1
|
Kim D, Yoon JH, Bae H, Hwang S, Seo GH, Koh JY, Ju YS, Do HS, Kim S, Choi IH, Kim GH, Kim JH, Choi JH, Lee BH. Beyond CHD7 gene: unveiling genetic diversity in clinically suspected CHARGE syndrome. J Hum Genet 2025; 70:243-248. [PMID: 40000719 DOI: 10.1038/s10038-025-01325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The Verloes or Hale diagnostic criteria have been applied for diagnosing CHARGE syndrome in suspected patients. This study was conducted to evaluate the diagnostic rate of CHD7 according to these diagnostic criteria in suspected patients and also to investigate other genetic defects in CHD7-negative patients. The clinical findings and the results of genetic testing of CHD7, chromosome microarray, exome sequencing, or genome sequencing of 59 subjects were reviewed. CHD7 pathogenic variants were identified in 78% of 46 subjects who met either the Verloes or Hale diagnostic criteria and in 87% of 38 subjects who met both criteria, whereas no CHD7 variant was detected in 13 subjects who met neither criterion. Among 23 patients without the CHD7 variant, six genetic diseases were identified in 7 patients, including Wolf-Hirschhorn syndrome, 1q21 deletion syndrome, 19q13 microdeletion, and pathogenic variants in PLCB4, TRRAP, and OTX2. Based on these comprehensive analyses, the overall diagnostic rate was 73% for seven different genetic diseases. This study emphasizes the importance of comprehensive clinical and genetic evaluation in patients with clinically suspected CHARGE syndrome, recognizing the overlapping phenotypes in other rare genetic disorders.
Collapse
Affiliation(s)
- Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Bae
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kyungpook National University Chilgok Hospital, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Go Hun Seo
- Division of Medical genetics, 3billion Inc, Seoul, Republic of Korea
| | | | | | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In Hee Choi
- Department of Genetic Counseling, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wu S, Chen X, Chen Y, Li C, Yang R, Zhang T, Ma J. Genetic characteristics associated with isolated Microtia revealed through whole exome sequencing of 201 pedigrees. Hum Mol Genet 2025:ddaf063. [PMID: 40275486 DOI: 10.1093/hmg/ddaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Microtia is one of the most common congenital craniofacial malformations, characterized by the maldevelopment of the external and middle ear. While numerous genes have been implicated in syndromic forms of microtia, the genetic underpinnings of isolated microtia remain poorly understood. In this study, we conducted whole exome sequencing (WES) on 201 pedigrees with isolated microtia to investigate its genetic basis. Bioinformatics analysis identified 1362 deleterious variants corresponding to 332 candidate genes, including 40 previously associated with microtia-related phenotypes. Among these, variants in FOXI3, the most frequently identified pathogenic gene for isolated microtia so far, were detected. Remarkably, the remaining 39 genes, which have been recognized as pathogenic in syndromes with microtia, are also suggested to play a role in isolated microtia. However, the precise molecular mechanisms by which these genes contribute to microtia remain to be elucidated. Furthermore, through protein-protein interaction network analysis, functional annotation, and zebrafish expression profiling, we identified two novel genes, MCM2 and BDNF, as the most promising contributors to the pathogenesis of isolated microtia. Our findings, based on the largest WES study of isolated microtia pedigrees to date, provide new insights into the genetic architecture of isolated microtia and suggest promising avenues for future research.
Collapse
Affiliation(s)
- Siyi Wu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
- Institute of Medical Genetics & Genomics, Fudan University, No. 131 Dong'an Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
3
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
4
|
Meert L, Pelicano de Almeida M, Dekker MR, Dekkers DHW, Nowosad K, Huylebroeck D, van den Hout M, Ozgür Z, van IJcken WFJ, Demmers J, Fornerod M, Poot RA. A CHD8-TRRAP axis facilitates MYC and E2F target gene regulation in human neural stem cells. iScience 2025; 28:111978. [PMID: 40104050 PMCID: PMC11914185 DOI: 10.1016/j.isci.2025.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Mutations in ATP-dependent chromatin remodeler CHD8 cause one of the most frequent monogenetic forms of autism and are associated with brain overgrowth. Nevertheless, the activities of CHD8 in autism-relevant cell types are still poorly understood. Here, we purify the CHD8 protein from human neural stem cells and determine its interaction partners using mass spectrometry. We identify the TRRAP complex, a coactivator of MYC and E2F transcription factors, as a prominent CHD8 interaction partner. CHD8 colocalizes genome-wide with TRRAP and binds together at MYC and E2F target gene promoters in human neural stem cells. Depletion of CHD8 or TRRAP in human neural stem cells shows downregulation of MYC and E2F target genes as the most prominent gene-regulatory events. Depletion of CHD8 diminishes cell-cycle entry into S-phase. MYC and E2F transcription factors are established oncogenes and regulate cell growth. Our results link CHD8 to TRRAP in facilitating the regulation of MYC and E2F target genes in human neural stem cells.
Collapse
Affiliation(s)
- Lize Meert
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Zeliha Ozgür
- Center for Biomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
- Center for Biomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
5
|
Luo S, Wang PY, Zhou P, Zhang WJ, Gu YJ, Liang XY, Zhang JW, Luo JX, Zhang HW, Lan S, Zhang TT, Yang JH, Sun SZ, Guo XY, Wang JL, Deng LF, Xu ZH, Jin L, He YY, Ye ZL, Gu WY, Li BM, Shi YW, Liu XR, Yan HJ, Yi YH, Jiang YW, Mao X, Li WL, Meng H, Liao WP. Variants in EP400, encoding a chromatin remodeler, cause epilepsy with neurodevelopmental disorders. Am J Hum Genet 2025; 112:87-105. [PMID: 39708813 PMCID: PMC11739926 DOI: 10.1016/j.ajhg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
EP400 encodes a core catalytic ATPase subunit of ATP-dependent chromatin remodeling complexes. The gene-disease association of EP400 is undetermined. In this study, we performed trio-based whole-exome sequencing in a cohort of 402 families with epilepsy and neurodevelopmental disorders (NDDs) and identified compound heterozygous EP400 variants in six unrelated individuals. Six additional EP400 individuals were recruited via the match platform of China, including two de novo heterozygous and four compound heterozygous variants. The individual with a heterozygous de novo frameshift variant presented with NDDs, while the others exhibited epilepsy and NDDs, explained by the damaged genetic dependence quantity. EP400 presented significantly higher excesses of variants in the individuals. Clustering analysis revealed that the majority paralogs of EP400 were associated with NDDs/epilepsy and co-expressed highly with EP400. Analysis of the spatiotemporal expression indicated that EP400 is highly expressed in the developing brain and cells during differentiation, indicating its vital role in neurodevelopment; EP400 is predominantly expressed in inhibitory neurons in the early stage but in excitatory neurons in the mature stage. The development-dependent expression pattern of neuron specificity explained the favorable outcome of epilepsy. Knockdown of EP400 ortholog in Drosophila caused significantly increased susceptibility to seizures and abnormal neuronal firing. The ep400 crispant zebrafish exhibited brain developmental abnormalities, poorer adaptability, lower response to stimulation, epileptic discharges, abnormal cellular apoptosis, and increased susceptibility to seizures. Transcriptome analysis showed that ep400 deficiency caused expressional dysregulation of 84 epilepsy/NDD-associated genes, including 11 highly dose-sensitive genes. This study identified EP400 as a causative gene of epilepsy/NDDs.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Jing-Wen Zhang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Hong-Wei Zhang
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Ting-Ting Zhang
- Department of Psychology, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Hua Yang
- Department of Neurology, Second Affiliated Hospital of Shantou University, Shantou 515000, Guangdong, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Shijiazhuang 050000, Hebei, China
| | - Xiang-Yang Guo
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Ju-Li Wang
- Epilepsy Center, Jiamusi Central Hospital, Jiamusi 154002, Heilongjiang, China
| | - Lin-Fan Deng
- Department of Pediatrics, Mianyang Central Hospital, Mianyang 621000, Sichuan, China
| | - Ze-Hai Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei-Yue Gu
- Beijing Chigene Translational Medicine Research Center Co., Ltd., Beijing 100000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Wen-Ling Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Avenue, Guangzhou, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
6
|
Acharya R, Bhalla K, Gathwala G. A Rare Mutation in TRRAP Gene and the Expanded New Phenotype. Indian J Pediatr 2024; 91:987. [PMID: 38565765 DOI: 10.1007/s12098-024-05115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Rohan Acharya
- Department of Pediatrics, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India.
| | - Kapil Bhalla
- Department of Pediatrics, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Geeta Gathwala
- Department of Pediatrics, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
7
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am J Hum Genet 2024; 111:1330-1351. [PMID: 38815585 PMCID: PMC11267526 DOI: 10.1016/j.ajhg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Collapse
Affiliation(s)
- Remzi Karayol
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Carla Borroto
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Anoja Namasivayam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Reilly
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Maria Shvedunova
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea K Petersen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - Aya Abu-El-Haija
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Duis
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Vickie Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Natalie S Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Uri Hamiel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Baris Feldman
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ralitsa Yordanova
- Department of pediatrics "Prof. Ivan Andreev", Medical university - Plovdiv, Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Mihael Rogac
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela Peron
- SOC Genetica Medica, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Iris A Reyes
- Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Janell Kierstein
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, MIND Institute, UC Davis, Sacramento, CA 95817, USA
| | - Faria N Ahmed
- Division of Genomic Medicine, Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China; Nanhua University, Chiayi County, Taiwan
| | - Berta Almoguera
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, German
| | | | - Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP, Centre Université Paris Cité, Paris, France
| | - Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospital, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Lyon University Hospital, Lyon, France
| | | | | | | | - Justine Rousseau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Kenneth A Myers
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada.
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
9
|
Reyna-Fabián ME, Fernández-Hernández L, Enríquez-Flores S, Apam-Garduño D, Prado-Larrea C, Seo GH, Khang R, Cortés-González V. Deciphering the etiology of undiagnosed ocular anomalies along with systemic alterations in pediatric patients through whole exome sequencing. Sci Rep 2024; 14:14380. [PMID: 38909058 PMCID: PMC11193775 DOI: 10.1038/s41598-024-65227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Inherited and developmental eye diseases are quite diverse and numerous, and determining their genetic cause is challenging due to their high allelic and locus heterogeneity. New molecular approaches, such as whole exome sequencing (WES), have proven to be powerful molecular tools for addressing these cases. The present study used WES to identify the genetic etiology in ten unrelated Mexican pediatric patients with complex ocular anomalies and other systemic alterations of unknown etiology. The WES approach allowed us to identify five clinically relevant variants in the GZF1, NFIX, TRRAP, FGFR2 and PAX2 genes associated with Larsen, Malan, developmental delay with or without dysmorphic facies and autism, LADD1 and papillorenal syndromes. Mutations located in GZF1 and NFIX were classified as pathogenic, those in TRRAP and FGFR2 were classified as likely pathogenic variants, and those in PAX2 were classified as variants of unknown significance. Protein modeling of the two missense FGFR2 p.(Arg210Gln) and PAX2 p.(Met3Thr) variants showed that these changes could induce potential structural alterations in important functional regions of the proteins. Notably, four out of the five variants were not previously reported, except for the TRRAP gene. Consequently, WES enabled the identification of the genetic cause in 40% of the cases reported. All the syndromes reported herein are very rare, with phenotypes that may overlap with other genetic entities.
Collapse
Affiliation(s)
- Miriam E Reyna-Fabián
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Liliana Fernández-Hernández
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City, México
| | - David Apam-Garduño
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
- Departamento de Genética, Asociación Para Evitar la Ceguera en México, Vicente García Torres No. 46 Barrio San Lucas, Coyoacán, C.P. 04030, Mexico City, México
| | - Carolina Prado-Larrea
- Departamento de Glaucoma, Asociación Para Evitar la Ceguera en México, Mexico City, México
| | - Go Hun Seo
- Medical Genetics Division, 3Billion, Inc., Seoul, South Korea
| | - Rin Khang
- Medical Genetics Division, 3Billion, Inc., Seoul, South Korea
| | - Vianney Cortés-González
- Departamento de Genética, Asociación Para Evitar la Ceguera en México, Vicente García Torres No. 46 Barrio San Lucas, Coyoacán, C.P. 04030, Mexico City, México.
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
10
|
Krishna Murthy SB, Yang S, Bheda S, Tomar N, Li H, Yaghoobi A, Khan A, Kiryluk K, Motelow JE, Ren N, Gharavi AG, Milo Rasouly H. Assisting the analysis of insertions and deletions using regional allele frequencies. Funct Integr Genomics 2024; 24:104. [PMID: 38764005 PMCID: PMC11414712 DOI: 10.1007/s10142-024-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Accurate estimation of population allele frequency (AF) is crucial for gene discovery and genetic diagnostics. However, determining AF for frameshift-inducing small insertions and deletions (indels) faces challenges due to discrepancies in mapping and variant calling methods. Here, we propose an innovative approach to assess indel AF. We developed CRAFTS-indels (Calculating Regional Allele Frequency Targeting Small indels), an algorithm that combines AF of distinct indels within a given region and provides "regional AF" (rAF). We tested and validated CRAFTS-indels using three independent datasets: gnomAD v2 (n=125,748 samples), an internal dataset (IGM; n=39,367), and the UK BioBank (UKBB; n=469,835). By comparing rAF against standard AF, we identified rare indels with rAF exceeding standard AF (sAF≤10-4 and rAF>10-4) as "rAF-hi" indels. Notably, a high percentage of rare indels were "rAF-hi", with a higher proportion in gnomAD v2 (11-20%) and IGM (11-22%) compared to the UKBB (5-9% depending on the CRAFTS-indels' parameters). Analysis of the overlap of regions based on their rAF with low complexity regions and with ClinVar classification supported the pertinence of rAF. Using the internal dataset, we illustrated the utility of CRAFTS-indel in the analysis of de novo variants and the potential negative impact of rAF-hi indels in gene discovery. In summary, annotation of indels with cohort specific rAF can be used to handle some of the limitations of current annotation pipelines and facilitate detection of novel gene disease associations. CRAFTS-indels offers a user-friendly approach to providing rAF annotation. It can be integrated into public databases such as gnomAD, UKBB and used by ClinVar to revise indel classifications.
Collapse
Affiliation(s)
- Sarath Babu Krishna Murthy
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Sandy Yang
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Shiraz Bheda
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Nikita Tomar
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Haiyue Li
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Amir Yaghoobi
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Joshua E Motelow
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Nick Ren
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Ali G Gharavi
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Hila Milo Rasouly
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA.
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Chu C, Ljungström V, Tran A, Jin H, Park PJ. Contribution of de novo retroelements to birth defects and childhood cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305733. [PMID: 38699361 PMCID: PMC11065029 DOI: 10.1101/2024.04.15.24305733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Insertion of active retroelements-L1s, Alus, and SVAs-can disrupt proper genome function and lead to various disorders including cancer. However, the role of de novo retroelements (DNRTs) in birth defects and childhood cancers has not been well characterized due to the lack of adequate data and efficient computational tools. Here, we examine whole-genome sequencing data of 3,244 trios from 12 birth defect and childhood cancer cohorts in the Gabriella Miller Kids First Pediatric Research Program. Using an improved version of our tool xTea (x-Transposable element analyzer) that incorporates a deep-learning module, we identified 162 DNRTs, as well as 2 pseudogene insertions. Several variants are likely to be causal, such as a de novo Alu insertion that led to the ablation of a whole exon in the NF1 gene in a proband with brain tumor. We observe a high de novo SVA insertion burden in both high-intolerance loss-of-function genes and exons as well as more frequent de novo Alu insertions of paternal origin. We also identify potential mosaic DNRTs from embryonic stages. Our study reveals the important roles of DNRTs in causing birth defects and predisposition to childhood cancers.
Collapse
Affiliation(s)
- Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Antuan Tran
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hu Jin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Sullivan JA, Spillmann RC, Schoch K, Walley N, Alkelai A, Stong N, Shea PR, Petrovski S, Jobanputra V, McConkie-Rosell A, Shashi V. The best of both worlds: Blending cutting-edge research with clinical processes for a productive exome clinic. Clin Genet 2024; 105:62-71. [PMID: 37853563 DOI: 10.1111/cge.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Genomic medicine has been transformed by next-generation sequencing (NGS), inclusive of exome sequencing (ES) and genome sequencing (GS). Currently, ES is offered widely in clinical settings, with a less prevalent alternative model consisting of hybrid programs that incorporate research ES along with clinical patient workflows. We were among the earliest to implement a hybrid ES clinic, have provided diagnoses to 45% of probands, and have identified several novel candidate genes. Our program is enabled by a cost-effective investment by the health system and is unique in encompassing all the processes that have been variably included in other hybrid/clinical programs. These include careful patient selection, utilization of a phenotype-agnostic bioinformatics pipeline followed by manual curation of variants and phenotype integration by clinicians, close collaborations between the clinicians and the bioinformatician, pursuit of interesting variants, communication of results to patients in categories that are predicated upon the certainty of a diagnosis, and tracking changes in results over time and the underlying mechanisms for such changes. Due to its effectiveness, scalability to GS and its resource efficiency, specific elements of our paradigm can be incorporated into existing clinical settings, or the entire hybrid model can be implemented within health systems that have genomic medicine programs, to provide NGS in a scientifically rigorous, yet pragmatic setting.
Collapse
Affiliation(s)
- Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Kelly Schoch
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Nicole Walley
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Genomics and Bioinformatics Analysis Resource, Columbia University, New York, New York, USA
| | - Slavè Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Rajeh A, Cornman HL, Gupta A, Szeto MD, Kambala A, Oladipo O, Parthasarathy V, Deng J, Wheelan S, Pritchard T, Kwatra MM, Semenov YR, Gusev A, Yegnasubramanian S, Kwatra SG. Somatic mutations reveal hyperactive Notch signaling and racial disparities in prurigo nodularis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.25.23295810. [PMID: 37808834 PMCID: PMC10557842 DOI: 10.1101/2023.09.25.23295810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Prurigo nodularis (PN) is a chronic inflammatory skin disease that disproportionately affects African Americans and is characterized by pruritic skin nodules of unknown etiology. Little is known about genetic alterations in PN pathogenesis, especially relating to somatic events which are often implicated in inflammatory conditions. We thus performed whole-exome sequencing on 54 lesional and nonlesional skin biopsies from 17 PN patients and 10 atopic dermatitis (AD) patients for comparison. Somatic mutational analysis revealed that PN lesional skin harbors pervasive somatic mutations in fibrotic, neurotropic, and cancer-associated genes. Nonsynonymous mutations were most frequent in NOTCH1 and the Notch signaling pathway, a regulator of cellular proliferation and tissue fibrosis, and NOTCH1 mutations were absent in AD. Somatic copy-number analysis, combined with expression data, showed that recurrently deleted and downregulated genes in PN lesional skin are associated with axonal guidance and extension. Follow-up immunofluorescence validation demonstrated increased NOTCH1 expression in PN lesional skin fibroblasts and increased Notch signaling in PN lesional dermis. Finally, multi-center data revealed a significantly increased risk of NOTCH1-associated diseases in PN patients. In characterizing the somatic landscape of PN, we uncover novel insights into its pathophysiology and identify a role for dysregulated Notch signaling in PN.
Collapse
Affiliation(s)
- Ahmad Rajeh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah L. Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Mindy D. Szeto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Wheelan
- Present affiliation: National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Yevgeniy R. Semenov
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alexander Gusev
- Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Zhao Y, Wang Y, Shi L, McDonald-McGinn DM, Crowley TB, McGinn DE, Tran OT, Miller D, Lin JR, Zackai E, Johnston HR, Chow EWC, Vorstman JAS, Vingerhoets C, van Amelsvoort T, Gothelf D, Swillen A, Breckpot J, Vermeesch JR, Eliez S, Schneider M, van den Bree MBM, Owen MJ, Kates WR, Repetto GM, Shashi V, Schoch K, Bearden CE, Digilio MC, Unolt M, Putotto C, Marino B, Pontillo M, Armando M, Vicari S, Angkustsiri K, Campbell L, Busa T, Heine-Suñer D, Murphy KC, Murphy D, García-Miñaúr S, Fernández L, Zhang ZD, Goldmuntz E, Gur RE, Emanuel BS, Zheng D, Marshall CR, Bassett AS, Wang T, Morrow BE. Chromatin regulators in the TBX1 network confer risk for conotruncal heart defects in 22q11.2DS. NPJ Genom Med 2023; 8:17. [PMID: 37463940 PMCID: PMC10354062 DOI: 10.1038/s41525-023-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lijie Shi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniel E McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oanh T Tran
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniella Miller
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eva W C Chow
- Department of Psychiatry, University of Toronto, Ontario, M5G 0A4, Canada
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute and Autism Research Unit, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Doron Gothelf
- The Division of Child & Adolescent Psychiatry, Edmond and Lily Sapfra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Ramat Gan, 5262000, Israel
| | - Ann Swillen
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Marianne B M van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
- Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, 7710162, Chile
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marta Unolt
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Carolina Putotto
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Bruno Marino
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva, 1211, Switzerland
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University and Child & Adolescent Psychiatry Unit at Bambino Gesù Hospital, Rome, 00165, Italy
| | - Kathleen Angkustsiri
- Developmental Behavioral Pediatrics, MIND Institute, University of California, Davis, CA, 95817, USA
| | - Linda Campbell
- School of Psychology, University of Newcastle, Newcastle, 2258, Australia
| | - Tiffany Busa
- Department of Medical Genetics, Aix-Marseille University, Marseille, 13284, France
| | - Damian Heine-Suñer
- Genomics of Health and Unit of Molecular Diagnosis and Clinical Genetics, Son Espases University Hospital, Balearic Islands Health Research Institute, Palma de Mallorca, 07120, Spain
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, 505095, Ireland
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, SE5 8AF, UK
- Behavioral and Developmental Psychiatry Clinical Academic Group, Behavioral Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London, SE5 8AZ, UK
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Luis Fernández
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Philadelphia, PA, 19104, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Deyou Zheng
- Department of Genetics, Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christian R Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Dalglish Family 22q Clinic, Toronto General Hospital, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
16
|
Denommé-Pichon AS, Matalonga L, de Boer E, Jackson A, Benetti E, Banka S, Bruel AL, Ciolfi A, Clayton-Smith J, Dallapiccola B, Duffourd Y, Ellwanger K, Fallerini C, Gilissen C, Graessner H, Haack TB, Havlovicova M, Hoischen A, Jean-Marçais N, Kleefstra T, López-Martín E, Macek M, Mencarelli MA, Moutton S, Pfundt R, Pizzi S, Posada M, Radio FC, Renieri A, Rooryck C, Ryba L, Safraou H, Schwarz M, Tartaglia M, Thauvin-Robinet C, Thevenon J, Tran Mau-Them F, Trimouille A, Votypka P, de Vries BBA, Willemsen MH, Zurek B, Verloes A, Philippe C, Vitobello A, Vissers LELM, Faivre L. A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing. Genet Med 2023; 25:100018. [PMID: 36681873 DOI: 10.1016/j.gim.2023.100018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.
Collapse
Affiliation(s)
- Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France.
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation," The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Elisa Benetti
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Yannis Duffourd
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Kornelia Ellwanger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Chiara Fallerini
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Christian Gilissen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radbound University, Nijmegen, The Netherlands
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marketa Havlovicova
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Alexander Hoischen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radbound University, Nijmegen, The Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Nolwenn Jean-Marçais
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands; Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Estrella López-Martín
- Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International, Instituto de Salud Carlos III, Madrid, Spain
| | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Sébastien Moutton
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Manuel Posada
- Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alessandra Renieri
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Medical Genetics, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Caroline Rooryck
- MRGM INSERM U1211, University of Bordeaux, Medical Genetics Department, Bordeaux University Hospital, Bordeaux, France
| | - Lukas Ryba
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hana Safraou
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Christel Thauvin-Robinet
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Julien Thevenon
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Frédéric Tran Mau-Them
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Aurélien Trimouille
- Molecular Genetics Laboratory, Medical Genetics Department, Bordeaux University Hospital - Hôpital Pellegrin, Bordeaux, France
| | - Pavel Votypka
- Department of Biology and Medical Genetics, Second Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Bert B A de Vries
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Birte Zurek
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Alain Verloes
- Department of Genetics, Assistance Publique-Hôpitaux de Paris - Université de Paris, Paris, France; INSERM UMR 1141 "NeuroDiderot," Hôpital Robert Debré, Paris, France
| | - Christophe Philippe
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Antonio Vitobello
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Laurence Faivre
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France.
| |
Collapse
|
17
|
Hartley T, Soubry É, Acker M, Osmond M, Couse M, Gillespie MK, Ito Y, Marshall AE, Lemire G, Huang L, Chisholm C, Eaton AJ, Price EM, Dowling JJ, Ramani AK, Mendoza-Londono R, Costain G, Axford MM, Szuto A, McNiven V, Damseh N, Jobling R, de Kock L, Mojarad BA, Young T, Shao Z, Hayeems RZ, Graham ID, Tarnopolsky M, Brady L, Armour CM, Geraghty M, Richer J, Sawyer S, Lines M, Mercimek-Andrews S, Carter MT, Graham G, Kannu P, Lazier J, Li C, Aul RB, Balci TB, Dlamini N, Badalato L, Guerin A, Walia J, Chitayat D, Cohn R, Faghfoury H, Forster-Gibson C, Gonorazky H, Grunebaum E, Inbar-Feigenberg M, Karp N, Morel C, Rusnak A, Sondheimer N, Warman-Chardon J, Bhola PT, Bourque DK, Chacon IJ, Chad L, Chakraborty P, Chong K, Doja A, Goh ESY, Saleh M, Potter BK, Marshall CR, Dyment DA, Kernohan K, Boycott KM. Bridging clinical care and research in Ontario, Canada: Maximizing diagnoses from reanalysis of clinical exome sequencing data. Clin Genet 2023; 103:288-300. [PMID: 36353900 DOI: 10.1111/cge.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.
Collapse
Affiliation(s)
- Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Élisabeth Soubry
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Meryl Acker
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | - Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Lijia Huang
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Alison J Eaton
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- University of Alberta, Edmonton, Canada
| | - E Magda Price
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - James J Dowling
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | | | | | - Gregory Costain
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Michelle M Axford
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Anna Szuto
- Hospital for Sick Children, Toronto, Canada
| | - Vanda McNiven
- Hospital for Sick Children, Toronto, Canada
- University Health Network, Toronto, Canada
| | | | | | - Leanne de Kock
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | - Ted Young
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Zhuo Shao
- University of Toronto, Toronto, Canada
- North York General Hospital, Toronto, Canada
| | | | - Ian D Graham
- University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | - Christine M Armour
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Julie Richer
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Sarah Sawyer
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Matthew Lines
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Melissa T Carter
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Gail Graham
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Peter Kannu
- Hospital for Sick Children, Toronto, Canada
- University of Alberta, Edmonton, Canada
| | - Joanna Lazier
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Chumei Li
- McMaster Children's Hospital, Hamilton, Canada
| | - Ritu B Aul
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Tugce B Balci
- London Health Sciences Center, Western University, London, Canada
| | | | - Lauren Badalato
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | - Andrea Guerin
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | - Jagdeep Walia
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | - David Chitayat
- Hospital for Sick Children, Toronto, Canada
- Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | | | | - Natalya Karp
- London Health Sciences Center, Western University, London, Canada
| | | | - Alison Rusnak
- Children's Hospital of Eastern Ontario, Ottawa, Canada
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | | | - Jodi Warman-Chardon
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
- The Ottawa Hospital, Ottawa, Canada
| | - Priya T Bhola
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Danielle K Bourque
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Lauren Chad
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Asif Doja
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Maha Saleh
- London Health Sciences Center, Western University, London, Canada
| | | | - Beth K Potter
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Christian R Marshall
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
18
|
Yin BK, Lázaro D, Wang ZQ. TRRAP-mediated acetylation on Sp1 regulates adult neurogenesis. Comput Struct Biotechnol J 2022; 21:472-484. [PMID: 36618986 PMCID: PMC9804013 DOI: 10.1016/j.csbj.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adult hippocampal neurogenesis plays a vital role in the function of the central nervous system (CNS), including memory consolidation, cognitive flexibility, emotional function, and social behavior. The deficiency of adult neural stem cells (aNSCs) in maintaining the quiescence and entering cell cycle, self-renewal and differentiation capacity is detrimental to the functional integrity of neurons and cognition of the adult brain. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) have been shown to modulate brain functionality and are important for embryonic neurogenesis via regulation of gene transcription. We showed previously that Trrap, an adapter for several HAT complexes, is required for Sp1 transcriptional control of the microtubule dynamics in neuronal cells. Here, we find that Trrap deletion compromises self-renewal and differentiation of aNSCs in mice and in cultures. We find that the acetylation status of lysine residues K16, K19, K703 and K639 all fail to overcome Trrap-deficiency-incurred instability of Sp1, indicating a scaffold role of Trrap. Interestingly, the deacetylation of Sp1 at K639 and K703 greatly increases Sp1 binding to the promoter of target genes, which antagonizes Trrap binding, and thereby elevates Sp1 activity. However, only deacetylated K639 is refractory to Trrap deficiency and corrects the differentiation defects of Trrap-deleted aNSCs. We demonstrate that the acetylation pattern at K639 by HATs dictates the role of Sp1 in the regulation of adult neurogenesis.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstrasse 18k, 07743 Jena, Germany,Corresponding author at: Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,.
| |
Collapse
|
19
|
Wang N, Lv L, Huang X, Shi M, Dai Y, Wei Y, Xu B, Fu C, Huang H, Shi H, Liu Y, Hu X, Qin D. Gene editing in monogenic autism spectrum disorder: animal models and gene therapies. Front Mol Neurosci 2022; 15:1043018. [PMID: 36590912 PMCID: PMC9794862 DOI: 10.3389/fnmol.2022.1043018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disease, and its diagnosis is dependent on behavioral manifestation, such as impaired reciprocal social interactions, stereotyped repetitive behaviors, as well as restricted interests. However, ASD etiology has eluded researchers to date. In the past decades, based on strong genetic evidence including mutations in a single gene, gene editing technology has become an essential tool for exploring the pathogenetic mechanisms of ASD via constructing genetically modified animal models which validates the casual relationship between genetic risk factors and the development of ASD, thus contributing to developing ideal candidates for gene therapies. The present review discusses the progress in gene editing techniques and genetic research, animal models established by gene editing, as well as gene therapies in ASD. Future research should focus on improving the validity of animal models, and reliable DNA diagnostics and accurate prediction of the functional effects of the mutation will likely be equally crucial for the safe application of gene therapies.
Collapse
Affiliation(s)
- Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
20
|
Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis. J Pers Med 2022; 12:jpm12061013. [PMID: 35743796 PMCID: PMC9224546 DOI: 10.3390/jpm12061013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are complex neurodevelopmental disorders with high heritability. To search for the genetic deficits in two siblings affected with ID and ASD in a family, we first performed a genome-wide copy number variation (CNV) analysis using chromosomal microarray analysis (CMA). We found a 3.7 Mb microdeletion at 22q13.3 in the younger sister. This de novo microdeletion resulted in the haploinsufficiency of SHANK3 and several nearby genes involved in neurodevelopment disorders. Hence, she was diagnosed with Phelan–McDermid syndrome (PMS, OMIM#606232). We further performed whole-genome sequencing (WGS) analysis in this family. We did not detect pathogenic mutations with significant impacts on the phenotypes of the elder brother. Instead, we identified several rare, likely pathogenic variants in seven genes implicated in neurodevelopmental disorders: KLHL17, TDO2, TRRAP, EIF3F, ATP10A, DICER1, and CDH15. These variants were transmitted from his unaffected parents, indicating these variants have only moderate clinical effects. We propose that these variants worked together and led to the clinical phenotypes in the elder brother. We also suggest that the combination of multiple genes with moderate effects is part of the genetic mechanism of neurodevelopmental disorders.
Collapse
|
21
|
Wang X, Guo Z, Mei D, Zhang Y, Zhao S, Hu S, Luo S, Wang Q, Gao C. The GluN2B-Trp373 NMDA Receptor Variant is Associated with Autism-, Epilepsy-Related Phenotypes and Reduces NMDA Receptor Currents in Rats. Neurochem Res 2022; 47:1588-1597. [PMID: 35181828 DOI: 10.1007/s11064-022-03554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with core clinical features of abnormal communication, social interactions, atypical intelligence, and a higher risk of epilepsy. Prior work has suggested that de novo heterozygous mutations in the GRIN2B gene that encodes the GluN2B subunit of N-methyl-D-aspartic acid receptors are likely linked to ASD. However, whether GLuN2B-Trp373 mutation derived from autistic individuals causes ASD-like behavioral aberrations in rats remains to be determined. Here, through in utero electroporation and in vivo studies, we conducted a battery of tests to examine ASD-associated behaviors, cognitive impairments, and susceptibility to pentylenetetrazol-induced seizures. Whole-cell patch recording was utilized to determine whether the GluN2B-Trp373 mutation influences GluN2B-containing NMDA receptor currents in rats. Results show that, behaviorally, GLuN2B-Trp373 mutant rats exhibited core behavioral manifestations of ASD, such as social interaction deficits, increases in stereotyped behaviors and anxiety stereotyped/repetitive, impaired spatial memory, and enhanced risk of pentylenetetrazol-induced seizures, consistent with many of the hallmarks of low-functioning ASD in humans. Functionally, the GluN2B-Trp373 mutation results in reduced GluN2B surface protein expression together with decreased hippocampal NMDA receptor currents. Collectively, our findings highlight that GluN2B-Trp373 mutations can drive the manifestation of ASD-associated symptoms via the suppression of NMDA receptor currents.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China.
| | - Zhiyue Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shuai Zhao
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shunan Hu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shuying Luo
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Dongqing Road, Guiyang, 550025, Guizhou, China.
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Wang Y, Huo X, Li W, Xiao L, Li M, Wang C, Sun Y, Sun T. Knowledge Atlas of the Co-Occurrence of Epilepsy and Autism: A Bibliometric Analysis and Visualization Using VOSviewer and CiteSpace. Neuropsychiatr Dis Treat 2022; 18:2107-2119. [PMID: 36157199 PMCID: PMC9507454 DOI: 10.2147/ndt.s378372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This study aimed to analyze research on epilepsy in autism and autism in epilepsy using VOSviewer and CiteSpace to identify research hotspots and future directions. METHODS We searched the Web of Science Core Collection (WoSCC) for relevant studies about epilepsy in autism and autism in epilepsy published from inception to 31 May 2022. VOSviewer and CiteSpace were used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, keywords with citation bursts, and other aspects to construct a knowledge atlas. RESULTS A total of 473 publications related to epilepsy/autism were retrieved. The number of publications about epilepsy/ASD has generally increased over time, with some fluctuations. The USA (202 papers) and University of California-Los Angeles (15 papers) were the leading country and institution, respectively, in this field. Frye, Richard E. was the most published author (9 papers). Notably, collaboration between institutions, countries, and authors does not appear to be active. Hot topics and research frontiers include intellectual disability and exploring the mechanism of epilepsy/ASD from a genetics perspective. CONCLUSION This analysis identified the most influential publications, authors, journals, institutions, and countries in the field of epilepsy/ASD research. Using co-occurrence and evolution analyses, the status of the field was identified and future trends were predicted.
Collapse
Affiliation(s)
- Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xianhao Huo
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Mei Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Chaofan Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
23
|
Suzuki T, Hirai Y, Uehara T, Ohga R, Kosaki K, Kawahara A. Involvement of the zebrafish trrap gene in craniofacial development. Sci Rep 2021; 11:24166. [PMID: 34934055 PMCID: PMC8692476 DOI: 10.1038/s41598-021-03123-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Trrap (transformation/transcription domain-associated protein) is a component shared by several histone acetyltransferase (HAT) complexes and participates in transcriptional regulation and DNA repair; however, the developmental functions of Trrap in vertebrates are not fully understood. Recently, it has been reported that human patients with genetic mutations in the TRRAP gene show various symptoms, including facial dysmorphisms, microcephaly and global developmental delay. To investigate the physiological functions of Trrap, we established trrap gene-knockout zebrafish and examined loss-of-function phenotypes in the mutants. The trrap zebrafish mutants exhibited smaller eyes and heads than the wild-type zebrafish. The size of the ventral pharyngeal arches was reduced and the mineralization of teeth was impaired in the trrap mutants. Whole-mount in situ hybridization analysis revealed that dlx3 expression was narrowly restricted in the developing ventral pharyngeal arches, while dlx2b expression was diminished in the trrap mutants. These results suggest that trrap zebrafish mutants are useful model organisms for a human disorder associated with genetic mutations in the human TRRAP gene.
Collapse
Affiliation(s)
- Taichi Suzuki
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yo Hirai
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Clinical Genetics, Central Hospital, Adachi Developmental Disability Center, Aichi, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
24
|
Herbst DA, Esbin MN, Louder RK, Dugast-Darzacq C, Dailey GM, Fang Q, Darzacq X, Tjian R, Nogales E. Structure of the human SAGA coactivator complex. Nat Struct Mol Biol 2021; 28:989-996. [PMID: 34811519 PMCID: PMC8660637 DOI: 10.1038/s41594-021-00682-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
The SAGA complex is a regulatory hub involved in gene regulation, chromatin modification, DNA damage repair and signaling. While structures of yeast SAGA (ySAGA) have been reported, there are noteworthy functional and compositional differences for this complex in metazoans. Here we present the cryogenic-electron microscopy (cryo-EM) structure of human SAGA (hSAGA) and show how the arrangement of distinct structural elements results in a globally divergent organization from that of yeast, with a different interface tethering the core module to the TRRAP subunit, resulting in a dramatically altered geometry of functional elements and with the integration of a metazoan-specific splicing module. Our hSAGA structure reveals the presence of an inositol hexakisphosphate (InsP6) binding site in TRRAP and an unusual property of its pseudo-(Ψ)PIKK. Finally, we map human disease mutations, thus providing the needed framework for structure-guided drug design of this important therapeutic target for human developmental diseases and cancer.
Collapse
Affiliation(s)
- Dominik A Herbst
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Meagan N Esbin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Robert K Louder
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Qianglin Fang
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
25
|
Yin BK, Wang ZQ. Beyond HAT Adaptor: TRRAP Liaisons with Sp1-Mediated Transcription. Int J Mol Sci 2021; 22:12445. [PMID: 34830324 PMCID: PMC8625110 DOI: 10.3390/ijms222212445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family play vital roles in multiple biological processes, including DNA damage response, metabolism, cell growth, mRNA decay, and transcription. TRRAP, as the only member lacking the enzymatic activity in this family, is an adaptor protein for several histone acetyltransferase (HAT) complexes and a scaffold protein for multiple transcription factors. TRRAP has been demonstrated to regulate various cellular functions in cell cycle progression, cell stemness maintenance and differentiation, as well as neural homeostasis. TRRAP is known to be an important orchestrator of many molecular machineries in gene transcription by modulating the activity of some key transcription factors, including E2F1, c-Myc, p53, and recently, Sp1. This review summarizes the biological and biochemical studies on the action mode of TRRAP together with the transcription factors, focusing on how TRRAP-HAT mediates the transactivation of Sp1-governing biological processes, including neurodegeneration.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
26
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Narala S, Anne RP, Chintala RR, Deshabhotla SK. Syndromic Diabetes Mellitus Due to Coinheritance of ABCC8 and TRRAP. Indian J Pediatr 2021; 88:722. [PMID: 33905088 DOI: 10.1007/s12098-021-03780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 03/14/2023]
Affiliation(s)
- Sadhana Narala
- Department of Neonatology, Fernandez Hospitals, Unit 2, Opposite Old MLA Quarters, Hyderguda, Hyderabad, Telangana, 500029, India
| | - Rajendra Prasad Anne
- Department of Neonatology, Fernandez Hospitals, Unit 2, Opposite Old MLA Quarters, Hyderguda, Hyderabad, Telangana, 500029, India.
| | - Rahul Reddy Chintala
- Department of Pediatric Endocrinology, Fernandez Hospitals, Hyderabad, Telangana, India
| | - Sai Kiran Deshabhotla
- Department of Neonatology, Fernandez Hospitals, Unit 2, Opposite Old MLA Quarters, Hyderguda, Hyderabad, Telangana, 500029, India
| |
Collapse
|
28
|
Shin KO, Crumrine DA, Kim S, Lee Y, Kim B, Abuabara K, Park C, Uchida Y, Wakefield JS, Meyer JM, Jeong S, Park BD, Park K, Elias PM. Phenotypic overlap between atopic dermatitis and autism. BMC Neurosci 2021; 22:43. [PMID: 34157971 PMCID: PMC8218496 DOI: 10.1186/s12868-021-00645-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Autism, a childhood behavioral disorder, belongs to a large suite of diseases, collectively referred to as autism spectrum disorders (ASD). Though multifactorial in etiology, approximately 10% of ASD are associated with atopic dermatitis (AD). Moreover, ASD prevalence increases further as AD severity worsens, though these disorders share no common causative mutations. We assessed here the link between these two disorders in the standard, valproic acid mouse model of ASD. In prior studies, there was no evidence of skin involvement, but we hypothesized that cutaneous involvement could be detected in experiments conducted in BALB/c mice. BALB/c is an albino, laboratory-bred strain of the house mouse and is among the most widely used inbred strains used in animal experimentation. METHODS We performed our studies in valproic acid (VPA)-treated BALB/c hairless mice, a standard mouse model of ASD. Mid-trimester pregnant mice received a single intraperitoneal injection of either valproic acid sodium salt dissolved in saline or saline alone on embryonic day 12.5 and were housed individually until postnatal day 21. Only the brain and epidermis appeared to be affected, while other tissues remain unchanged. At various postnatal time points, brain, skin and blood samples were obtained for histology and for quantitation of tissue sphingolipid content and cytokine levels. RESULTS AD-like changes in ceramide content occurred by day one postpartum in both VPA-treated mouse skin and brain. The temporal co-emergence of AD and ASD, and the AD phenotype-dependent increase in ASD prevalence correlated with early appearance of cytokine markers (i.e., interleukin [IL]-4, 5, and 13), as well as mast cells in skin and brain. The high levels of interferon (IFN)γ not only in skin, but also in brain likely account for a significant decline in esterified very-long-chain N-acyl fatty acids in brain ceramides, again mimicking known IFNγ-induced changes in AD. CONCLUSION Baseline involvement of both AD and ASD could reflect concurrent neuro- and epidermal toxicity, possibly because both epidermis and neural tissues originate from the embryonic neuroectoderm. These studies illuminate the shared susceptibility of the brain and epidermis to a known neurotoxin, suggesting that the atopic diathesis could be extended to include ASD.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science/Nutrition, & Convergence Program of Material Science for Medicine/Pharmaceutics, and the Korean Institute of Nutrition, Hallym University, Chuncheon, South Korea
| | - Debra A Crumrine
- Dept. of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, 4150 Clement Street, MS 190, San Francisco, CA, 94121, USA
| | - Sungeun Kim
- Department of Food Science/Nutrition, & Convergence Program of Material Science for Medicine/Pharmaceutics, and the Korean Institute of Nutrition, Hallym University, Chuncheon, South Korea
| | - Yerin Lee
- Department of Food Science/Nutrition, & Convergence Program of Material Science for Medicine/Pharmaceutics, and the Korean Institute of Nutrition, Hallym University, Chuncheon, South Korea
| | - Bogyeong Kim
- Department of Food Science/Nutrition, & Convergence Program of Material Science for Medicine/Pharmaceutics, and the Korean Institute of Nutrition, Hallym University, Chuncheon, South Korea
| | - Katrina Abuabara
- Department of Dermatology, University of San Francisco, San Francisco, CA, USA
| | - Chaehyeong Park
- Dept. of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, 4150 Clement Street, MS 190, San Francisco, CA, 94121, USA
| | - Yoshikazu Uchida
- Dept. of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, 4150 Clement Street, MS 190, San Francisco, CA, 94121, USA
| | - Joan S Wakefield
- Dept. of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, 4150 Clement Street, MS 190, San Francisco, CA, 94121, USA
| | - Jason M Meyer
- Dept. of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, 4150 Clement Street, MS 190, San Francisco, CA, 94121, USA
| | - Sekyoo Jeong
- Dept of Cosmetic Science, Seowon University, Cheongju, South Korea
| | - Byeong Deog Park
- Sphingobrain Inc., San Francisco, CA, USA
- Dr. Raymond Laboratories, Inc, Englewood Cliffs, NJ, USA
| | - Kyungho Park
- Department of Food Science/Nutrition, & Convergence Program of Material Science for Medicine/Pharmaceutics, and the Korean Institute of Nutrition, Hallym University, Chuncheon, South Korea.
| | - Peter M Elias
- Dept. of Dermatology, University of California, NCIRE, and Veterans Affairs Medical Center, 4150 Clement Street, MS 190, San Francisco, CA, 94121, USA.
| |
Collapse
|
29
|
Tapias A, Lázaro D, Yin BK, Rasa SMM, Krepelova A, Kelmer Sacramento E, Grigaravicius P, Koch P, Kirkpatrick J, Ori A, Neri F, Wang ZQ. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. eLife 2021; 10:61531. [PMID: 33594975 PMCID: PMC7939550 DOI: 10.7554/elife.61531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (transformation/transcription domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism, and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics, and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT, and SP1 with microtubule dynamics, in neuroprotection.
Collapse
Affiliation(s)
- Alicia Tapias
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bo-Kun Yin
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | | | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
30
|
Šimić G, Vukić V, Kopić J, Krsnik Ž, Hof PR. Molecules, Mechanisms, and Disorders of Self-Domestication: Keys for Understanding Emotional and Social Communication from an Evolutionary Perspective. Biomolecules 2020; 11:E2. [PMID: 33375093 PMCID: PMC7822183 DOI: 10.3390/biom11010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
The neural crest hypothesis states that the phenotypic features of the domestication syndrome are due to a reduced number or disruption of neural crest cells (NCCs) migration, as these cells differentiate at their final destinations and proliferate into different tissues whose activity is reduced by domestication. Comparing the phenotypic characteristics of modern and prehistoric man, it is clear that during their recent evolutionary past, humans also went through a process of self-domestication with a simultaneous prolongation of the period of socialization. This has led to the development of social abilities and skills, especially language, as well as neoteny. Disorders of neural crest cell development and migration lead to many different conditions such as Waardenburg syndrome, Hirschsprung disease, fetal alcohol syndrome, DiGeorge and Treacher-Collins syndrome, for which the mechanisms are already relatively well-known. However, for others, such as Williams-Beuren syndrome and schizophrenia that have the characteristics of hyperdomestication, and autism spectrum disorders, and 7dupASD syndrome that have the characteristics of hypodomestication, much less is known. Thus, deciphering the biological determinants of disordered self-domestication has great potential for elucidating the normal and disturbed ontogenesis of humans, as well as for the understanding of evolution of mammals in general.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
31
|
Smolen P, Wood MA, Baxter DA, Byrne JH. Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways. J Comput Neurosci 2020; 49:37-56. [PMID: 33175283 DOI: 10.1007/s10827-020-00771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes: tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Humbert J, Salian S, Makrythanasis P, Lemire G, Rousseau J, Ehresmann S, Garcia T, Alasiri R, Bottani A, Hanquinet S, Beaver E, Heeley J, Smith ACM, Berger SI, Antonarakis SE, Yang XJ, Côté J, Campeau PM. De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy. Am J Hum Genet 2020; 107:564-574. [PMID: 32822602 PMCID: PMC7477011 DOI: 10.1016/j.ajhg.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.
Collapse
Affiliation(s)
- Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Smrithi Salian
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Periklis Makrythanasis
- Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Gabrielle Lemire
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Justine Rousseau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Sophie Ehresmann
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Thomas Garcia
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Rami Alasiri
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Sylviane Hanquinet
- Unit of Pediatric Radiology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Erin Beaver
- Mercy Kids Genetics, St. Louis, MO 63141, USA
| | | | - Ann C M Smith
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Seth I Berger
- Children's National Health System, Washington, DC 20010, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
33
|
Liang B, Wang Y, Lin N, Huang H, Chen L, Chen M, Yu D, Chen X, He D, Xu L. Single nucleotide polymorphism array analysis of 102 patients with developmental delay and/or intellectual disability from Fujian, China. Clin Chim Acta 2020; 510:638-643. [PMID: 32858057 DOI: 10.1016/j.cca.2020.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/25/2022]
Abstract
Developmental delay/intellectual disability (DD/ID) is a complex and phenotypically heterogeneous neurodevelopmental disorder characterized by significant deficits in cognitive and adaptive skills, debuting during the developmental period. In this study, we evaluated the usefulness of single nucleotide polymorphism (SNP) array in the detection of genetic causes of 102 DD/ID patients from Fujian (China). Of them, clinically relevant variants (including pathogenic and likely pathogenic), variants of uncertain significance (VOUS), and no clinically relevant variants (including likely benign and benign) were detected in 19, 4 and 79 patients, accounting for 18.6%, 3.9% and 77.5%, respectively, with a diagnostic yield of 18.6% in our study. Furthermore, we divided 19 clinically relevant variants into 4 groups, including chromosome aneuploidy (n = 1); large copy number variants (CNVs) (>10 Mb) (n = 8); known genomic disorders (n = 8), and likely pathogenic CNVs (n = 2). Moreover, we discussed our findings with respect to 4 cases of VOUS. Overall, we confirmed that DD/ID is a genetically heterogeneous condition and emphasized the importance of using genome-wide SNP array in the detection of its genetic causes. Additionally, we provided clinical and molecular data of patients with causal chromosomal aberrations, and discussed the potential implication in DD/ID of genes located within those CNVs or regions of homozygosity.
Collapse
Affiliation(s)
- Bin Liang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yan Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Lingji Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Meihuan Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xuemei Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Deqin He
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
34
|
Hansen AW, Murugan M, Li H, Khayat MM, Wang L, Rosenfeld J, Andrews BK, Jhangiani SN, Coban Akdemir ZH, Sedlazeck FJ, Ashley-Koch AE, Liu P, Muzny DM, Davis EE, Katsanis N, Sabo A, Posey JE, Yang Y, Wangler MF, Eng CM, Sutton VR, Lupski JR, Boerwinkle E, Gibbs RA. A Genocentric Approach to Discovery of Mendelian Disorders. Am J Hum Genet 2019; 105:974-986. [PMID: 31668702 PMCID: PMC6849092 DOI: 10.1016/j.ajhg.2019.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.
Collapse
Affiliation(s)
- Adam W Hansen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mullai Murugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M Khayat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liwen Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - B Kim Andrews
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica E Davis
- Pediatric Genetic and translational Medicine Center (P-GeM), Stanley Manne Children's Research Institute, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicholas Katsanis
- Pediatric Genetic and translational Medicine Center (P-GeM), Stanley Manne Children's Research Institute, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aniko Sabo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Kashevarova AA, Skryabin NA, Nikitina TV, Lopatkina ME, Sazhenova EA, Zhigalina DI, Savchenko RR, Lebedev IN. Ontogenetic Pleiotropy of Genes Involved in CNVs in Human Spontaneous Abortions. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|