1
|
Bagga R, Katoch T, Srinivasan R, Prasad GRV, Suri V, Saha PK, Slim R. Is gestational trophoblastic neoplasia more common among women with recurrent hydatidiform moles and biallelic NLRP7 mutations? a 17-years prospective study from India. Eur J Obstet Gynecol Reprod Biol 2025; 311:114022. [PMID: 40319759 DOI: 10.1016/j.ejogrb.2025.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE Recurrent hydatidiform moles (RHM) is a rare entity defined by the occurrence of two or more hydatidiform moles (HM) in a woman. We present data of women with RHM from a tertiary care institute in North India with respect to the incidence of Gestational Trophoblastic Neoplasia (GTN), subsequent reproductive outcome and genetic analysis in this cohort. METHODS Women who presented with RHM and no prior live birth were enrolled from 2005 to 2022 and analysed for the presence of pathogenic or likely pathogenic (P/LP) variants in genes responsible for RHM. They were followed-up for occurrence of post-molar GTN as per FIGO and WHO guidelines, and subsequent reproductive outcomes. RESULTS Of the 23 women with RHM, 22 (95.6 %) had biallelic P/LP variants in three genes, 20 in NLRP7 (87 %), one in KHDC3L (4 %), and one in TOP6BL (4 %). Of the 20 women with NLRP7 variants, 10 (50 %) developed GTN, mostly low-risk, which is approximately 2 to 3 times higher than the rate of GTN among women with sporadic HM at similar ages. Three of these women had recurrent GTN. Among the 22 women with biallelic P/LP variants, only one had a spontaneous live birth, and four underwent IVF with donated ova, of whom three had live births. Only one woman was negative for recessive causative variants in the known genes or any novel gene and she subsequently had two spontaneous live births. CONCLUSION Our data indicate a high incidence of biallelic P/LP NLRP7 variants among Indian women with RHM and no live birth. These women appeared to be at a higher risk for developing GTN and had a very low chance of a spontaneous live birth, and these two concerns may be mitigated by avoiding a spontaneous pregnancy and having donor ovum IVF. All women with RHM should have genetic testing and counseling specifically due to their higher risk of GTN.
Collapse
Affiliation(s)
- Rashmi Bagga
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Tanvi Katoch
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology & Gynae-Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - G R V Prasad
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vanita Suri
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pradip Kumar Saha
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rima Slim
- Departments of Human Genetics and Obstetrics & Gynaecology, McGill University Health Centre Research Institute, Montreal, Canada
| |
Collapse
|
2
|
Wu Y, Xue J, Tu M, Liu Y, Zhang D. Could blastocysts derived from abnormal fertilized zygotes be used? A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2025; 311:114033. [PMID: 40490324 DOI: 10.1016/j.ejogrb.2025.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
OBJECTIVES Current guidelines advise against using embryos derived from mono-pronuclei (1PN) or non-pronuclei (0PN) zygotes for clinical purposes. Nevertheless, recent studies have demonstrated that 1PN and 0PN zygotes can lead to healthy births. This study aimed to investigate the pregnancy outcomes of 1PN and 0PN blastocysts. METHODS PubMed, EMBASE, Web of Science and Cochrane databases were searched up to 14 March 2024. Eligible studies enrolled participants transferring 0PN or 1PN blastocysts, with two pronuclei (2PN) blastocysts used as the control. Clinical pregnancy rate, miscarriage rate and live birth rate were the main outcomes. The results were presented as odds ratios (OR) with 95 % confidence intervals (CI) using random-effect models with the Mantel-Haenszel method. Additionally, a stratified analysis was conducted based on the type of fertilization. The Newcastle-Ottawa scale (NOS) was used to evaluate the quality of the included studies. RESULTS In total, 270 articles were identified, with 16 ultimately included in the meta-analysis. In total, 57,835 cycles were analysed: 1071 cycles in the 1PN group, 2324 cycles in the 0PN group, and 54,440 cycles in the 2PN group. The results indicated that 1PN or 0PN blastocysts were associated with lower clinical pregnancy rates and live birth rates than 2PN blastocysts. Interestingly, there was no significant difference in live birth rate between 1PN blastocysts and 2PN blastocysts in patients undergoing intracytoplasmic sperm injection (ICSI), nor between 0PN blastocysts and 2PN blastocysts in patients undergoing in-vitro fertilization (IVF). CONCLUSION Careful consideration should be given to the utilization of 1PN and 0PN blastocysts, especially if an improved methodology of non-invasive assessment of fertilization is available. At the very least, 1PN blastocysts in patients undergoing IVF and 0PN blastocysts in patients undergoing ICSI represent viable fertility options for patients facing abnormal fertilization in clinical practice.
Collapse
Affiliation(s)
- Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jinglei Xue
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Mixue Tu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yifeng Liu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Clinical Research Centre on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
3
|
Wu Y, Xue J, Tu M, Liu Y, Zhang D. Could blastocysts derived from abnormal fertilized zygotes be used? A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol X 2025; 26:100381. [PMID: 40206393 PMCID: PMC11981765 DOI: 10.1016/j.eurox.2025.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/20/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Objectives Current guidelines advise against using embryos derived from mono-pronuclei (1PN) or non-pronuclei (0PN) zygotes for clinical purposes. Nevertheless, recent studies have demonstrated that 1PN and 0PN zygotes can lead to healthy births. This study aimed to investigate the pregnancy outcomes of 1PN and 0PN blastocysts. Methods PubMed, EMBASE, Web of Science and Cochrane databases were searched up to 14 March 2024. Eligible studies enrolled participants transferring 0PN or 1PN blastocysts, with two pronuclei (2PN) blastocysts used as the control. Clinical pregnancy rate, miscarriage rate and live birth rate were the main outcomes. The results were presented as odds ratios (OR) with 95 % confidence intervals (CI) using random-effect models with the Mantel-Haenszel method. Additionally, a stratified analysis was conducted based on the type of fertilization. The Newcastle-Ottawa scale (NOS) was used to evaluate the quality of the included studies. Results In total, 270 articles were identified, with 16 ultimately included in the meta-analysis. In total, 57,835 cycles were analysed: 1071 cycles in the 1PN group, 2324 cycles in the 0PN group, and 54,440 cycles in the 2PN group. The results indicated that 1PN or 0PN blastocysts were associated with lower clinical pregnancy rates and live birth rates than 2PN blastocysts. Interestingly, there was no significant difference in live birth rate between 1PN blastocysts and 2PN blastocysts in patients undergoing intracytoplasmic sperm injection (ICSI), nor between 0PN blastocysts and 2PN blastocysts in patients undergoing in-vitro fertilization (IVF). Conclusion Careful consideration should be given to the utilization of 1PN and 0PN blastocysts, especially if an improved methodology of non-invasive assessment of fertilization is available. At the very least, 1PN blastocysts in patients undergoing ICSI and 0PN blastocysts in patients undergoing IVF represent viable fertility options for patients facing abnormal fertilization in clinical practice.
Collapse
Affiliation(s)
- Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jinglei Xue
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Mixue Tu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yifeng Liu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China
- Clinical Research Centre on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
4
|
Zhang Z, Wu T, Sang Q, Wang L. Human oocyte quality and reproductive health. Sci Bull (Beijing) 2025:S2095-9273(25)00403-7. [PMID: 40335394 DOI: 10.1016/j.scib.2025.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Declining female fertility is a health issue that has received broad global attention. Oocyte quality is the key limiting factor of female fertility, and key processes affecting oocyte quality involve the secretion of and response to hormones, ovarian function, oogenesis, oocyte maturation, and meiosis. However, compared with other species, the research and understanding of human oocyte quality and human reproductive health is limited. This review highlights our current understanding of the physiological factors and pathological factors related to human oocyte quality and discusses potential treatments. In terms of physiology, we discuss the regulation of the hypothalamic-pituitary-gonadal axis, granulosa cells, key subcellular structures, maternal mRNA homeostasis, the extracellular matrix, the maternal microenvironment, and multi-omics resources related to human oocyte quality. In terms of pathology, we review hypothalamic-pituitary-gonadal defects, ovarian dysfunction (including premature ovarian insufficiency and polycystic ovary syndrome), human oocyte development defects, and aging. In terms of the pathological aspects of human oocyte development and quality defects, nearly half of the reported pathogenic genes are involved in meiosis, while the remainder are involved in maternal mRNA regulation, the subcortical maternal complex, zona pellucida formation, ion channels, protein transport, and mitochondrial function. Furthermore, we outline the emerging scientific prospects and challenges for future explorations of the biological mechanisms behind infertility and the development of clinical treatments. This review seeks to deepen our understanding of the mechanisms regulating human oocyte quality and to provide novel insights into clinical female infertility characterized by defects in oocyte quality and oocyte development.
Collapse
Affiliation(s)
- Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Shanghai Academy of Natural Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Ivanova A, Korchivaia E, Semenova M, Lebedev I, Mazunin I, Volodyaev I. The chromosomal challenge of human embryos: Mechanisms and fundamentals. HGG ADVANCES 2025; 6:100437. [PMID: 40211536 PMCID: PMC12050003 DOI: 10.1016/j.xhgg.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Chromosomal abnormalities in human pre-implantation embryos, originating from either meiotic or mitotic errors, present a significant challenge in reproductive biology. Complete aneuploidy is primarily linked to errors during the resumption of meiosis in oocyte maturation, which increase with maternal age, while mosaic aneuploidies result from mitotic errors after fertilization. The biological causes of these abnormalities are increasingly becoming a topic of interest for research groups and clinical specialists. This review explores the intricate processes of meiotic and early mitotic divisions in embryos, shedding light on the mechanisms that lead to changes in chromosome number in daughter cells. Key factors in meiotic division include difficulties in spindle assembly without centrosomes, kinetochore (KT) orientation disturbances, and inefficient cell-cycle checkpoints. The weakening of cohesion molecules that bind chromosomes, exacerbated by maternal aging, further complicates chromosomal segregation. Mitotic errors in early development are influenced by defects in sperm centrosomes, KT misalignment, and the gradual depletion of maternal regulatory factors. Coupled with the inactive or partially active embryonic genome, this depletion increases the likelihood of chromosomal aberrations. While various theoretical mechanisms for these abnormalities exist, current data remain insufficient to determine their exact contributions. Continued research is essential to unravel these complex processes and improve outcomes in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | - Maria Semenova
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Igor Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| | - Ilya Volodyaev
- Faculty of Biology, Moscow State University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia; European Medical Center, Moscow, Russia.
| |
Collapse
|
6
|
Nicheperovich A, Schuster-Böckler B, Ní Leathlobhair M. Gestational trophoblastic disease: understanding the molecular mechanisms of placental tumours. Dis Model Mech 2025; 18:DMM052010. [PMID: 39873178 PMCID: PMC11810044 DOI: 10.1242/dmm.052010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Gestational trophoblastic disease (GTD) describes a group of rare benign and cancerous lesions originating from the trophoblast cells of the placenta. These neoplasms are unconventional entities, being one of the few instances in which cancer develops from the cells of another organism, the foetus. Although this condition was first described over 100 years ago, the specific genetic and non-genetic drivers of this disease remain unknown to this day. However, recent findings have provided valuable insights into the potential mechanisms underlying this rare condition. Unlike previous reviews focused primarily on the clinical and diagnostic aspects of disease development, this Review consolidates the latest research concerning the role of genetics, epigenetics and microRNAs in the initiation and progression of GTD. By examining GTD from a molecular perspective, this Review provides a unique framework for understanding the pathogenesis and progression of this rare disease.
Collapse
Affiliation(s)
- Alina Nicheperovich
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
7
|
Baldini GM, Ferri D, Malvasi A, Laganà AS, Vimercati A, Dellino M, Baldini D, Trojano G. Genetic Abnormalities of Oocyte Maturation: Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:13002. [PMID: 39684710 DOI: 10.3390/ijms252313002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic anomalies in oocyte maturation present significant fertility and embryonic development challenges. This review explores the intricate mechanisms of nuclear and cytoplasmic maturation, emphasizing the genetic and molecular factors contributing to oocyte quality and competence. Chromosomal mutations, errors in segregation, genetic mutations in signaling pathways and meiosis-related genes, and epigenetic alterations are discussed as critical contributors to oocyte maturation defects. The role of mitochondrial defects, maternal mRNA dysregulation, and critical proteins such as NLRP14 and BMP6 are highlighted. Understanding these genetic factors is crucial for improving diagnostic approaches and therapeutic interventions in reproductive medicine, particularly for couples encountering recurrent in vitro fertilization failures. This review will explore how specific genetic mutations impact fertility treatments and reproductive success by examining the intricate oocyte maturation process. We will focus on genetic abnormalities that may disrupt the oocyte maturation pathway, discussing the underlying mechanisms involved and considering their potential clinical implications for enhancing fertility outcomes.
Collapse
Affiliation(s)
- Giorgio Maria Baldini
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Malvasi
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology "Paolo Giacone" Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities (PROMISE), University of Palermo, 90135 Palermo, Italy
| | - Antonella Vimercati
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Miriam Dellino
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, Madonna delle Grazie Hospital, 75100 Matera, Italy
| |
Collapse
|
8
|
Slim R. Genetics and Genomics of Gestational Trophoblastic Disease. Hematol Oncol Clin North Am 2024; 38:1219-1232. [PMID: 39322462 DOI: 10.1016/j.hoc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This article focuses on hydatidiform mole (HM), which is the most common form of gestational trophoblastic disease and the most studied at the genomic and genetic levels. We summarize current laboratory methods to diagnose HM, discuss their limitations and advantages, and share the lessons we have learned. We also provide an overview of the history of recurrent HM, their known genetic etiologies, and the mechanisms of their formation.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, 1001 Decarie Boulevard, EM0.3210, Montreal, Quebec H4A3J1, Canada.
| |
Collapse
|
9
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
10
|
Rezaei M, Liang M, Yalcin Z, Martin JH, Kazemi P, Bareke E, Ge ZJ, Fardaei M, Benadiva C, Hemida R, Hassan A, Maher GJ, Abdalla E, Buckett W, Bolze PA, Sandhu I, Duman O, Agrawal S, Qian J, Vallian Broojeni J, Bhati L, Miron P, Allias F, Selim A, Fisher RA, Seckl MJ, Sauthier P, Touitou I, Tan SL, Majewski J, Taketo T, Slim R. Defects in meiosis I contribute to the genesis of androgenetic hydatidiform moles. J Clin Invest 2024; 134:e170669. [PMID: 39545410 PMCID: PMC11563684 DOI: 10.1172/jci170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency. Advanced maternal age is the strongest risk factor for sporadic androgenetic HM, which affects 1 in every 600 pregnancies. We studied Hfm1-/- female mice and found that these mice lost all their oocytes before puberty but retained some at younger ages. Oocytes from Hfm1-/- mice initiated meiotic maturation and extruded the first polar bodies in culture; however, their meiotic spindles were often positioned parallel, instead of perpendicular, to the ooplasmic membrane at telophase I, and some oocytes extruded the entire spindle with all the chromosomes into the polar bodies at metaphase II, a mechanism we previously reported in Mei1-/- oocytes. The occurrence of a common mechanism in two mouse models argues in favor of its plausibility at the origin of androgenetic HM formation in humans.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Parinaz Kazemi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zhao-Jia Ge
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Claudio Benadiva
- Center for Advanced Reproductive Services, Farmington, Connecticut, USA
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Adnan Hassan
- Department of Obstetrics and Gynecology, Jordan Hospital, Amman, Jordan
| | - Geoffrey J. Maher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre-Adrien Bolze
- Université Lyon 1, Service de Chirurgie Gynécologique et Ontologique, Obstétrique, Centre Français de Référence des Maladies Trophoblastiques, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Bénite, France
| | - Iqbaljit Sandhu
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Onur Duman
- Security Research Center, Concordia University, Montreal, Quebec, Canada
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - JianHua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lavi Bhati
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Miron
- Centre d’Aide Médicale à la Procréation Fertilys, Laval, Quebec, Canada
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre, Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Amal Selim
- Department of Medical Biochemistry and Molecular Biology, Mansoura University, Mansoura, Egypt
| | - Rosemary A. Fisher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michael J. Seckl
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Philippe Sauthier
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montreal, Quebec, Canada
| | - Isabelle Touitou
- Department of Genetics CHU of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Bahutair SNM, Dube R, Kuruba MGB, Salama RAA, Patni MAMF, Kar SS, Kar R. Molecular Basis of Hydatidiform Moles-A Systematic Review. Int J Mol Sci 2024; 25:8739. [PMID: 39201425 PMCID: PMC11354253 DOI: 10.3390/ijms25168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Gestational trophoblastic diseases (GTDs) encompass a spectrum of conditions characterized by abnormal trophoblastic cell growth, ranging from benign molar pregnancies to malignant trophoblastic neoplasms. This systematic review explores the molecular underpinnings of GTDs, focusing on genetic and epigenetic factors that influence disease progression and clinical outcomes. Based on 71 studies identified through systematic search and selection criteria, key findings include dysregulations in tumor suppressor genes such as p53, aberrant apoptotic pathways involving BCL-2 (B-cell lymphoma), and altered expression of growth factor receptors and microRNAs (micro-ribose nucleic acid). These molecular alterations not only differentiate molar pregnancies from normal placental development but also contribute to their clinical behavior, from benign moles to potentially malignant forms. The review synthesizes insights from immunohistochemical studies and molecular analyses to provide a comprehensive understanding of GTD pathogenesis and implications for personalized care strategies.
Collapse
Affiliation(s)
- Shadha Nasser Mohammed Bahutair
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Manjunatha Goud Bellary Kuruba
- Department of Biochemistry, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Rasha Aziz Attia Salama
- Department of Community Medicine, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (R.A.A.S.); (M.A.M.F.P.)
- Department of Public Health and Community Medicine, Kasr El Ainy Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Mohamed Anas Mohamed Faruk Patni
- Department of Community Medicine, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (R.A.A.S.); (M.A.M.F.P.)
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Rakhee Kar
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India;
| |
Collapse
|
13
|
Xu S, Zhao J, Gao F, Zhang Y, Luo J, Zhang C, Tian R, Zhi E, Zhang J, Bai F, Sun H, Zhao F, Huang Y, Li P, Jiang L, Li Z, Yao C, Zhou Z. A bi-allelic REC114 loss-of-function variant causes meiotic arrest and nonobstructive azoospermia. Clin Genet 2024; 105:440-445. [PMID: 38148155 DOI: 10.1111/cge.14473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Nonobstructive azoospermia (NOA), the most severe manifestation of male infertility, lacks a comprehensive understanding of its genetic etiology. Here, a bi-allelic loss-of-function variant in REC114 (c.568C > T: p.Gln190*) were identified through whole exome sequencing (WES) in a Chinese NOA patient. Testicular histopathological analysis and meiotic chromosomal spread analysis were conducted to assess the stage of spermatogenesis arrested. Co-immunoprecipitation (Co-IP) and Western blot (WB) were used to investigate the influence of variant in vitro. In addition, our results revealed that the variant resulted in truncated REC114 protein and impaired interaction with MEI4, which was essential for meiotic DNA double-strand break (DSB) formation. As far as we know, this study presents the first report that identifies REC114 as the causative gene for male infertility. Furthermore, our study demonstrated indispensability of the REC114-MEI4 complex in maintaining DSB homoeostasis, and highlighted that the disruption of the complex due to the REC114 variant may underline the mechanism of NOA.
Collapse
Affiliation(s)
- Shuai Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpeng Zhao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Feng Gao
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenwang Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ruhui Tian
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erlei Zhi
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiong Zhang
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Furong Bai
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongfang Sun
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fujun Zhao
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Jiang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chencheng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Andrology, Center for Men's Health, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
14
|
Walbum P, Andreasen L, Geilswijk M, Niemann I, Sunde L. Aneuploidy is frequent in heterozygous diploid and triploid hydatidiform moles. Sci Rep 2024; 14:6876. [PMID: 38519579 PMCID: PMC10960034 DOI: 10.1038/s41598-024-57465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Hydatidiform moles are abnormal conceptuses. Many hydatidiform moles are diploid androgenetic, and of these, most are homozygous in all loci. Additionally, most hydatidiform moles are euploid. Using Single Nucleotide Polymorphism (SNP) array analysis, in two studies a higher frequency of aneuploidy was observed in diploid androgenetic heterozygous conceptuses, than in their homozygous counterparts. In the Danish Mole Project, we analyze conceptuses suspected to be hydatidiform moles due to the clinical presentation, using karyotyping and Short Tandem Repeat (STR) analysis. Among 278 diploid androgenetic conceptuses, 226 were homozygous in all loci and 52 (18.7%) were heterozygous in several loci. Among 142 triploid diandric conceptuses, 141 were heterozygous for paternally inherited alleles in several loci. Here we show that the frequencies of aneuploidy in diploid androgenetic heterozygous and triploid diandric heterozygous conceptuses were significantly higher than the frequency of aneuploidy in diploid androgenetic homozygous conceptuses. In diploid androgenetic and triploid diandric conceptuses that are heterozygous for paternally inherited alleles, the two paternally inherited sets of genomes originate in two spermatozoa. Each spermatozoon provides one pair of centrioles to the zygote. The presence of two pairs of centrioles may cause an increased risk of aneuploidy.
Collapse
Affiliation(s)
- P Walbum
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark.
| | - L Andreasen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - M Geilswijk
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - I Niemann
- Department of Gynecology and Obstetrics, Randers Regional Hospital, Randers, Denmark
| | - L Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
15
|
Yalcin Z, Liang M, Abdelrazek IM, Friedrich C, Bareke E, Nabil A, Tüttelmann F, Majewski J, Abdalla E, Tan SL, Slim R. A report of two homozygous TERB1 protein-truncating variants in two unrelated women with primary infertility. J Assist Reprod Genet 2024; 41:751-756. [PMID: 38277113 PMCID: PMC10957843 DOI: 10.1007/s10815-024-03031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE To investigate the genetic etiology of patients with female infertility. METHODS Whole Exome Sequencing was performed on genomic DNA extracted from the patient's blood. Exome data were filtered for damaging rare biallelic variants in genes with possible roles in reproduction. Sanger sequencing was used to validate the selected variants and segregate them in family members. RESULTS A novel homozygous likely pathogenic variant, c.626G>A, p.Trp209*, was identified in the TERB1 gene of the patient. Additionally, we report a second homozygous pathogenic TERB1 variant, c.1703C>G, p.Ser568*, in an infertile woman whose azoospermic brother was previously described to be homozygous for her variant. CONCLUSIONS Here, we report for the first time two homozygous likely pathogenic and pathogenic TERB1 variants, c.626G>A, p.Trp209* and c.1703C>G, p.Ser568*, respectively, in two unrelated women with primary infertility. TERB1 is known to play an essential role in homologous chromosome movement, synapsis, and recombination during the meiotic prophase I and has an established role in male infertility in humans. Our data add TERB1 to the shortlist of Meiosis I genes associated with human infertility in both sexes.
Collapse
Affiliation(s)
- Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Ibrahim M Abdelrazek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Seang-Lin Tan
- OriginElle Fertility Clinic, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, QC, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec, H4A 3J1, Canada.
| |
Collapse
|
16
|
Bartosch C, Nadal A, Braga AC, Salerno A, Rougemont AL, Van Rompuy AS, Fitzgerald B, Joyce C, Allias F, Maher GJ, Turowski G, Tille JC, Alsibai KD, Van de Vijver K, McMahon L, Sunde L, Pyzlak M, Downey P, Wessman S, Patrier S, Kaur B, Fisher R. Practical guidelines of the EOTTD for pathological and genetic diagnosis of hydatidiform moles. Virchows Arch 2024; 484:401-422. [PMID: 37857997 DOI: 10.1007/s00428-023-03658-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Hydatidiform moles are rare and thus most pathologists and geneticists have little experience with their diagnosis. It is important to promptly and correctly identify hydatidiform moles given that they are premalignant disorders associated with a risk of persistent gestational trophoblastic disease and gestational trophoblastic neoplasia. Improvement in diagnosis can be achieved with uniformization of diagnostic criteria and establishment of algorithms. To this aim, the Pathology and Genetics Working Party of the European Organisation for Treatment of Trophoblastic Diseases has developed guidelines that describe the pathological criteria and ancillary techniques that can be used in the differential diagnosis of hydatidiform moles. These guidelines are based on the best available evidence in the literature, professional experience and consensus of the experts' group involved in its development.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC) and Centro Hospitalar Universitário S. João, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Alfons Nadal
- Department of Pathology, Clínic Barcelona, Department of Basic Clinical Practice, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana C Braga
- Department of Pathology, University Hospital Centre of São João (CHUSJ) / Faculty of Medicine - University of Porto (FMUP) / School of Health (ESS) - Polytechnic Institute of Porto (P. PORTO), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Angela Salerno
- Anatomia Patologica, Ospedale Maggiore AUSL Bologna, Bologna, Italy
| | | | | | | | - Caroline Joyce
- Department of Clinical Biochemistry, Cork University Hospital, Ireland/ Pregnancy Loss Research Group, Department of Obstetrics & Gynaecology, University College Cork, Cork, Ireland
| | - Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Geoffrey J Maher
- Trophoblastic Tumour Screening & Treatment Centre, Imperial College NHS Trust, Charing Cross Hospital, Fulham Palace Road, London, W6 8RF, UK
| | - Gitta Turowski
- Department of Pathology, Oslo University Hospital, INNPATH Tirolkliniken, Innsbruck, Austria
| | | | - Kinan Drak Alsibai
- Department of Pathology and Center of Biological Resources (CRB Amazonie), Cayenne Hospital Center Andrée Rosemon, 97306, Cayenne, France
| | | | - Lesley McMahon
- Scottish Hydatidiform Mole Follow-Up Service, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Denmark/Department of Biomedicine, Aarhus University, Aalborg, Aarhus, Denmark
| | - Michal Pyzlak
- Department of Pathology, Institute of Mother and Child, Warsaw, Poland
| | - Paul Downey
- Department of Pathology, National Maternity Hospital, Dublin, D02YH21, Ireland
| | - Sandra Wessman
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Patrier
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Baljeet Kaur
- Department of Pathology, North West London Pathology, Imperial College NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Rosemary Fisher
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital. Fulham Palace Road, London, W6 8RF, UK
| |
Collapse
|
17
|
Wu X, Tian Y, Yu Y, He X, Tang X, Li S, Shu J, Guo X. Novel MEI1 mutations cause chromosomal and DNA methylation abnormalities leading to embryonic arrest and implantation failure. Mol Genet Genomics 2024; 299:18. [PMID: 38416203 DOI: 10.1007/s00438-024-02113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
This study presents a case of a female infertile patient suffering from embryonic arrest and recurrent implantation failure. The primary objective was to assess the copy number variations (CNVs) and DNA methylation of her embryos. Genetic diagnosis was conducted by whole-exome sequencing and validated through Sanger sequencing. CNV evaluation of two cleavage stage embryos was performed using whole-genome sequencing, while DNA methylation and CNV assessment of two blastocysts were carried out using whole-genome bisulfite sequencing. We identified two novel pathogenic frameshift variants in the MEI1 gene (NM_152513.3, c.3002delC, c.2264_2268 + 11delGTGAGGTATGGACCAC) in the proband. These two variants were inherited from her heterozygous parents, consistent with autosomal recessive genetic transmission. Notably, two Day 3 embryos and two Day 6 blastocysts were all aneuploid, with numerous monosomy and trisomy events. Moreover, global methylation levels greatly deviated from the optimized window of 0.25-0.27, measuring 0.344 and 0.168 for the respective blastocysts. This study expands the mutational spectrum of MEI1 and is the first to document both aneuploidy and abnormal methylation levels in embryos from a MEI1-affected female patient presenting with embryonic arrest. Given that females affected by MEI1 mutations might experience either embryonic arrest or monospermic androgenetic hydatidiform moles due to the extrusion of all maternal chromosomes, the genetic makeup of the arrested embryos of MEI1 patients provides important clues for understanding the different disease mechanisms of the two phenotypes.
Collapse
Affiliation(s)
- Xiangli Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yiqi Yu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xujun He
- Center for Reproductive Medicine, Department of Genetics and Genomic Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaohua Tang
- Center for Reproductive Medicine, Department of Genetics and Genomic Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shishi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Guo
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Florea A, Caba L, Grigore AM, Antoci LM, Grigore M, Gramescu MI, Gorduza EV. Hydatidiform Mole-Between Chromosomal Abnormality, Uniparental Disomy and Monogenic Variants: A Narrative Review. Life (Basel) 2023; 13:2314. [PMID: 38137915 PMCID: PMC10744706 DOI: 10.3390/life13122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
A hydatidiform mole (HM) or molar pregnancy is the most common benign form of gestational trophoblastic disease characterized by a proliferation of the trophoblastic epithelium and villous edema. Hydatidiform moles are classified into two forms: complete and partial hydatidiform moles. These two types of HM present morphologic, histopathologic and cytogenetic differences. Usually, hydatidiform moles are a unique event, but some women present a recurrent form of complete hydatidiform moles that can be sporadic or familial. The appearance of hydatidiform moles is correlated with some genetic events (like uniparental disomy, triploidy or diandry) specific to meiosis and is the first step of embryo development. The familial forms are determined by variants in some genes, with NLRP7 and KHDC3L being the most important ones. The identification of different types of hydatidiform moles and their subsequent mechanisms is important to calculate the recurrence risk and estimate the method of progression to a malign form. This review synthesizes the heterogeneous mechanisms and their implications in genetic counseling.
Collapse
Affiliation(s)
- Andreea Florea
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (A.-M.G.); (L.-M.A.); (M.I.G.); (E.V.G.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (A.-M.G.); (L.-M.A.); (M.I.G.); (E.V.G.)
| | - Ana-Maria Grigore
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (A.-M.G.); (L.-M.A.); (M.I.G.); (E.V.G.)
| | - Lucian-Mihai Antoci
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (A.-M.G.); (L.-M.A.); (M.I.G.); (E.V.G.)
| | - Mihaela Grigore
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mihaela I. Gramescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (A.-M.G.); (L.-M.A.); (M.I.G.); (E.V.G.)
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (A.-M.G.); (L.-M.A.); (M.I.G.); (E.V.G.)
| |
Collapse
|
19
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
20
|
McMahon L, Maher GJ, Joyce C, Niemann I, Fisher R, Sunde L. When to Consult a Geneticist Specialising in Gestational Trophoblastic Disease. Gynecol Obstet Invest 2023; 89:198-213. [PMID: 37245506 DOI: 10.1159/000531218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Gestational trophoblastic disease comprises hydatidiform moles and a rare group of malignancies that derive from trophoblasts. Although there are typical morphological features that may distinguish hydatidiform moles from non-molar products of conception, such features are not always present, especially at early stages of pregnancy. Furthermore, mosaic/chimeric pregnancies and twin pregnancies make pathological diagnosis challenging while trophoblastic tumours can also pose diagnostic problems in terms of their gestational or non-gestational origin. OBJECTIVES The aim of this study was to show that ancillary genetic testing can be used to aid diagnosis and clinical management of GTD. METHODS Each author identified cases where genetic testing, including short tandem repeat (STR) genotyping, ploidy analysis, next-generation sequencing, and immunostaining for p57, the product of the imprinted gene CDKN1C, facilitated accurate diagnosis and improved patient management. Representative cases were chosen to illustrate the value of ancillary genetic testing in different scenarios. OUTCOME Genetic analysis of placental tissue can aid in determining the risk of developing gestational trophoblastic neoplasia, facilitating discrimination between low risk triploid (partial) and high risk androgenetic (complete) moles, discriminating between a hydatidiform mole twinned with a normal conceptus and a triploid conception and identification of androgenetic/biparental diploid mosaicism/chimerism. STR genotyping of placental tissue and targeted gene sequencing of patients can identify women with an inherited predisposition to recurrent molar pregnancies. Genotyping can distinguish gestational from non-gestational trophoblastic tumours using tissue or circulating tumour DNA and can also identify the causative pregnancy which is the key prognostic factor for placental site and epithelioid trophoblastic tumours. CONCLUSIONS AND OUTLOOK STR genotyping and p57 immunostaining have been invaluable to the management of gestational trophoblastic disease in many situations. The use of next-generation sequencing and of liquid biopsies is opening up new pathways for GTD diagnostics. Development of these techniques has the potential to identify novel biomarkers of GTD and further refine diagnosis.
Collapse
Affiliation(s)
- Lesley McMahon
- Hydatidiform Mole Follow-Up Service (HMFUS) Scotland, Ninewells Hospital and Medical School, Dundee, UK
| | - Geoffrey J Maher
- Trophoblastic Tumour Screening and Treatment Centre, Imperial College NHS Trust, Charing Cross Hospital, London, UK,
| | - Caroline Joyce
- Pregnancy Loss Research Group, Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
- Department of Clinical Biochemistry, Cork University Hospital, Cork, Ireland
| | - Isa Niemann
- Department of Gynaecology and Obstetrics, Randers Regional Hospital, Randers, Denmark
| | - Rosemary Fisher
- Trophoblastic Tumour Screening and Treatment Centre, Imperial College NHS Trust, Charing Cross Hospital, London, UK
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
21
|
Qureshi S, Hardy JJ, Pombar C, Berman AJ, Malcher A, Gingrich T, Hvasta R, Kuong J, Munyoki S, Hwang K, Orwig KE, Ahmed J, Olszewska M, Kurpisz M, Conrad DF, Jaseem Khan M, Yatsenko AN. Genomic study of TEX15 variants: prevalence and allelic heterogeneity in men with spermatogenic failure. Front Genet 2023; 14:1134849. [PMID: 37234866 PMCID: PMC10206016 DOI: 10.3389/fgene.2023.1134849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Human spermatogenesis is a highly intricate process that requires the input of thousands of testis-specific genes. Defects in any of them at any stage of the process can have detrimental effects on sperm production and/or viability. In particular, the function of many meiotic proteins encoded by germ cell specific genes is critical for maturation of haploid spermatids and viable spermatozoa, necessary for fertilization, and is also extremely sensitive to even the slightest change in coding DNA. Methods: Here, using whole exome and genome approaches, we identified and reported novel, clinically significant variants in testis-expressed gene 15 (TEX15), in unrelated men with spermatogenic failure (SPGF). Results: TEX15 mediates double strand break repair during meiosis. Recessive loss-of-function (LOF) TEX15 mutations are associated with SPGF in humans and knockout male mice are infertile. We expand earlier reports documenting heterogeneous allelic pathogenic TEX15 variants that cause a range of SPGF phenotypes from oligozoospermia (low sperm) to nonobstructive azoospermia (no sperm) with meiotic arrest and report the prevalence of 0.6% of TEX15 variants in our patient cohort. Among identified possible LOF variants, one homozygous missense substitution c.6835G>A (p.Ala2279Thr) co-segregated with cryptozoospermia in a family with SPGF. Additionally, we observed numerous cases of inferred in trans compound heterozygous variants in TEX15 among unrelated individuals with varying degrees of SPGF. Variants included splice site, insertions/deletions (indels), and missense substitutions, many of which resulted in LOF effects (i.e., frameshift, premature stop, alternative splicing, or potentially altered posttranslational modification sites). Conclusion: In conclusion, we performed an extensive genomic study of familial and sporadic SPGF and identified potentially damaging TEX15 variants in 7 of 1097 individuals of our combined cohorts. We hypothesize that SPGF phenotype severity is dictated by individual TEX15 variant's impact on structure and function. Resultant LOFs likely have deleterious effects on crossover/recombination in meiosis. Our findings support the notion of increased gene variant frequency in SPGF and its genetic and allelic heterogeneity as it relates to complex disease such as male infertility.
Collapse
Affiliation(s)
- Sidra Qureshi
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jimmaline J. Hardy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Pombar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrea J. Berman
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tara Gingrich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel Hvasta
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jannah Kuong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jawad Ahmed
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Donald F. Conrad
- Department of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Muhammad Jaseem Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alexander N. Yatsenko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Abstract
Reproduction involves a wide range of biological processes, including organ formation and development, neuroendocrine regulation, hormone production, and meiosis and mitosis. Infertility, the failure of reproduction, has become a major issue for human reproductive health and affects up to one in seven couples worldwide. Here, we review various aspects of human infertility, including etiology, mechanisms, and treatments, with a particular emphasis on genetics. We focus on gamete production and gamete quality, which is the core of successful reproduction. We also discuss future research opportunities and challenges to further expand our understanding of human infertility and improve patient care by providing precision diagnosis and personalized treatments.
Collapse
Affiliation(s)
- Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, 380000 Grenoble, France
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Tao C, Zhu T, Tang S, Lu J, Lin X, Li X, Liu X, Pang Y, Zhao H, Liang J, Zhang F, Lu X, Zhang L. Novo pathogenic variations of NLRP7 increasing the risk of gestational trophoblastic neoplasia. Clin Genet 2023; 103:498-500. [PMID: 36544392 DOI: 10.1111/cge.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Identification of novo mutations of NLRP7 in HM patients. NLRP7 mutations increasing the risk of HM progression.
Collapse
Affiliation(s)
- Chengqiu Tao
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Tingting Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoqi Lin
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiuqin Li
- Shengjing Hospital, China Medical University, Liaoning, China
| | - Xiaomei Liu
- Shengjing Hospital, China Medical University, Liaoning, China
| | - Yicun Pang
- Department of Obstetrics and Gynecology, the Third Hospital of Hebei Medical University, Hebei, China
| | - Huan Zhao
- Department of Obstetrics and Gynecology, the Third Hospital of Hebei Medical University, Hebei, China
| | - Jie Liang
- Department of Gynecology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Guangdong, China
| | - Feng Zhang
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ling Zhang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai jiaotong University, Shanghai, China
| |
Collapse
|
24
|
Ozer G, Akca A, Yuksel B, Duzguner I, Pehlivanli AC, Kahraman S. Prediction of risk factors for first trimester pregnancy loss in frozen-thawed good-quality embryo transfer cycles using machine learning algorithms. J Assist Reprod Genet 2023; 40:279-288. [PMID: 36399255 PMCID: PMC9935777 DOI: 10.1007/s10815-022-02645-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Can the risk factors that cause first trimester pregnancy loss in good-quality frozen-thawed embryo transfer (FET) cycles be predicted using machine learning algorithms? METHODS This is a retrospective cohort study conducted at Sisli Memorial Hospital, ART and Reproductive Genetics Center, between January 2011 and May 2021. A total of 3805 good-quality FET cycles were included in the study. First trimester pregnancy loss rates were evaluated according to female age, paternal age, body mass index (BMI), diagnosis of infertility, endometrial preparation protocols (natural/artificial), embryo quality (top/good), presence of polycystic ovarian syndrome (PCOS), history of recurrent pregnancy loss (RPL), recurrent implantation failure (RIF), severe male infertility, adenomyosis and endometriosis. RESULTS The first trimester pregnancy loss rate was 18.2% (693/ 3805). The presence of RPL increased first trimester pregnancy loss (OR = 7.729, 95%CI = 5.908-10.142, P = 0.000). BMI, which is > 30, increased first trimester pregnancy loss compared to < 25 (OR = 1.418, 95%CI = 1.025-1.950, P = 0.033). Endometrial preparation with artificial cycle increased first trimester pregnancy loss compared to natural cycle (OR = 2.101, 95%CI = 1.630-2.723, P = 0.000). Female age, which is 35-37, increased first trimester pregnancy loss compared to < 30 (OR = 1.617, 95%CI = 1.120-2.316, P = 0.018), and female age, which is > 37, increased first trimester pregnancy loss compared to < 30 (OR = 2.286, 95%CI = 1.146-4,38, P = 0.016). The presence of PCOS increased first trimester pregnancy loss (OR = 1.693, 95%CI = 1.198-2.390, P = 0.002). The number of previous IVF cycles, which is > 3, increased first trimester pregnancy loss compared to < 3 (OR = 2.182, 95%CI = 1.708-2.790, P = 0.000). CONCLUSIONS History of RPL, RIF, advanced female age, presence of PCOS, and high BMI (> 30 kg/m2) were the factors that increased first trimester pregnancy loss.
Collapse
Affiliation(s)
- Gonul Ozer
- Memorial Sisli Hospital IVF and Reproductive Genetics Centre, Piyalepasa Bulvarı, Okmeydanı 35385 Istanbul, Turkey
| | - Aysu Akca
- Memorial Sisli Hospital IVF and Reproductive Genetics Centre, Piyalepasa Bulvarı, Okmeydanı 35385 Istanbul, Turkey
| | - Beril Yuksel
- Memorial Sisli Hospital IVF and Reproductive Genetics Centre, Piyalepasa Bulvarı, Okmeydanı 35385 Istanbul, Turkey
| | - Ipek Duzguner
- Memorial Sisli Hospital IVF and Reproductive Genetics Centre, Piyalepasa Bulvarı, Okmeydanı 35385 Istanbul, Turkey
| | - Ayca Cakmak Pehlivanli
- Faculty of Science and Letters Statistics Department, Mimar Sinan Fine Arts University, Bomonti Campus 34380, Istanbul, Turkey
| | - Semra Kahraman
- Memorial Sisli Hospital IVF and Reproductive Genetics Centre, Piyalepasa Bulvarı, Okmeydanı 35385 Istanbul, Turkey
| |
Collapse
|
25
|
Hou X, Zeb A, Dil S, Zhou J, Zhang H, Shi B, Muhammad Z, Khan I, Zaman Q, Shah WA, Jiang X, Wu L, Ma H, Shi Q. A homozygous KASH5 frameshift mutation causes diminished ovarian reserve, recurrent miscarriage, and non-obstructive azoospermia in humans. Front Endocrinol (Lausanne) 2023; 14:1128362. [PMID: 36864840 PMCID: PMC9971600 DOI: 10.3389/fendo.2023.1128362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The meiosis-specific LINC complex, composed of the KASH5 and SUN1 proteins, tethers the moving chromosomes to the nuclear envelope to facilitate homolog pairing and is essential for gametogenesis. Here, we applied whole-exome sequencing for a consanguineous family with five siblings suffering from reproductive failure, and identified a homozygous frameshift mutation in KASH5 (c.1270_1273del, p.Arg424Thrfs*20). This mutation leads to the absence of KASH5 protein expression in testes and non-obstructive azoospermia (NOA) due to meiotic arrest before the pachytene stage in the affected brother. The four sisters displayed diminished ovarian reserve (DOR), with one sister never being pregnant but still having dominant follicle at 35 years old and three sisters suffering from at least 3 miscarriages occurring within the third month of gestation. The truncated KASH5 mutant protein, when expressed in cultured cells, displays a similar localization encircling the nucleus and a weakened interaction with SUN1, as compared with the full-length KASH5 proteins, which provides a potential explanation for the phenotypes in the affected females. This study reported sexual dimorphism for influence of the KASH5 mutation on human germ cell development, and extends the clinical manifestations associated with KASH5 mutations, providing genetic basis for the molecular diagnosis of NOA, DOR, and recurrent miscarriage.
Collapse
Affiliation(s)
- Xiaoning Hou
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Aurang Zeb
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Sobia Dil
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Jianteng Zhou
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Huan Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Baolu Shi
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Zubair Muhammad
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Ihsan Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Qamar Zaman
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wasim Akbar Shah
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiaohua Jiang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Limin Wu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Hui Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- *Correspondence: Qinghua Shi, ; Hui Ma,
| | - Qinghua Shi
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- *Correspondence: Qinghua Shi, ; Hui Ma,
| |
Collapse
|
26
|
Aaron R, Beck MM, Arunachal G, Aleyamma TK, Sebastian A, Chandy RG, Thomas A, Danda S. NLRP7 Mutation in Recurrent Non-familial Molar Pregnancies: A Case Series. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2022. [DOI: 10.1007/s40944-022-00661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Slim R, Fisher R, Milhavet F, Hemida R, Rojas S, Rittore C, Bagga R, Aguinaga M, Touitou I. Biallelic NLRP7 variants in patients with recurrent hydatidiform mole: A review and expert consensus. Hum Mutat 2022; 43:1732-1744. [PMID: 35842788 DOI: 10.1002/humu.24439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Hydatidiform mole (HM) is an abnormal human pregnancy characterized by excessive growth of placental trophoblasts and abnormal early embryonic development. Following a first such abnormal pregnancy, the risk for women of successive molar pregnancies significantly increases. To date variants in seven maternal-effect genes have been shown to cause recurrent HMs (RHM). NLRP7 is the major causative gene for RHM and codes for NOD-like receptor (NLR) family pyrin domain containing 7, which belongs to a family of proteins involved in inflammatory disorders. Since its identification, all NLRP7 variants have been recorded in Infevers, an online registry dedicated to autoinflammatory diseases (https://infevers.umai-montpellier.fr/web/). Here, we reviewed published and unpublished recessive NLRP7 variants associated with RHM, scored their pathogenicity according to the American College of Medical Genetics classification, and recapitulated all functional studies at the level of both the patients and the conceptions. We also provided data on further variant analyses of 32 patients and genotypes of 36 additional molar pregnancies. This comprehensive review integrates published and unpublished data on NLRP7 and aims at guiding geneticists and clinicians in variant interpretation, genetic counseling, and management of patients with this rare condition.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Obstetrics Gynecology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rosemary Fisher
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Florian Milhavet
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Samantha Rojas
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Cécile Rittore
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Monica Aguinaga
- Genetics and Genomics Department, Instituto Nacional de Perinatologia, Ciudad de Mexico, Mexico
| | - Isabelle Touitou
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France.,Department of Medical Genetics, University of Montpellier (UM), INSERM (IRMB), Montpellier, France
| |
Collapse
|
28
|
Guo L, Ni Z, Wei G, Cheng W, Huang X, Yue W. Epigenome-wide DNA methylation analysis of whole blood cells derived from patients with GAD and OCD in the Chinese Han population. Transl Psychiatry 2022; 12:465. [PMID: 36344488 PMCID: PMC9640561 DOI: 10.1038/s41398-022-02236-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Generalized anxiety disorder (GAD) and obsessive-compulsive disorder (OCD) had high comorbidity and affected more than 44 million people around the world leading to a huge burden on health and economy. Here, we conducted an epigenome-wide DNA methylation study employing 93 patients with GAD, 65 patients with OCD, and 302 health controls, to explore epigenetic alterations associated with the onset and differences of GAD and OCD. We identified multiple differentially methylated positions (DMPs) and regions (DMRs): three DMP genes included RIOK3 (cg21515243, p = 8.00 × 10-10), DNASE2 (cg09379601, p = 1.10 × 10-9), and PSMB4 (cg01334186, p = 3.70 × 10-7) and two DMR genes USP6NL (p = 4.50 × 10-4) and CPLX1 (p = 6.95 × 10-4) were associated with the onset of GAD and OCD; three DMPs genes included LDLRAP1 (cg21400344, p = 4.40 × 10-12), ACIN1 (cg23712970, p = 2.98×10-11), and SCRT1 (cg25472897, p = 5.60 × 10-11) and three DMR genes WDR19 (p = 3.39 × 10-3), SYCP1 (p = 6.41 × 10-3), and FAM172A (p = 5.74 × 10-3) were associated with the differences between GAD and OCD. Investigation of epigenetic age and chronological age revealed a different epigenetic development trajectory of GAD and OCD. Conclusively, our findings which yielded robust models may aid in distinguishing patients from healthy controls (AUC = 0.90-0.99) or classifying patients with GAD and OCD (AUC = 0.89-0.99), and may power the precision medicine for them.
Collapse
Affiliation(s)
- Liangkun Guo
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China ,grid.506261.60000 0001 0706 7839NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Zhaojun Ni
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China ,grid.506261.60000 0001 0706 7839NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Guiming Wei
- Department of Neurology, Shandong Daizhuang Hospital, 272051 Jining, Shandong China
| | - Weiqiu Cheng
- grid.5510.10000 0004 1936 8921NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xuebing Huang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China. .,Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
29
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Solovova OA, Chernykh VB. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel) 2022; 13:1920. [PMID: 36360157 PMCID: PMC9689903 DOI: 10.3390/genes13111920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
Various pathogenic factors can lead to oogenesis failure and seriously affect both female reproductive health and fertility. Genetic factors play an important role in folliculogenesis and oocyte maturation but still need to be clarified. Oocyte maturation is a well-organized complex process, regulated by a large number of genes. Pathogenic variants in these genes as well as aneuploidy, defects in mitochondrial genome, and other genetic and epigenetic factors can result in unexplained infertility, early pregnancy loss, and recurrent failures of IVF/ICSI programs due to poor ovarian response to stimulation, oocyte maturation arrest, poor gamete quality, fertilization failure, or early embryonic developmental arrest. In this paper, we review the main genes, as well as provide a description of the defects in the mitochondrial genome, associated with female infertility.
Collapse
|
31
|
Yang J, Yan L, Li R, Liu P, Qiao J, Liu Y, Zhi X. Genetic screening of Chinese patients with hydatidiform mole by whole-exome sequencing and comprehensive analysis. J Assist Reprod Genet 2022; 39:2403-2411. [PMID: 36001209 PMCID: PMC9596675 DOI: 10.1007/s10815-022-02592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE We aim to explore if there are any other candidate genetic variants in patients with a history of at least one hydatidiform mole (HM) besides the well-known variants in NLRP7 and KHDC3L. METHODS The diagnosis of HM type was based on histopathology, and available HM tissues were collected for short tandem repeat (STR) genotyping to verify the diagnosis. DNA extracted from blood samples or decidual tissues of the 78 patients was subjected to whole-exome sequencing (WES). RESULTS We identified five novel variants in NLRP7, two novel variants in KHDC3L, and a chromosome abnormality covering the KHDC3L locus among patients with HM. We found that patients with HM who carried heterozygous variants in KHDC3L had a chance of normal pregnancy. We also detected four novel genetic variants in candidate genes that may be associated with HM. CONCLUSION Our study enriched the spectrum of variants in NLRP7 and KHDC3L in Chinese HM patients and provided a new outlook on the effects of heterozygous variants in KHDC3L. The novel candidate genetic variants associated with HMs reported in this study will also contribute to further research on HMs.
Collapse
Affiliation(s)
- Jingyi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
- Department of Pathology, Peking University Third Hospital, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
32
|
The genomic basis of sporadic and recurrent pregnancy loss: a comprehensive in-depth analysis of 24,900 miscarriages. Reprod Biomed Online 2022; 45:125-134. [DOI: 10.1016/j.rbmo.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
33
|
Picchetta L, Caroselli S, Figliuzzi M, Cogo F, Zambon P, Costa M, Pergher I, Patassini C, Cortellessa F, Zuccarello D, Poli M, Capalbo A. Molecular tools for the genomic assessment of oocyte’s reproductive competence. J Assist Reprod Genet 2022; 39:847-860. [PMID: 35124783 PMCID: PMC9050973 DOI: 10.1007/s10815-022-02411-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The most important factor associated with oocytes' developmental competence has been widely identified as the presence of chromosomal abnormalities. However, growing application of genome-wide sequencing (GS) in population diagnostics has enabled the identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting IVF outcomes and reproductive fitness. Indeed, GS analysis in families with history of isolated infertility has recently led to the discovery of new genes and variants involved in specific human infertility endophenotypes that impact the availability and the functionality of female gametes by altering unique mechanisms necessary for oocyte maturation and early embryo development. Ongoing advancements in analytical and bioinformatic pipelines for the study of the genetic determinants of oocyte competence may provide the biological evidence required not only for improving the diagnosis of isolated female infertility but also for the development of novel preventive and therapeutic approaches for reproductive failure. Here, we provide an updated discussion and review of the progresses made in preconception genomic medicine in the identification of genetic factors associated with oocyte availability, function, and competence.
Collapse
|
34
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
35
|
Joyce CM, Fitzgerald B, McCarthy TV, Coulter J, O'Donoghue K. Advances in the diagnosis and early management of gestational trophoblastic disease. BMJ MEDICINE 2022; 1:e000321. [PMID: 36936581 PMCID: PMC9978730 DOI: 10.1136/bmjmed-2022-000321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
Gestational trophoblastic disease describes a group of rare pregnancy related disorders that span a spectrum of premalignant and malignant conditions. Hydatidiform mole (also termed molar pregnancy) is the most common form of this disease. Hydatidiform mole describes an abnormal conceptus containing two copies of the paternal genome, which is classified as partial when the maternal genome is present or complete when the maternal genome is absent. Hydatidiform mole typically presents in the first trimester with irregular vaginal bleeding and can be suspected on ultrasound but confirmation requires histopathological evaluation of the products of conception. Most molar pregnancies resolve without treatment after uterine evacuation, but occasionally the disease persists and develops into gestational trophoblastic neoplasia. Close monitoring of women after molar pregnancy, with regular measurement of human chorionic gonadotrophin concentrations, allows for early detection of malignancy. Given the rarity of the disease, clinical management and treatment is best provided in specialist centres where very high cure rates are achievable. This review looks at advances in the diagnosis and early management of gestational trophoblastic disease and highlights updates to disease classification and clinical guidelines. Use of molecular genotyping for improved diagnostic accuracy and risk stratification is reviewed and future biomarkers for the earlier detection of malignancy are considered.
Collapse
Affiliation(s)
- Caroline M Joyce
- Pregnancy Loss Research Group, Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Clinical Biochemistry, Cork University Hospital, Cork, Ireland
| | - Brendan Fitzgerald
- Pregnancy Loss Research Group, Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
- Department of Pathology, Cork University Hospital, Cork, Ireland
| | - Tommie V McCarthy
- Department of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John Coulter
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Keelin O'Donoghue
- Pregnancy Loss Research Group, Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
36
|
Collet C, Lopez J, Battail C, Allias F, Devouassoux-Shisheboran M, Patrier S, Lemaitre N, Hajri T, Massardier J, You B, Mallet F, Golfier F, Alfaidy N, Bolze PA. Transcriptomic Characterization of Postmolar Gestational Choriocarcinoma. Biomedicines 2021; 9:1474. [PMID: 34680590 PMCID: PMC8533618 DOI: 10.3390/biomedicines9101474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
The human placenta shares properties with solid tumors, such as rapid growth, tissue invasion, cell migration, angiogenesis, and immune evasion. However, the mechanisms that drive the evolution from premalignant proliferative placental diseases-called hydatidiform moles-to their malignant counterparts, gestational choriocarcinoma, as well as the factors underlying the increased aggressiveness of choriocarcinoma arising after term delivery compared to those developing from hydatidiform moles, are unknown. Using a 730-gene panel covering 13 cancer-associated canonical pathways, we compared the transcriptomic profiles of complete moles to those of postmolar choriocarcinoma samples and those of postmolar to post-term delivery choriocarcinoma. We identified 33 genes differentially expressed between complete moles and postmolar choriocarcinoma, which revealed TGF-β pathway dysregulation. We found the strong expression of SALL4, an upstream regulator of TGF-β, in postmolar choriocarcinoma, compared to moles, in which its expression was almost null. Finally, there were no differentially expressed genes between postmolar and post-term delivery choriocarcinoma samples. To conclude, the TGF-β pathway appears to be a crucial step in the progression of placental malignancies. Further studies should investigate the value of TGF- β family members as biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Jonathan Lopez
- Department of Biochemistry and Molecular Biology, Plateforme de Recherche de Transfert en Oncologie, University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France;
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Christophe Battail
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Fabienne Allias
- Department of Pathology, University Hospital Lyon, Sud University of Lyon 1, Hospices Civils de Lyon, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (F.A.); (M.D.-S.)
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
| | - Mojgan Devouassoux-Shisheboran
- Department of Pathology, University Hospital Lyon, Sud University of Lyon 1, Hospices Civils de Lyon, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (F.A.); (M.D.-S.)
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
| | - Sophie Patrier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Pathology, University Hospital of Rouen, CEDEX, 76031 Rouen, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Touria Hajri
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
| | - Jérôme Massardier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Obstetrics and Gynecology, University Hospital Femme Mere Enfant, University of Lyon 1, 51, Boulevard Pinel, 69500 Bron, France
| | - Benoit You
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Investigational Center for Treatments in Oncology and Hematology of Lyon (CITOHL), Medical Oncology Department, University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France;
- Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., 69280 Marcy l’Etoile, France
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, EA 7426 Patho-Physiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University, Edouard Herriot Hospital, 69437 Lyon, France
| | - François Golfier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Gynecological Surgery and Oncology, Hospices Civils de Lyon, University Hospital Lyon Sud, University of Lyon 1, Obstetrics, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Pierre-Adrien Bolze
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Gynecological Surgery and Oncology, Hospices Civils de Lyon, University Hospital Lyon Sud, University of Lyon 1, Obstetrics, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| |
Collapse
|
37
|
Tšuiko O, Vanneste M, Melotte C, Ding J, Debrock S, Masset H, Peters M, Salumets A, De Leener A, Pirard C, Kluyskens C, Hostens K, van de Vijver A, Peeraer K, Denayer E, Vermeesch JR, Dimitriadou E. Haplotyping-based preimplantation genetic testing reveals parent-of-origin specific mechanisms of aneuploidy formation. NPJ Genom Med 2021; 6:81. [PMID: 34620870 PMCID: PMC8497526 DOI: 10.1038/s41525-021-00246-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Chromosome instability is inherent to human IVF embryos, but the full spectrum and developmental fate of chromosome anomalies remain uncharacterized. Using haplotyping-based preimplantation genetic testing for monogenic diseases (PGT-M), we mapped the parental and mechanistic origin of common and rare genomic abnormalities in 2300 cleavage stage and 361 trophectoderm biopsies. We show that while single whole chromosome aneuploidy arises due to chromosome-specific meiotic errors in the oocyte, segmental imbalances predominantly affect paternal chromosomes, implicating sperm DNA damage in segmental aneuploidy formation. We also show that postzygotic aneuploidy affects multiple chromosomes across the genome and does not discriminate between parental homologs. In addition, 6% of cleavage stage embryos demonstrated signatures of tripolar cell division with excessive chromosome loss, however hypodiploid blastomeres can be excluded from further embryo development. This observation supports the selective-pressure hypothesis in embryos. Finally, considering that ploidy violations may constitute a significant proportion of non-viable embryos, using haplotyping-based approach to map these events might further improve IVF success rate.
Collapse
Affiliation(s)
- Olga Tšuiko
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium.,Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Michiel Vanneste
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Cindy Melotte
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Jia Ding
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Sophie Debrock
- Leuven University Fertility Center, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Heleen Masset
- Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
| | - Anne De Leener
- Centre for Human Genetics, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, 1200, Belgium
| | - Céline Pirard
- Department of Gynaecology, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, 1200, Belgium
| | - Candice Kluyskens
- Department of Gynaecology, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, 1200, Belgium
| | - Katleen Hostens
- Centre for Reproductive Medicine (CRG)-Brugge-Kortrijk, AZ Sint-Jan Brugge-Oostende AV, Brugge, 8000, Belgium
| | - Arne van de Vijver
- Centre for Reproductive Medicine (CRG)-Brugge-Kortrijk, AZ Sint-Jan Brugge-Oostende AV, Brugge, 8000, Belgium
| | - Karen Peeraer
- Leuven University Fertility Center, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Ellen Denayer
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium. .,Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium.
| | - Eftychia Dimitriadou
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
38
|
Li MW, Li F, Cheng J, Wang F, Zhou P. Recurrent Androgenetic Complete Hydatidiform Moles with p57 KIP2-Positive in a Chinese Family. Reprod Sci 2021; 29:1749-1755. [PMID: 34606065 DOI: 10.1007/s43032-021-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Androgenetic complete hydatidiform moles (CHMs) are associated with an increased risk of gestational trophoblastic neoplasia. P57KIP2 expression in hydatidiform moles is thought to be a powerful marker for differentiating CHMs from partial hydatidiform moles (PHMs). However, since there are so few such families clinically, very few studies have addressed the importance of p57KIP2-positive in the diagnosis and prognosis of CHM. This study aimed to emphasize the significance of the accurate diagnosis of rare CHM and careful follow-up. The classification of the hydatidiform mole was based on morphologic examination and p57KIP2 expression was determined by p57KIP2 immunohistochemical staining. Copy number variation sequencing was used to determine the genetic make-up of the mole tissues. In addition, the short tandem repeat polymorphism analysis was used to establish the parental origin of the moles. Finally, whole-exome sequencing was performed to identify the causal genetic variants associated with this case. In one Chinese family, the proband had numerous miscarriages throughout her two marriages. Morphologic evaluation and molecular genotyping accurately sub-classified two molar specimens as uniparental disomy CHM of androgenetic origin. Furthermore, p57KIP2 expression was found in cytotrophoblasts and villous stromal cells. In the tissue, there were hyperplasia trophoblastic cells and heteromorphic nuclei. In this family, no deleterious variant genes associated with recurrent CHM were detected. It is important to evaluate the prognostic value of p57KIP2 expression in androgenetic recurrent CHM. This knowledge may help to minimize erroneous diagnosis of CHMs as PHMs, as well as making us aware of the need to manage potential gestational trophoblastic neoplasia.
Collapse
Affiliation(s)
- Ming-Wei Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China.,Frontier Research Center, School of Medicine, Anhui University of Science and Technology, Anhui, 232001, China
| | - Fan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China
| | - Jin Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China
| | - Fei Wang
- Frontier Research Center, School of Medicine, Anhui University of Science and Technology, Anhui, 232001, China.
| | - Ping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China.
| |
Collapse
|
39
|
Dong J, Zhang H, Mao X, Zhu J, Li D, Fu J, Hu J, Wu L, Chen B, Sun Y, Mu J, Zhang Z, Sun X, Zhao L, Wang W, Wang W, Zhou Z, Zeng Y, Du J, Li Q, He L, Jin L, Kuang Y, Wang L, Sang Q. Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure. Hum Reprod 2021; 36:2371-2381. [PMID: 34037756 DOI: 10.1093/humrep/deab118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are any novel mutations and corresponding new phenotypes, other than recurrent hydatidiform moles, seen in patients with MEI1 mutations? SUMMARY ANSWER We identified several novel mutations in MEI1 causing new phenotypes of early embryonic arrest and recurrent implantation failure. WHAT IS KNOWN ALREADY It has been reported that biallelic mutations in MEI1, encoding meiotic double-stranded break formation protein 1, cause azoospermia in men and recurrent hydatidiform moles in women. STUDY DESIGN, SIZE, DURATION We first focused on a pedigree in which two sisters were diagnosed with recurrent hydatidiform moles in December 2018. After genetic analysis, two novel mutations in MEI1 were identified. We then expanded the mutational screening to patients with the phenotype of embryonic arrest, recurrent implantation failure, and recurrent pregnancy loss, and found another three novel MEI1 mutations in seven new patients from six families recruited from December 2018 to May 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Nine primary infertility patients were recruited from the reproduction centers in local hospitals. Genomic DNA from the affected individuals, their family members, and healthy controls was extracted from peripheral blood. The MEI1 mutations were screened using whole-exome sequencing and were confirmed by the Sanger sequencing. In silico analysis of mutations was performed with Sorting Intolerant From Tolerant (SIFT) and Protein Variation Effect Analyzer (PROVEAN). The influence of the MEI1 mutations was determined by western blotting and minigene analysis in vitro. MAIN RESULTS AND THE ROLE OF CHANCE In this study, we identified five novel mutations in MEI1 in nine patients from seven independent families. Apart from recurrent hydatidiform moles, biallelic mutations in MEI1 were also associated with early embryonic arrest and recurrent implantation failure. In addition, we demonstrated that protein-truncating and missense mutations reduced the protein level of MEI1, while the splicing mutations caused abnormal alternative splicing of MEI1. LIMITATIONS, REASONS FOR CAUTION Owing to the lack of in vivo data from the oocytes of the patients, the exact molecular mechanism(s) involved in the phenotypes remains unknown and should be further investigated using knock-out or knock-in mice. WIDER IMPLICATIONS OF THE FINDINGS Our results not only reveal the important role of MEI1 in human oocyte meiosis and early embryonic development, but also extend the phenotypic and mutational spectrum of MEI1 and provide new diagnostic markers for genetic counseling of clinical patients. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, and 81971382), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Shanghai Health and Family Planning Commission Foundation (20154Y0162), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine, Ferring Pharmaceuticals and the Chinese Academy of Sciences (FIRMC200507) and the Chongqing Key Laboratory of Human Embryo Engineering (2020KFKT008). No competing interests are declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Mao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zhu
- Department of Gynecology and Obstetrics, The First Hospital of YuLin, Shaanxi, China
| | - Da Li
- Reproductive Medicine Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jijun Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Yiming Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Klimczak AM, Patel DP, Hotaling JM, Scott RT. Role of the sperm, oocyte, and embryo in recurrent pregnancy loss. Fertil Steril 2021; 115:533-537. [PMID: 33712098 DOI: 10.1016/j.fertnstert.2020.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Disorders affecting the sperm, oocyte, or embryo may cause a significant fraction of spontaneous miscarriages and cases of recurrent pregnancy loss (RPL). Altered chromosomal integrity of sperm and oocytes, which is highly dependent of the age of the mother, represents a major cause of miscarriage and in turn RPL. Avoiding transfers of abnormal embryos is possible with preimplantation genetic testing for aneuploidies. Chromosomal anomalies may also be caused by structural rearrangements of one or several chromosomes in either parents, a finding encountered in 12% of couples with RPL, including in those who have had one or several healthy babies. More than 40% of these chromosomal rearrangements are identifiable on regular karyotypes. When abnormal findings are made, preimplantation genetic testing for monogenic disorders allows selection of disease-free embryos. Finally, asymmetric inactivation of the X chromosome has been found more commonly in women with RPL, but no specific treatment is currently available.
Collapse
Affiliation(s)
- Amber M Klimczak
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Darshan P Patel
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah
| | - James M Hotaling
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Richard T Scott
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Eggermann T. Maternal Effect Mutations: A Novel Cause for Human Reproductive Failure. Geburtshilfe Frauenheilkd 2021; 81:780-788. [PMID: 34294945 PMCID: PMC8288500 DOI: 10.1055/a-1396-4390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic alterations significantly contribute to the aetiology of reproductive failure and comprise monogenic, chromosomal and epigenetic disturbances. The implementation of next-generation sequencing (NGS) based approaches in research and diagnostics allows the comprehensive analysis of these genetic causes, and the increasing detection rates of genetic mutations causing reproductive complications confirm the potential of the new techniques. Whereas mutations affecting the fetal genome are well known to affect pregnancies and their outcome, the contribution of alterations of the maternal genome was widely unclear. With the recent mainly NGS-based identification of maternal effect variants, a new cause of human reproductive failure has been identified. Maternal effect mutations affect the expression of subcortical maternal complex (SCMC) proteins from the maternal genome, and thereby disturb oocyte maturation and progression of the early embryo. They cause a broad range of reproductive failures and pregnancy complications, including infertility, miscarriages, hydatidiform moles, aneuploidies and imprinting disturbances in the fetus. The identification of women carrying these molecular alterations in SCMC encoding genes is therefore essential for a personalised reproductive and genetic counselling. The diagnostic application of new NGS-based assays allows the comprehensive analysis of these factors, and helps to further decipher these functional links between the factors and their disturbances. A close interdisciplinary collaboration between different disciplines is definitely required to further decipher the complex regulation of early embryo development, and to translate the basic research results into clinical practice.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Wang Y, Guo T, Ke H, Zhang Q, Li S, Luo W, Qin Y. Pathogenic variants of meiotic double strand break (DSB) formation genes PRDM9 and ANKRD31 in premature ovarian insufficiency. Genet Med 2021; 23:2309-2315. [PMID: 34257419 PMCID: PMC8629753 DOI: 10.1038/s41436-021-01266-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose The etiology of premature ovarian insufficiency (POI) is heterogeneous, and genetic factors account for 20–25% of the patients. The primordial follicle pool is determined by the meiosis process, which is initiated by programmed DNA double strand breaks (DSB) and homologous recombination. The objective of the study is to explore the role of DSB formation genes in POI pathogenesis. Methods Variants in DSB formation genes were analyzed from a database of exome sequencing in 1,030 patients with POI. The pathogenic effects of the potentially causative variants were verified by further functional studies. Results Three pathogenic heterozygous variants in PRDM9 and two in ANKRD31 were identified in seven patients. Functional studies showed the variants in PRDM9 impaired its methyltransferase activity, and the ANKRD31 variations disturbed its interaction with another DSB formation factor REC114 by haploinsufficiency effect, indicating the pathogenic effects of the two genes on ovarian function were dosage dependent. Conclusion Our study identified pathogenic variants of PRDM9 and ANKRD31 in POI patients, shedding new light on the contribution of meiotic DSB formation genes in ovarian development, further expanding the genetic architecture of POI.
Collapse
Affiliation(s)
- Yiyang Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Hanni Ke
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Wei Luo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
43
|
Verrilli L, Johnstone E, Allen-Brady K, Welt C. Shared genetics between nonobstructive azoospermia and primary ovarian insufficiency. F&S REVIEWS 2021; 2:204-213. [PMID: 36177363 PMCID: PMC9518791 DOI: 10.1016/j.xfnr.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Primary ovarian insufficiency (POI) and Non-obstructive azoospermia (NOA) both represent disease states of early, and often complete, failure of gametogenesis. Because oogenesis and spermatogenesis share the same conserved steps in meiosis I, it is possible that inherited defects in meiosis I could lead to shared causes of both POI and NOA. Currently, known genes that contribute to both POI and NOA are limited. In this review article, we provide a systematic review of genetic mutations in which both POI and NOA phenotypes exist. EVIDENCE REVIEW A PubMed literature review was conducted from January 1, 2000 through October 2020. We included all studies that demonstrated human cases of POI or NOA due to a specific genetic mutation either within the same family or in separate families. RESULTS We identified 33 papers that encompassed 10 genes of interest with mutations implicated in both NOA and POI. The genes were all involved in processes of meiosis I. CONCLUSION Mutations in genes involved in processes of meiosis I may cause both NOA and POI. Identifying these unique phenotypes among shared genotypes leads to biologic plausibility that the key error occurs early in gametogenesis with an etiology shared among both male and female offspring. From a clinical standpoint, this shared relationship may help us better understand and identify individuals at high risk for gonadal failure within families and suggests that clinicians obtain history for opposite sex family members when approaching a new diagnosis of POI or NOA.
Collapse
Affiliation(s)
- Lauren Verrilli
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Erica Johnstone
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Kristina Allen-Brady
- University of Utah School of Medicine, Division of Epidemiology, Department of Internal Medicine, 296 Chipeta Way, Salt Lake City, UT 84108
| | - Corrine Welt
- University of Utah School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Salt Lake City, UT 84132
| |
Collapse
|
44
|
Arian S, Rubin J, Chakchouk I, Sharif M, Mahadevan SK, Erfani H, Shelly K, Liao L, Lorenzo I, Ramakrishnan R, Van den Veyver IB. Reproductive Outcomes from Maternal Loss of Nlrp2 Are Not Improved by IVF or Embryo Transfer Consistent with Oocyte-Specific Defect. Reprod Sci 2021; 28:1850-1865. [PMID: 33090377 PMCID: PMC8060370 DOI: 10.1007/s43032-020-00360-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization. Embryos from Nlrp2-deficient females had similar abnormal cleavage and fragmentation and arrested by blastocyst stage, irrespective of fertilization mode. This indicates that in vitro fertilization does not further perturb or improve the development of cultured embryos. We also transferred embryos from superovulated Nlrp2-deficient and wild-type females to wild-type recipients to investigate if the abnormal reproductive outcomes of Nlrp2-deficient females are primarily driven by oocyte dysfunction or if a suboptimal intra-uterine milieu is a necessary factor. Pregnancies with transferred embryos from Nlrp2-deficient females produced smaller litters, stillbirths, and offspring with birth defects and growth abnormalities. This indicates that the reproductive phenotype is oocyte-specific and is not rescued by development in a wild-type uterus. We further found abnormal DNA methylation at two maternally imprinted loci in the kidney of surviving young adult offspring, confirming persistent DNA methylation disturbances in surviving offspring. These findings have implications for fertility treatments for women with mutations in NLRP2 and other genes encoding SCMC proteins.
Collapse
Affiliation(s)
- Sara Arian
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Jessica Rubin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
- Reproductive Biology Associates, 1100 Johnson Ferry Road NE, Suite 200, Atlanta, GA, 30342, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | | | - Hadi Erfani
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Katharine Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Rajesh Ramakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
- The Carol and Odis Peavy School of Nursing, University of St. Thomas, Houston, TX, 77006, USA
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, room 1025.14, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Eiriksson L, Dean E, Sebastianelli A, Salvador S, Comeau R, Jang JH, Bouchard-Fortier G, Osborne R, Sauthier P. Guideline No. 408: Management of Gestational Trophoblastic Diseases. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2021; 43:91-105.e1. [PMID: 33384141 DOI: 10.1016/j.jogc.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This guideline reviews the clinical evaluation and management of gestational trophoblastic diseases, including surgical and medical management of benign, premalignant, and malignant entities. The objective of this guideline is to assist health care providers in promptly diagnosing gestational trophoblastic diseases, to standardize treatment and follow-up, and to ensure early specialized care of patients with malignant or metastatic disease. INTENDED USERS General gynaecologists, obstetricians, family physicians, midwives, emergency department physicians, anaesthesiologists, radiologists, pathologists, registered nurses, nurse practitioners, residents, gynaecologic oncologists, medical oncologists, radiation oncologists, surgeons, general practitioners in oncology, oncology nurses, pharmacists, physician assistants, and other health care providers who treat patients with gestational trophoblastic diseases. This guideline is also intended to provide information for interested parties who provide follow-up care for these patients following treatment. TARGET POPULATION Women of reproductive age with gestational trophoblastic diseases. OPTIONS Women diagnosed with a gestational trophoblastic disease should be referred to a gynaecologist for initial evaluation and consideration for primary surgery (uterine evacuation or hysterectomy) and follow-up. Women diagnosed with gestational trophoblastic neoplasia should be referred to a gynaecologic oncologist for staging, risk scoring, and consideration for primary surgery or systemic therapy (single- or multi-agent chemotherapy) with the potential need for additional therapies. All cases of gestational trophoblastic neoplasia should be discussed at a multidisciplinary cancer case conference and registered in a centralized (regional and/or national) database. EVIDENCE Relevant studies from 2002 onwards were searched in Embase, MEDLINE, the Cochrane Central Register of Controlled Trials, and Cochrane Systematic Reviews using the following terms, either alone or in combination: trophoblastic neoplasms, choriocarcinoma, trophoblastic tumor, placental site, gestational trophoblastic disease, hydatidiform mole, drug therapy, surgical therapy, radiotherapy, cure, complications, recurrence, survival, prognosis, pregnancy outcome, disease outcome, treatment outcome, and remission. The initial search was performed in April 2017 and updated in May 2019. Relevant evidence was selected for inclusion in the following order: meta-analyses, systematic reviews, guidelines, randomized controlled trials, prospective cohort studies, observational studies, non-systematic reviews, case series, and reports. Additional significant articles were identified through cross-referencing the identified reviews. The total number of studies identified was 673, with 79 studies cited in this review. VALIDATION METHODS The content and recommendations were drafted and agreed upon by the authors. The Executive and Board of Directors of the Society of Gynecologic Oncology of Canada reviewed the content and submitted comments for consideration, and the Board of Directors for the Society of Obstetricians and Gynaecologists of Canada approved the final draft for publication. The quality of evidence was rated using the criteria described in the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology framework. See the online appendix tables for key to grading and interpretation of recommendations. BENEFITS These guidelines will assist physicians in promptly diagnosing gestational trophoblastic diseases and urgently referring patients diagnosed with gestational trophoblastic neoplasia to gynaecologic oncology for specialized management. Treating gestational trophoblastic neoplasia in specialized centres with the use of centralized databases allows for capturing and comparing data on treatment outcomes of patients with these rare tumours and for optimizing patient care. SUMMARY STATEMENTS (GRADE RATINGS IN PARENTHESES) RECOMMENDATIONS (GRADE RATINGS IN PARENTHESES).
Collapse
|
46
|
Martin JH, Slim R. Mono-pronuclear zygotes: a possible manifestation of androgenetic monospermic hydatidiform moles. F S Rep 2021; 2:138-139. [PMID: 34278340 PMCID: PMC8267386 DOI: 10.1016/j.xfre.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jacinta Hope Martin
- Department of Human Genetics, McGill University Health Centre Research Institute (Glen site), Montréal, Québec, Canada
| | - Rima Slim
- Department of Human Genetics and Obstetrics Gynecology, McGill University Health Centre Research Institute (Glen site), Montréal, Québec, Canada
| |
Collapse
|
47
|
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet 2021; 38:993-1002. [PMID: 33895934 PMCID: PMC8190202 DOI: 10.1007/s10815-021-02196-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
Successful human reproduction requires gamete maturation, fertilization, and early embryonic development. Human oocyte maturation includes nuclear and cytoplasmic maturation, and abnormalities in the process will lead to infertility and recurrent failure of IVF/ICSI attempts. In addition, the quality of oocytes/embryos in the clinic can only be determined by morphological markers, and there is currently a lack of molecular markers for determining oocyte quality. As the number of patients undergoing IVF/ICSI has increased, many patients have been identified with recurrent IVF/ICSI failure. However, the genetic basis behind this phenotype remains largely unknown. In recent years, a few mutant genes have been identified by us and others, which provide potential molecular markers for determining the quality of oocytes/embryos. In this review, we outline the genetic determinants of abnormalities in the processes of oocyte maturation, fertilization, and early embryonic development. Currently, 16 genes (PATL2, TUBB8, TRIP13, ZP1, ZP2, ZP3, PANX1, TLE6, WEE2, CDC20, BTG4, PADI6, NLRP2, NLRP5, KHDC3L, and REC114) have been reported to be the causes of oocyte maturation arrest, fertilization failure, embryonic arrest, and preimplantation embryonic lethality. These abnormalities mainly have Mendelian inheritance patterns, including both dominant inheritance and recessive inheritance, although in some cases de novo mutations have also appeared. In this review, we will introduce the effects of each gene in the specific processes of human early reproduction and will summarize all known variants in these genes and their corresponding phenotypes. Variants in some genes have specific effects on certain steps in the early human reproductive processes, while other variants result in a spectrum of phenotypes. These variants and genetic markers will lay the foundation for individualized genetic counseling and potential treatments for patients and will be the target for precision treatments in reproductive medicine.
Collapse
Affiliation(s)
- Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Genetics of Azoospermia. Int J Mol Sci 2021; 22:ijms22063264. [PMID: 33806855 PMCID: PMC8004677 DOI: 10.3390/ijms22063264] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole-Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients.
Collapse
|
49
|
The genetics of recurrent hydatidiform moles in Mexico: further evidence of a strong founder effect for one mutation in NLRP7 and its widespread. J Assist Reprod Genet 2021; 38:1879-1886. [PMID: 33751332 DOI: 10.1007/s10815-021-02132-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the frequency of a founder mutation in NLRP7, L750V, in independent cohorts of Mexican patients with recurrent hydatidiform moles (RHMs). METHODS Mutation analysis was performed by Sanger sequencing on DNA from 44 unrelated Mexican patients with RHMs and seven molar tissues from seven additional unrelated patients. RESULTS L750V was present in homozygous or heterozygous state in 37 (86%) patients and was transmitted on the same haplotype to patients from different states of Mexico. We also identified a second founder mutation, c.2810+2T>G in eight (18.1%) patients, and a novel premature stop-codon mutation W653*. CONCLUSION Our data confirm the strong founder effect for L750V, which appears to be the most common mutation in NLRP7. We also report on six healthy live births to five patients with biallelic NLRP7 mutations, two from spontaneous conceptions and four from donated ovum and discuss our recommendations for DNA testing and genetic counseling.
Collapse
|
50
|
Huang C, Guo T, Qin Y. Meiotic Recombination Defects and Premature Ovarian Insufficiency. Front Cell Dev Biol 2021; 9:652407. [PMID: 33763429 PMCID: PMC7982532 DOI: 10.3389/fcell.2021.652407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is the depletion of ovarian function before 40 years of age due to insufficient oocyte formation or accelerated follicle atresia. Approximately 1–5% of women below 40 years old are affected by POI. The etiology of POI is heterogeneous, including genetic disorders, autoimmune diseases, infection, iatrogenic factors, and environmental toxins. Genetic factors account for 20–25% of patients. However, more than half of the patients were idiopathic. With the widespread application of next-generation sequencing (NGS), the genetic spectrum of POI has been expanded, especially the latest identification in meiosis and DNA repair-related genes. During meiotic prophase I, the key processes include DNA double-strand break (DSB) formation and subsequent homologous recombination (HR), which are essential for chromosome segregation at the first meiotic division and genome diversity of oocytes. Many animal models with defective meiotic recombination present with meiotic arrest, DSB accumulation, and oocyte apoptosis, which are similar to human POI phenotype. In the article, based on different stages of meiotic recombination, including DSB formation, DSB end processing, single-strand invasion, intermediate processing, recombination, and resolution and essential proteins involved in synaptonemal complex (SC), cohesion complex, and fanconi anemia (FA) pathway, we reviewed the individual gene mutations identified in POI patients and the potential candidate genes for POI pathogenesis, which will shed new light on the genetic architecture of POI and facilitate risk prediction, ovarian protection, and early intervention for POI women.
Collapse
Affiliation(s)
- Chengzi Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|