Family Tree DNA, Houston, TX 77008, USA
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Doron M. Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Qasim Ayub
- Monash University Malaysia Genomics Platform, School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Pakhrudin Arsanov
- Chechen-Noahcho DNA Project at Family Tree DNA, Kostanay 110008, Kazakhstan
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Phillip Endicott
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Archaeology and Anthropology, Bournemouth University, Fern Barrow, Poole, Dorset BH12 5BB, UK
- Department of Linguistics, University of Hawai’i at Mānoa, Honolulu, Hawai’i 96822, USA
- DFG Center for Advanced Studies, University of Tübingen, 72074 Tübingen, Germany
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
5
|
Marchi N, Kapopoulou A, Excoffier L. Demogenomic inference from spatially and temporally heterogeneous samples. Mol Ecol Resour 2024; 24:e13877. [PMID: 37819677 DOI: 10.1111/1755-0998.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Modern and ancient genomes are not necessarily drawn from homogeneous populations, as they may have been collected from different places and at different times. This heterogeneous sampling can be an issue for demographic inferences and results in biased demographic parameters and incorrect model choice if not properly considered. When explicitly accounted for, it can result in very complex models and high data dimensionality that are difficult to analyse. In this paper, we formally study the impact of such spatial and temporal sampling heterogeneity on demographic inference, and we introduce a way to circumvent this problem. To deal with structured samples without increasing the dimensionality of the site frequency spectrum (SFS), we introduce a new structured approach to the existing program fastsimcoal2. We assess the efficiency and relevance of this methodological update with simulated and modern human genomic data. We particularly focus on spatial and temporal heterogeneities to evidence the interest of this new SFS-based approach, which can be especially useful when handling scattered and ancient DNA samples, as in conservation genetics or archaeogenetics.
Collapse
Affiliation(s)
- Nina Marchi
- CMPG, Institute for Ecology and Evolution, University of Berne, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- CMPG, Institute for Ecology and Evolution, University of Berne, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Excoffier
- CMPG, Institute for Ecology and Evolution, University of Berne, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
6
|
Stratakis CA. Genes and environment: An old pair in a new era. Maturitas 2023; 178:107851. [PMID: 37806009 DOI: 10.1016/j.maturitas.2023.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
What is the relationship between our genes and the environment we live in with regard to health? Like the debate about nature or nurture in the determination of our personality and behavior, the issue of genes and environment has been discussed intensely in the last two centuries. Is it Darwin or Lamarck who is right about the basic determinants of our health, especially as we age in a rapidly changing environment? Evolutionary biology as proposed by Darwin with natural selection at its core may not be able to explain almost instant adjustments of phenotypic traits to the pressures of the environment. Epigenesis, a concept that dates from Aristotle, provides a mechanism for the environment to affect variation in genetic traits that may become heritable. Indeed, Lamarck first described the inheritance of acquired characteristics. Thus, it appears that in contemporary genetics, both Darwin and Lamarck are right: environmental pressures may affect our genes through epigenetics, in ways that allow for inheritance of the changes, a Lamarckian concept; however, evolution through natural selection is the basis for incorporation (or rejection) of new traits and their sustained inheritance, a Darwinian concept. In this review, we present the synthesis of Darwin's and Lamarck's theories, the only way to understand how our health, and that of our progeny, responds to challenging and fast-changing environmental cues. In addition, we present other examples of environment-driven changes in disease frequency or expression.
Collapse
Affiliation(s)
- Constantine A Stratakis
- NIH Clinical Center, NICHD, NIH, Bethesda, MD, USA; Research, Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Greece; Medical Genetics, H. Dunant Hospital, Athens, Greece; Science Board, ELPEN Research Institute, Athens, Greece; European University of Cyprus, Medical School, Nicosia, Cyprus.
| |
Collapse
|
7
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
8
|
Černý V, Priehodová E, Fortes-Lima C. A Population Genetic Perspective on Subsistence Systems in the Sahel/Savannah Belt of Africa and the Historical Role of Pastoralism. Genes (Basel) 2023; 14:genes14030758. [PMID: 36981029 PMCID: PMC10048103 DOI: 10.3390/genes14030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
This review focuses on the Sahel/Savannah belt, a large region of Africa where two alternative subsistence systems (pastoralism and agriculture), nowadays, interact. It is a long-standing question whether the pastoralists became isolated here from other populations after cattle began to spread into Africa (~8 thousand years ago, kya) or, rather, began to merge with other populations, such as agropastoralists, after the domestication of sorghum and pearl millet (~5 kya) and with the subsequent spread of agriculture. If we look at lactase persistence, a trait closely associated with pastoral lifestyle, we see that its variants in current pastoralists distinguish them from their farmer neighbours. Most other (mostly neutral) genetic polymorphisms do not, however, indicate such clear differentiation between these groups; they suggest a common origin and/or an extensive gene flow. Genetic affinity and ecological symbiosis between the two subsistence systems can help us better understand the population history of this African region. In this review, we show that genomic datasets of modern Sahel/Savannah belt populations properly collected in local populations can complement the still insufficient archaeological research of this region, especially when dealing with the prehistory of mobile populations with perishable material culture and therefore precarious archaeological visibility.
Collapse
Affiliation(s)
- Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Letenská 1, 118 01 Prague, Czech Republic
| | - Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Letenská 1, 118 01 Prague, Czech Republic
| | - Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| |
Collapse
|
9
|
Fortes-Lima C, Tříska P, Čížková M, Podgorná E, Diallo MY, Schlebusch CM, Černý V. Demographic and Selection Histories of Populations Across the Sahel/Savannah Belt. Mol Biol Evol 2022; 39:6731090. [PMID: 36173804 PMCID: PMC9582163 DOI: 10.1093/molbev/msac209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Sahel/Savannah belt harbors diverse populations with different demographic histories and different subsistence patterns. However, populations from this large African region are notably under-represented in genomic research. To investigate the population structure and adaptation history of populations from the Sahel/Savannah space, we generated dense genome-wide genotype data of 327 individuals-comprising 14 ethnolinguistic groups, including 10 previously unsampled populations. Our results highlight fine-scale population structure and complex patterns of admixture, particularly in Fulani groups and Arabic-speaking populations. Among all studied Sahelian populations, only the Rashaayda Arabic-speaking population from eastern Sudan shows a lack of gene flow from African groups, which is consistent with the short history of this population in the African continent. They are recent migrants from Saudi Arabia with evidence of strong genetic isolation during the last few generations and a strong demographic bottleneck. This population also presents a strong selection signal in a genomic region around the CNR1 gene associated with substance dependence and chronic stress. In Western Sahelian populations, signatures of selection were detected in several other genetic regions, including pathways associated with lactase persistence, immune response, and malaria resistance. Taken together, these findings refine our current knowledge of genetic diversity, population structure, migration, admixture and adaptation of human populations in the Sahel/Savannah belt and contribute to our understanding of human history and health.
Collapse
Affiliation(s)
- Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Petr Tříska
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Čížková
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Podgorná
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mame Yoro Diallo
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic,Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
10
|
Sehrawat JS, Agrawal S, Sankhyan D, Singh M, Kumar S, Prakash S, Rajpal R, Chaubey G, Thangaraj K, Rai N. Pinpointing the Geographic Origin of 165-Year-Old Human Skeletal Remains Found in Punjab, India: Evidence From Mitochondrial DNA and Stable Isotope Analysis. Front Genet 2022; 13:813934. [PMID: 35571044 PMCID: PMC9095824 DOI: 10.3389/fgene.2022.813934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
In 2014, 157 years after the Sepoy Mutiny of 1857, several unidentified human skeletons were discovered in an abandoned well at Ajnala, Punjab. The most prevailing hypothesis suggested them as Indian soldiers who mutinied during the Indian uprising of 1857. However, there is an intense debate on their geographic affinity. Therefore, to pinpoint their area of origin, we have successfully isolated DNA from cementum-rich material of 50 good-quality random teeth samples and analyzed mtDNA haplogroups. In addition to that, we analyzed 85 individuals for oxygen isotopes (δ18O values). The mtDNA haplogroup distribution and clustering pattern rejected the local ancestry and indicated their genetic link with the populations living east of Punjab. In addition, the oxygen isotope analysis (δ18O values) from archaeological skeletal remains corroborated the molecular data and suggested the closest possible geographical affinity of these skeletal remains toward the eastern part of India, largely covering the Gangetic plain region. The data generated from this study are expected to expand our understanding of the ancestry and population affinity of martyr soldiers.
Collapse
Affiliation(s)
- J S Sehrawat
- Department of Anthropology, Panjab University, Chandigarh, India
| | | | - Deeksha Sankhyan
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Monika Singh
- Department of Anthropology, Panjab University, Chandigarh, India
| | - Sachin Kumar
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Satya Prakash
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Richa Rajpal
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Gyaneshwer Chaubey
- Cytogenetic Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| |
Collapse
|
11
|
Breton G, Johansson ACV, Sjödin P, Schlebusch CM, Jakobsson M. Comparison of sequencing data processing pipelines and application to underrepresented African human populations. BMC Bioinformatics 2021; 22:488. [PMID: 34627144 PMCID: PMC8502359 DOI: 10.1186/s12859-021-04407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Population genetic studies of humans make increasing use of high-throughput sequencing in order to capture diversity in an unbiased way. There is an abundance of sequencing technologies, bioinformatic tools and the available genomes are increasing in number. Studies have evaluated and compared some of these technologies and tools, such as the Genome Analysis Toolkit (GATK) and its “Best Practices” bioinformatic pipelines. However, studies often focus on a few genomes of Eurasian origin in order to detect technical issues. We instead surveyed the use of the GATK tools and established a pipeline for processing high coverage full genomes from a diverse set of populations, including Sub-Saharan African groups, in order to reveal challenges from human diversity and stratification. Results We surveyed 29 studies using high-throughput sequencing data, and compared their strategies for data pre-processing and variant calling. We found that processing of data is very variable across studies and that the GATK “Best Practices” are seldom followed strictly. We then compared three versions of a GATK pipeline, differing in the inclusion of an indel realignment step and with a modification of the base quality score recalibration step. We applied the pipelines on a diverse set of 28 individuals. We compared the pipelines in terms of count of called variants and overlap of the callsets. We found that the pipelines resulted in similar callsets, in particular after callset filtering. We also ran one of the pipelines on a larger dataset of 179 individuals. We noted that including more individuals at the joint genotyping step resulted in different counts of variants. At the individual level, we observed that the average genome coverage was correlated to the number of variants called. Conclusions We conclude that applying the GATK “Best Practices” pipeline, including their recommended reference datasets, to underrepresented populations does not lead to a decrease in the number of called variants compared to alternative pipelines. We recommend to aim for coverage of > 30X if identifying most variants is important, and to work with large sample sizes at the variant calling stage, also for underrepresented individuals and populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04407-x.
Collapse
Affiliation(s)
- Gwenna Breton
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden.
| | - Anna C V Johansson
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.,Science for Life Laboratory, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
12
|
Almarri MA, Haber M, Lootah RA, Hallast P, Al Turki S, Martin HC, Xue Y, Tyler-Smith C. The genomic history of the Middle East. Cell 2021; 184:4612-4625.e14. [PMID: 34352227 PMCID: PMC8445022 DOI: 10.1016/j.cell.2021.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15–20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East. Middle Easterners do not have ancestry from an early out-of-Africa expansion Basal Eurasian and African ancestry in Arabians deplete their Neanderthal ancestry Populations experienced bottlenecks overlapping aridification events Identification of recent single and polygenic signals of selection in Arabia
Collapse
Affiliation(s)
- Mohamed A Almarri
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Reem A Lootah
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Pille Hallast
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Saeed Al Turki
- Translational Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; Department of Genetics & Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
13
|
Choudhury A, Aron S, Botigué LR, Sengupta D, Botha G, Bensellak T, Wells G, Kumuthini J, Shriner D, Fakim YJ, Ghoorah AW, Dareng E, Odia T, Falola O, Adebiyi E, Hazelhurst S, Mazandu G, Nyangiri OA, Mbiyavanga M, Benkahla A, Kassim SK, Mulder N, Adebamowo SN, Chimusa ER, Muzny D, Metcalf G, Gibbs RA, Rotimi C, Ramsay M, Adeyemo AA, Lombard Z, Hanchard NA. High-depth African genomes inform human migration and health. Nature 2020; 586:741-748. [PMID: 33116287 PMCID: PMC7759466 DOI: 10.1038/s41586-020-2859-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laura R Botigué
- Center for Research in Agricultural Genomics (CRAG), Plant and Animal Genomics Program, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Taoufik Bensellak
- System and Data Engineering Team, Abdelmalek Essaadi University, ENSA, Tangier, Morocco
| | - Gordon Wells
- Centre for Proteomic and Genomic Research (CPGR), Cape Town, South Africa.,South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.,Africa Health Research Institute, Durban, South Africa
| | - Judit Kumuthini
- Centre for Proteomic and Genomic Research (CPGR), Cape Town, South Africa.,South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasmina J Fakim
- Department of Agriculture and Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius.,Department of Digital Technologies,Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Anisah W Ghoorah
- Department of Digital Technologies,Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Eileen Dareng
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Trust Odia
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Oluwadamilare Falola
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria.,Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaston Mazandu
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Oscar A Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Mamana Mbiyavanga
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institute Pasteur of Tunis, Tunis, Tunisia
| | - Samar K Kassim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo, Egypt
| | - Nicola Mulder
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious, Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
14
|
ElHefnawi M, Hegazy E, Elfiky A, Jeon Y, Jeon S, Bhak J, Mohamed Metwally F, Sugano S, Horiuchi T, Kazumi A, Blazyte A. Complete genome sequence and bioinformatics analysis of nine Egyptian females with clinical information from different geographic regions in Egypt. Gene 2020; 769:145237. [PMID: 33127537 DOI: 10.1016/j.gene.2020.145237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Egyptians are at a crossroad between Africa and Eurasia, providing useful genomic resources for analyzing both genetic and environmental factors for future personalized medicine. Two personal Egyptian whole genomes have been published previously by us and here nine female whole genome sequences with clinical information have been added to expand the genomic resource of Egyptian personal genomes. Here we report the analysis of whole genomes of nine Egyptian females from different regions using Illumina short-read sequencers. At 30x sequencing coverage, we identified 12 SNPs that were shared in most of the subjects associated with obesity which are concordant with their clinical diagnosis. Also, we found mtDNA mutation A4282G is common in all the samples and this is associated with chronic progressive external ophthalmoplegia (CPEO). Haplogroup and Admixture analyses revealed that most Egyptian samples are close to the other north Mediterranean, Middle Eastern, and European, respectively, possibly reflecting the into-Africa influx of human migration. In conclusion, we present whole-genome sequences of nine Egyptian females with personal clinical information that cover the diverse regions of Egypt. Although limited in sample size, the whole genomes data provides possible geno-phenotype candidate markers that are relevant to the region's diseases.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt; Informatics & Systems Department, the National Research Centre, Cairo, Egypt; Biomedical Informatics and Chemoinformatics Group, Center of Excellence for Medical Research, National Research Centre, Cairo, Egypt.
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt
| | - Asmaa Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Yeonsu Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jong Bhak
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Personal Genomics Institute, Genome Research Foundation, Osong, Republic of Korea
| | - Fateheya Mohamed Metwally
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Sumio Sugano
- The Institute of Medical Science, University of Tokyo, Japan
| | - Terumi Horiuchi
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Abe Kazumi
- The Institute of Medical Science, University of Tokyo, Japan
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
15
|
Černý V, Fortes-Lima C, Tříska P. Demographic history and admixture dynamics in African Sahelian populations. Hum Mol Genet 2020; 30:R29-R36. [PMID: 33105478 DOI: 10.1093/hmg/ddaa239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
The Sahel/Savannah belt of Africa is a contact zone between two subsistence systems (nomadic pastoralism and sedentary farming) and of two groups of populations, namely Eurasians penetrating from northern Africa southwards and sub-Saharan Africans migrating northwards. Because pastoralism is characterized by a high degree of mobility, it leaves few significant archaeological traces. Demographic history seen through the lens of population genetic studies complements our historical and archaeological knowledge in this African region. In this review, we highlight recent advances in our understanding of demographic history in the Sahel/Savannah belt as revealed by genetic studies. We show the impact of food-producing subsistence strategies on population structure and the somewhat different migration patterns in the western and eastern part of the region. Genomic studies show that the gene pool of various groups of Sahelians consists in a complex mosaic of several ancestries. We also touch upon various signals of genetic adaptations such as lactase persistence, taste sensitivity and malaria resistance, all of which have different distribution patterns among Sahelian populations. Overall, genetic studies contribute to gain a deeper understanding about the demographic and adaptive history of human populations in this specific African region and beyond.
Collapse
Affiliation(s)
- Viktor Černý
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Cesar Fortes-Lima
- Subdepartment of Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Petr Tříska
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Abstract
Teeth have been studied for decades and continue to reveal information relevant to human evolution. Studies have shown that many traits of the outer enamel surface evolve neutrally and can be used to infer human population structure. However, many of these traits are unavailable in archaeological and fossil individuals due to processes of wear and taphonomy. Enamel-dentine junction (EDJ) morphology, the shape of the junction between the enamel and the dentine within a tooth, captures important information about tooth development and vertebrate evolution and is informative because it is subject to less wear and thus preserves more anatomy in worn or damaged specimens, particularly in mammals with relatively thick enamel like hominids. This study looks at the molar EDJ across a large sample of human populations. We assessed EDJ morphological variation in a sample of late Holocene modern humans (n = 161) from archaeological populations using μ-CT biomedical imaging and geometric morphometric analyses. Global variation in human EDJ morphology was compared to the statistical expectations of neutral evolution and "Out of Africa" dispersal modeling of trait evolution. Significant correlations between phenetic variation and neutral genetic variation indicate that EDJ morphology has evolved neutrally in humans. While EDJ morphology reflects population history, its global distribution does not follow expectations of the Out of Africa dispersal model. This study increases our knowledge of human dental variation and contributes to our understanding of dental development more broadly, with important applications to the investigation of population history and human genetic structure.
Collapse
|
17
|
Nováčková J, Čížková M, Mokhtar MG, Duda P, Stenzl V, Tříska P, Hofmanová Z, Černý V. Subsistence strategy was the main factor driving population differentiation in the bidirectional corridor of the African Sahel. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:496-508. [DOI: 10.1002/ajpa.24001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Jana Nováčková
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Martina Čížková
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | | | - Pavel Duda
- Department of Zoology, Faculty of ScienceUniversity of South Bohemia České Budějovice Czech Republic
| | - Vlastimil Stenzl
- Department of Forensic GeneticsInstitute of Criminalistics Prague Czech Republic
| | - Petr Tříska
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Zuzana Hofmanová
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
18
|
Chaichoompu K, Abegaz F, Cavadas B, Fernandes V, Müller-Myhsok B, Pereira L, Van Steen K. A different view on fine-scale population structure in Western African populations. Hum Genet 2020; 139:45-59. [PMID: 31630246 PMCID: PMC6942040 DOI: 10.1007/s00439-019-02069-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/09/2019] [Indexed: 01/03/2023]
Abstract
Due to its long genetic evolutionary history, Africans exhibit more genetic variation than any other population in the world. Their genetic diversity further lends itself to subdivisions of Africans into groups of individuals with a genetic similarity of varying degrees of granularity. It remains challenging to detect fine-scale structure in a computationally efficient and meaningful way. In this paper, we present a proof-of-concept of a novel fine-scale population structure detection tool with Western African samples. These samples consist of 1396 individuals from 25 ethnic groups (two groups are African American descendants). The strategy is based on a recently developed tool called IPCAPS. IPCAPS, or Iterative Pruning to CApture Population Structure, is a genetic divisive clustering strategy that enhances iterative pruning PCA, is robust to outliers and does not require a priori computation of haplotypes. Our strategy identified in total 12 groups and 6 groups were revealed as fine-scale structure detected in the samples from Cameroon, Gambia, Mali, Southwest USA, and Barbados. Our finding helped to explain evolutionary processes in the analyzed West African samples and raise awareness for fine-scale structure resolution when conducting genome-wide association and interaction studies.
Collapse
Affiliation(s)
- Kridsadakorn Chaichoompu
- GIGA-R Medical Genomics-BIO3, University of Liege, Avenue de l’Hôpital 11, 4000 Liege, Belgium
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fentaw Abegaz
- GIGA-R Medical Genomics-BIO3, University of Liege, Avenue de l’Hôpital 11, 4000 Liege, Belgium
| | - Bruno Cavadas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | | | - Luísa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Kristel Van Steen
- GIGA-R Medical Genomics-BIO3, University of Liege, Avenue de l’Hôpital 11, 4000 Liege, Belgium
- WELBIO (Walloon Excellence in Lifesciences and Biotechnology), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
19
|
Vicente M, Priehodová E, Diallo I, Podgorná E, Poloni ES, Černý V, Schlebusch CM. Population history and genetic adaptation of the Fulani nomads: inferences from genome-wide data and the lactase persistence trait. BMC Genomics 2019; 20:915. [PMID: 31791255 PMCID: PMC6888939 DOI: 10.1186/s12864-019-6296-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Human population history in the Holocene was profoundly impacted by changes in lifestyle following the invention and adoption of food-production practices. These changes triggered significant increases in population sizes and expansions over large distances. Here we investigate the population history of the Fulani, a pastoral population extending throughout the African Sahel/Savannah belt. Results Based on genome-wide analyses we propose that ancestors of the Fulani population experienced admixture between a West African group and a group carrying both European and North African ancestries. This admixture was likely coupled with newly adopted herding practices, as it resulted in signatures of genetic adaptation in contemporary Fulani genomes, including the control element of the LCT gene enabling carriers to digest lactose throughout their lives. The lactase persistence (LP) trait in the Fulani is conferred by the presence of the allele T-13910, which is also present at high frequencies in Europe. We establish that the T-13910 LP allele in Fulani individuals analysed in this study lies on a European haplotype background thus excluding parallel convergent evolution. We furthermore directly link the T-13910 haplotype with the Lactase Persistence phenotype through a Genome Wide Association study (GWAS) and identify another genomic region in the vicinity of the SPRY2 gene associated with glycaemic measurements after lactose intake. Conclusions Our findings suggest that Eurasian admixture and the European LP allele was introduced into the Fulani through contact with a North African population/s. We furthermore confirm the link between the lactose digestion phenotype in the Fulani to the MCM6/LCT locus by reporting the first GWAS of the lactase persistence trait. We also explored other signals of recent adaptation in the Fulani and identified additional candidates for selection to adapt to herding life-styles.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Issa Diallo
- Département de Linguistique et Langues Nationales, Institut des Sciences des Sociétés, CNRST, Ouagadougou, Burkina Faso
| | - Eliška Podgorná
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Estella S Poloni
- Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,SciLifeLab Uppsala, Uppsala, Sweden.
| |
Collapse
|
20
|
Serra-Vidal G, Lucas-Sanchez M, Fadhlaoui-Zid K, Bekada A, Zalloua P, Comas D. Heterogeneity in Palaeolithic Population Continuity and Neolithic Expansion in North Africa. Curr Biol 2019; 29:3953-3959.e4. [DOI: 10.1016/j.cub.2019.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/02/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023]
|
21
|
Raveane A, Aneli S, Montinaro F, Athanasiadis G, Barlera S, Birolo G, Boncoraglio G, Di Blasio AM, Di Gaetano C, Pagani L, Parolo S, Paschou P, Piazza A, Stamatoyannopoulos G, Angius A, Brucato N, Cucca F, Hellenthal G, Mulas A, Peyret-Guzzon M, Zoledziewska M, Baali A, Bycroft C, Cherkaoui M, Chiaroni J, Di Cristofaro J, Dina C, Dugoujon JM, Galan P, Giemza J, Kivisild T, Mazieres S, Melhaoui M, Metspalu M, Myers S, Pereira L, Ricaut FX, Brisighelli F, Cardinali I, Grugni V, Lancioni H, Pascali VL, Torroni A, Semino O, Matullo G, Achilli A, Olivieri A, Capelli C. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. SCIENCE ADVANCES 2019; 5:eaaw3492. [PMID: 31517044 PMCID: PMC6726452 DOI: 10.1126/sciadv.aaw3492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 05/10/2023]
Abstract
European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non-steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.
Collapse
Affiliation(s)
- A. Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Zoology, University of Oxford, Oxford, UK
| | - S. Aneli
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - F. Montinaro
- Department of Zoology, University of Oxford, Oxford, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - G. Athanasiadis
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - S. Barlera
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - G. Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - G. Boncoraglio
- Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- PhD Program in Neuroscience, University Milano-Bicocca, Monza, Italy
| | - A. M. Di Blasio
- Istituto Auxologico Italiano, IRCCS, Centro di Ricerche e Tecnologie Biomediche, Milano, Italy
| | - C. Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - L. Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- APE lab, Department of Biology, University of Padua, Padua, Italy
| | - S. Parolo
- Computational Biology Unit, Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - P. Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - A. Piazza
- Department of Medical Sciences, University of Turin, Turin, Italy
- Academy of Sciences, Turin, Italy
| | - G. Stamatoyannopoulos
- Department of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - A. Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - N. Brucato
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - G. Hellenthal
- University College London Genetics Institute (UGI), University College London, London, UK
| | - A. Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Lanusei, Italy
| | - M. Peyret-Guzzon
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - A. Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - C. Bycroft
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Cherkaoui
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - J. Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - J. Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - C. Dina
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - J. M. Dugoujon
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - P. Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13/Inserm U1153/Inra U1125/ Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France
| | - J. Giemza
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - T. Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, box 604, Leuven 3000, Belgium
| | - S. Mazieres
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - M. Melhaoui
- Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - M. Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - S. Myers
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L. Pereira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - F. X. Ricaut
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Brisighelli
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - I. Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - H. Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. L. Pascali
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - A. Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - O. Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - G. Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - A. Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - A. Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - C. Capelli
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Haber M, Jones AL, Connell BA, Asan, Arciero E, Yang H, Thomas MG, Xue Y, Tyler-Smith C. A Rare Deep-Rooting D0 African Y-Chromosomal Haplogroup and Its Implications for the Expansion of Modern Humans Out of Africa. Genetics 2019; 212:1421-1428. [PMID: 31196864 PMCID: PMC6707464 DOI: 10.1534/genetics.119.302368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Present-day humans outside Africa descend mainly from a single expansion out ∼50,000-70,000 years ago, but many details of this expansion remain unclear, including the history of the male-specific Y chromosome at this time. Here, we reinvestigate a rare deep-rooting African Y-chromosomal lineage by sequencing the whole genomes of three Nigerian men described in 2003 as carrying haplogroup DE* Y chromosomes, and analyzing them in the context of a calibrated worldwide Y-chromosomal phylogeny. We confirm that these three chromosomes do represent a deep-rooting DE lineage, branching close to the DE bifurcation, but place them on the D branch as an outgroup to all other known D chromosomes, and designate the new lineage D0. We consider three models for the expansion of Y lineages out of Africa ∼50,000-100,000 years ago, incorporating migration back to Africa where necessary to explain present-day Y-lineage distributions. Considering both the Y-chromosomal phylogenetic structure incorporating the D0 lineage, and published evidence for modern humans outside Africa, the most favored model involves an origin of the DE lineage within Africa with D0 and E remaining there, and migration out of the three lineages (C, D, and FT) that now form the vast majority of non-African Y chromosomes. The exit took place 50,300-81,000 years ago (latest date for FT lineage expansion outside Africa - earliest date for the D/D0 lineage split inside Africa), and most likely 50,300-59,400 years ago (considering Neanderthal admixture). This work resolves a long-running debate about Y-chromosomal out-of-Africa/back-to-Africa migrations, and provides insights into the out-of-Africa expansion more generally.
Collapse
Affiliation(s)
- Marc Haber
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Bruce A Connell
- Glendon College, York University, Toronto, Ontario M4N 3N6, Canada
| | - Asan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Elena Arciero
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK, and University College London (UCL) Genetics Institute, University College London, WC1E 6BT, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
23
|
Nowaczewska W, Binkowski M, Kubicka AM, Piontek J, Balzeau A. Neandertal-like traits visible in the internal structure of non-supranuchal fossae of some recent Homo sapiens: The problem of their identification in hominins and phylogenetic implications. PLoS One 2019; 14:e0213687. [PMID: 30861048 PMCID: PMC6421632 DOI: 10.1371/journal.pone.0213687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
Although recently the internal structure of the non-supranuchal fossa of
Homo sapiens has been described and compared to that
observed in the Neandertal suprainiac fossa, until now it has not been examined
in any modern human children. In this study, the internal structure of this
fossa in the occipital bones of three children (two aged 3‒4 years and one aged
5 years ± 16 months) and one adult individual representing recent Homo
sapiens from Australia was analysed and compared to that of the
Neandertal suprainiac fossa. In order to analyse the internal composition of the
fossae of the examined specimens, initially, high-resolution micro-CT datasets
were obtained for their occipital bones; next, 3D topographic maps of the
variation in thickness of structural layers of the occipital bones were made and
2D virtual sections in the median region of these fossae were prepared. In the
fossa of one immature individual, the thinning of the diploic layer
characteristic of a Neandertal suprainiac fossa was firmly diagnosed. The other
Neandertal-like trait, concerning the lack of substantial thinning of the
external table of the bone in the region of the fossa, was established in two
individuals (one child and one adult) due to the observation of an irregular
pattern of the thickness of this table in the other specimens, suggesting the
presence of an inflammatory process. Our study presents, for the first time,
Neandertal-like traits (but not the whole set of features that justifies the
autapomorphic status of the Neandertal supraniac fossa) in the internal
structure of non-supranuchal fossae of some recent Homo
sapiens. We discuss the phylogenetic implications of the results of our
analysis and stress the reasons that use of the 3D topographic mapping method is
important for the correct diagnosis of Neandertal traits of the internal
structure of occipital fossae.
Collapse
Affiliation(s)
| | - Marcin Binkowski
- X-ray Microtomography Lab, Department of Biomedical Computer Systems,
Institute of Computer Science, Faculty of Computer and Materials Science,
University of Silesia, Sosnowiec, Poland
| | - Anna Maria Kubicka
- Department of Zoology, Institute of Zoology, Poznań University of Life
Sciences, Poznań, Poland
| | - Janusz Piontek
- Department of Human Evolutionary Biology, Institute of Anthropology, Adam
Mickiewicz University in Poznań, Poznań, Poland
| | - Antoine Balzeau
- PaleoFED team «paleoanthropology: function, evolution and diversity»,
Departement Homme et Environnement, Museum national d'Histoire naturelle, Paris,
France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren,
Belgium
| |
Collapse
|
24
|
Shriner D, Rotimi CN. Genetic history of Chad. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:804-812. [PMID: 30259956 DOI: 10.1002/ajpa.23711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The Sahel is a semi-arid zone stretching from the Atlantic Ocean in the west to the Red Sea in the east and from the Sahara in the north to the Sudanian Savanna in the south. Here, we investigated the genetic history of the spread of Northern African ancestry common among Berbers, the Y DNA haplogroup R1b-V88, and Chadic languages throughout the Sahel, with a focus on Chad. MATERIALS AND METHODS We integrated and analyzed genotype data from 751 individuals from Chad, Burkina Faso, Mali, South Sudan, and Sudan in the context of a global reference panel of 5,966 individuals. RESULTS We found that genetic diversity in Chad was broadly divided by a north-south axis. The core ancestry of Southern Chadians was Central African, most closely related to Pygmies. Southern Chadians then experienced four waves of gene flow over the last 3,000 years from West-Central Africans, Eastern Africans, West-Central Africans again, and then Arabians. In contrast, Northern Chadians did not share Central African ancestry and were not influenced by the first wave of West-Central Africans but were influenced by Northern African ancestry. DISCUSSION We found that Y DNA haplogroup R1b entered the Chadian gene pool during Baggarization. Baggara Arabs spoke Arabic, not Chadic, implying that people carrying R1b-V88 were not responsible for the spread of Chadic languages, which may have spread approximately 3,700 years ago. We found no evidence for migration of Near Eastern farmers or any ancient episodes involving Eurasian backflow.
Collapse
Affiliation(s)
- Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, Maryland
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, Maryland
| |
Collapse
|
25
|
Schlebusch CM, Jakobsson M. Tales of Human Migration, Admixture, and Selection in Africa. Annu Rev Genomics Hum Genet 2018; 19:405-428. [DOI: 10.1146/annurev-genom-083117-021759] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last three decades, genetic studies have played an increasingly important role in exploring human history. They have helped to conclusively establish that anatomically modern humans first appeared in Africa roughly 250,000–350,000 years before present and subsequently migrated to other parts of the world. The history of humans in Africa is complex and includes demographic events that influenced patterns of genetic variation across the continent. Through genetic studies, it has become evident that deep African population history is captured by relationships among African hunter–gatherers, as the world's deepest population divergences occur among these groups, and that the deepest population divergence dates to 300,000 years before present. However, the spread of pastoralism and agriculture in the last few thousand years has shaped the geographic distribution of present-day Africans and their genetic diversity. With today's sequencing technologies, we can obtain full genome sequences from diverse sets of extant and prehistoric Africans. The coming years will contribute exciting new insights toward deciphering human evolutionary history in Africa.
Collapse
Affiliation(s)
- Carina M. Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden;,
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, 2006 Johannesburg, South Africa
- SciLifeLab, SE-751 23 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden;,
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, 2006 Johannesburg, South Africa
- SciLifeLab, SE-751 23 Uppsala, Sweden
| |
Collapse
|
26
|
Abstract
The Sahara was once fertile; a recent study identifies human Y-chromosomal lineages that flourished in this Green Sahara and their relation to present-day populations.
Collapse
Affiliation(s)
- Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
27
|
D’Atanasio E, Trombetta B, Bonito M, Finocchio A, Di Vito G, Seghizzi M, Romano R, Russo G, Paganotti GM, Watson E, Coppa A, Anagnostou P, Dugoujon JM, Moral P, Sellitto D, Novelletto A, Cruciani F. The peopling of the last Green Sahara revealed by high-coverage resequencing of trans-Saharan patrilineages. Genome Biol 2018; 19:20. [PMID: 29433568 PMCID: PMC5809971 DOI: 10.1186/s13059-018-1393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Little is known about the peopling of the Sahara during the Holocene climatic optimum, when the desert was replaced by a fertile environment. RESULTS In order to investigate the role of the last Green Sahara in the peopling of Africa, we deep-sequence the whole non-repetitive portion of the Y chromosome in 104 males selected as representative of haplogroups which are currently found to the north and to the south of the Sahara. We identify 5,966 mutations, from which we extract 142 informative markers then genotyped in about 8,000 subjects from 145 African, Eurasian and African American populations. We find that the coalescence age of the trans-Saharan haplogroups dates back to the last Green Sahara, while most northern African or sub-Saharan clades expanded locally in the subsequent arid phase. CONCLUSIONS Our findings suggest that the Green Sahara promoted human movements and demographic expansions, possibly linked to the adoption of pastoralism. Comparing our results with previously reported genome-wide data, we also find evidence for a sex-biased sub-Saharan contribution to northern Africans, suggesting that historical events such as the trans-Saharan slave trade mainly contributed to the mtDNA and autosomal gene pool, whereas the northern African paternal gene pool was mainly shaped by more ancient events.
Collapse
Affiliation(s)
- Eugenia D’Atanasio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Maria Bonito
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Finocchio
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| | - Genny Di Vito
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Mara Seghizzi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Rita Romano
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Gianluca Russo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Jean-Michel Dugoujon
- Centre National de la Recherche Scientifique (CNRS), Université Toulouse-3–Paul-Sabatier, Toulouse, France
| | - Pedro Moral
- Department of Animal Biology-Anthropology, Biodiversity Research Institute, University of Barcelona, Barcelona, Spain
| | | | - Andrea Novelletto
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy
| |
Collapse
|
28
|
Hollfelder N, Schlebusch CM, Günther T, Babiker H, Hassan HY, Jakobsson M. Northeast African genomic variation shaped by the continuity of indigenous groups and Eurasian migrations. PLoS Genet 2017; 13:e1006976. [PMID: 28837655 PMCID: PMC5587336 DOI: 10.1371/journal.pgen.1006976] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 08/13/2017] [Indexed: 12/26/2022] Open
Abstract
Northeast Africa has a long history of human habitation, with fossil-finds from the earliest anatomically modern humans, and housing ancient civilizations. The region is also the gate-way out of Africa, as well as a portal for migration into Africa from Eurasia via the Middle East and the Arabian Peninsula. We investigate the population history of northeast Africa by genotyping ~3.9 million SNPs in 221 individuals from 18 populations sampled in Sudan and South Sudan and combine this data with published genome-wide data from surrounding areas. We find a strong genetic divide between the populations from the northeastern parts of the region (Nubians, central Arab populations, and the Beja) and populations towards the west and south (Nilotes, Darfur and Kordofan populations). This differentiation is mainly caused by a large Eurasian ancestry component of the northeast populations likely driven by migration of Middle Eastern groups followed by admixture that affected the local populations in a north-to-south succession of events. Genetic evidence points to an early admixture event in the Nubians, concurrent with historical contact between North Sudanese and Arab groups. We estimate the admixture in current-day Sudanese Arab populations to about 700 years ago, coinciding with the fall of Dongola in 1315/1316 AD, a wave of admixture that reached the Darfurian/Kordofanian populations some 400–200 years ago. In contrast to the northeastern populations, the current-day Nilotic populations from the south of the region display little or no admixture from Eurasian groups indicating long-term isolation and population continuity in these areas of northeast Africa. Northeast Africa has geographic and historical links to Eurasia via the Middle East and the Arabian Peninsula, but the demographic history of the region itself has been more elusive. We investigate genomic diversity of northeast African populations and found a clear bimodal distribution of variation, correlated with geography, and likely driven by Eurasian admixture in the wake of migrations along the Nile. This admixture process largely coincides with the time of the Arab conquest, spreading in a southbound direction along the Nile and the Blue Nile. Nilotic populations occupying the region around the White Nile show long-term continuity, genetic isolation and genetic links to ancestral East African people. Compared to current times, groups that are ancestral to the current-day Nilotes likely inhabited a larger area of northeast Africa prior to the migration from the Middle East as their ancestry component can still be found in a large area. Our findings reveal the genetic history of Sudanese and South Sudanese people, broaden our knowledge on demographic history of humans, and quantify the impact of large-scale historic migration events in northeast Africa.
Collapse
Affiliation(s)
- Nina Hollfelder
- Dept. of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Torsten Günther
- Dept. of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hiba Babiker
- Dept. of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Hisham Y. Hassan
- Banoon ART and Cytogenetics Centre, Bahrain Defense Force Hospital, Manama, Kingdom of Bahrain
| | - Mattias Jakobsson
- Dept. of Organismal Biology, Uppsala University, Uppsala, Sweden
- SciLife Lab, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
29
|
Haber M, Doumet-Serhal C, Scheib C, Xue Y, Danecek P, Mezzavilla M, Youhanna S, Martiniano R, Prado-Martinez J, Szpak M, Matisoo-Smith E, Schutkowski H, Mikulski R, Zalloua P, Kivisild T, Tyler-Smith C. Continuity and Admixture in the Last Five Millennia of Levantine History from Ancient Canaanite and Present-Day Lebanese Genome Sequences. Am J Hum Genet 2017; 101:274-282. [PMID: 28757201 PMCID: PMC5544389 DOI: 10.1016/j.ajhg.2017.06.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600–3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750–2,170 years ago during a period of successive conquests by distant populations.
Collapse
|
30
|
Kulichová I, Fernandes V, Deme A, Nováčková J, Stenzl V, Novelletto A, Pereira L, Černý V. Internal diversification of non-Sub-Saharan haplogroups in Sahelian populations and the spread of pastoralism beyond the Sahara. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:424-434. [DOI: 10.1002/ajpa.23285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Iva Kulichová
- Department of Anthropology and Human Genetics, Faculty of Science; Charles University in Prague; Czech Republic
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
| | - Alioune Deme
- Département d'Histoire, Faculté des Lettres et Sciences humaines; Université Cheikh Anta Diop de Dakar; Senegal
| | - Jana Nováčková
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| | - Vlastimil Stenzl
- Department of Forensic Genetics; Institute of Criminalistics; Prague Czech Republic
| | | | - Luísa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto; Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto Portugal
- Faculdade de Medicina da Universidade do Porto; Porto Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Czech Republic
| |
Collapse
|