1
|
Ahmad ST, Li Y, Garcia-Lopez J, Gudenas BL, Hadley J, Paul L, Wu SC, Refaat A, Kojic M, Batts M, Soliman T, Pitre A, Arnskötter F, Zindy F, Jones A, Twarog NR, Mayasundari A, Bianski B, Tinkle C, Shirinifard A, Janke L, Lu M, Lewis SA, Onar-Thomas A, Pfister SM, Gajjar A, Baker SJ, Roussel MF, Rankovic Z, Robinson GW, Orr BA, Wainwright B, Shelat AA, Waszak SM, Kutscher LM, Lin H, Northcott PA. Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target. Cancer Cell 2025:S1535-6108(25)00173-4. [PMID: 40378836 DOI: 10.1016/j.ccell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Germline loss-of-function (LOF) variants in Elongator acetyltransferase complex subunit 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB), accounting for ∼30% of the Sonic hedgehog (SHH) 3 subtype. The mechanism(s) by which germline ELP1 deficiency provokes SHH-MB pathogenesis remain unknown. Genetically engineered mice mimicking heterozygous Elp1 LOF (Elp1HET) seen in affected germline carriers exhibit hallmark features of premalignancy in cerebellar granule neuron progenitors (GNPs), including increased DNA replication stress, genomic instability, accelerated cell cycle, and stalled differentiation. Orthotopic transplantation of Elp1HET GNPs harboring somatic Ptch1 inactivation yields SHH-MB-like tumors with compromised p53 signaling, providing a plausible explanation for the exclusivity of ELP1-associated MBs in the SHH-3 subtype. Preclinical treatment of ELP1-mutant patient-derived xenografts with an FDA-approved MDM2 inhibitor reactivates p53-dependent apoptosis and extends survival. Our findings functionally substantiate the role of ELP1 deficiency in SHH-MB predisposition and nominate therapeutics targeting MDM2 as a rational treatment option.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiran Li
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jesus Garcia-Lopez
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian L Gudenas
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alaa Refaat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marija Kojic
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taha Soliman
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederik Arnskötter
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara A Lewis
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Wainwright
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Lena M Kutscher
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hong Lin
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Awaya T, Ajiro M, Kobayashi H, Sawada T, Gotanda K, Noji T, Takemoto N, Iida K, Saito MK, Niu DM, Hagiwara M. Invention of an oral medication for cardiac Fabry disease caused by RNA mis-splicing. SCIENCE ADVANCES 2025; 11:eadt9695. [PMID: 40203112 PMCID: PMC11980850 DOI: 10.1126/sciadv.adt9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
Pathogenic RNA splicing variants have emerged as promising therapeutic targets due to their role in disease while preserving coding sequences. In this study, we developed RECTAS-2.0, a small molecule designed to correct RNA mis-splicing caused by the GLA c.639+919G>A mutation, which leads to the inclusion of a 57-nucleotide poison exon, resulting in later-onset Fabry disease, particularly prevalent in East Asia. RECTAS-2.0 restored normal GLA mRNA splicing and α-galactosidase activity in patient-derived B-lymphoblastoid cell lines and induced pluripotent stem cell-derived cardiomyocytes. Furthermore, oral administration of RECTAS-2.0 effectively corrected splicing in a transgenic mouse model, demonstrating its substantial splice-switching activity and safety for clinical application. RECTAS-2.0 demonstrated potential applicability to other genetic disorders that involve similar exon competition. These findings underscore the therapeutic potential of RECTAS-2.0 for Fabry disease and highlight its broader implications for RNA splicing-targeted therapies in genetic disorders.
Collapse
Affiliation(s)
- Tomonari Awaya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroko Kobayashi
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Teruo Sawada
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kentoku Gotanda
- Modality Research Laboratories III, Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo 140-8710, Japan
| | - Toshiharu Noji
- Modality Research Laboratories I, Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo 140-8710, Japan
| | - Naohiro Takemoto
- Modality Research Laboratories I, Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo 140-8710, Japan
| | - Kei Iida
- Medical Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Yun S, Chekuri A, Art J, Kondabolu K, Slaugenhaupt SA, Zeltner N, Kleinstiver BP, Morini E, Alves CRR. Engineered CRISPR-Base Editors as a Permanent Treatment for Familial Dysautonomia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625322. [PMID: 39651221 PMCID: PMC11623606 DOI: 10.1101/2024.11.27.625322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Familial dysautonomia (FD) is a fatal autosomal recessive congenital neuropathy caused by a T-to-C mutation in intron 20 of the Elongator acetyltransferase complex subunit 1 (ELP1) gene, which causes tissue-specific skipping of exon 20 and reduction of ELP1 protein. Here, we developed a base editor (BE) approach to precisely correct this mutation. By optimizing Cas9 variants and screening multiple gRNAs, we identified a combination that was able to promote up to 70% on-target editing in HEK293T cells harboring the ELP1 T-to-C mutation. These editing levels were sufficient to restore exon 20 inclusion in the ELP1 transcript. Moreover, we optimized an engineered dual intein-split system to deliver these constructs in vivo. Mediated by adeno-associated virus (AAV) delivery, this BE strategy effectively corrected the liver and brain ELP1 splicing defects in a humanized FD mouse model carrying the ELP1 T-to-C mutation and rescued the FD phenotype in iPSC-derived sympathetic neurons. Importantly, we observed minimal off-target editing demonstrating high levels of specificity with these optimized base editors. These findings establish a novel and highly precise BE-based therapeutic approach to correct the FD mutation and associated splicing defects and provide the foundation for the development of a transformative, permanent treatment for this devastating disease.
Collapse
Affiliation(s)
- Shuqi Yun
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Jennifer Art
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Krishnakanth Kondabolu
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Susan A. Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Christiano R. R. Alves
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| |
Collapse
|
4
|
Saito-Diaz K, Dietrich P, Saini T, Rashid MM, Wu HF, Ishan M, Sun X, Bedillion S, Patel AJ, Prudden AR, Wzientek CG, Knight TN, Chen YW, Boons GJ, Chen S, Studer L, Tiemeyer M, Xu B, Dragatsis I, Liu HX, Zeltner N. Genipin rescues developmental and degenerative defects in familial dysautonomia models and accelerates axon regeneration. Sci Transl Med 2024; 16:eadq2418. [PMID: 39565876 DOI: 10.1126/scitranslmed.adq2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024]
Abstract
The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the world's population suffers from nerve degeneration or peripheral nerve damage. Despite this, there are major gaps in the knowledge of human PNS development and degeneration; therefore, there are no available treatments. Familial dysautonomia (FD) is a devastating disorder caused by a homozygous point mutation in the gene ELP1. FD specifically affects the development and causes degeneration of the PNS. We previously used patient-derived induced pluripotent stem cells (iPSCs) to show that peripheral sensory neurons (SNs) recapitulate the developmental and neurodegenerative defects observed in FD. Here, we conducted a chemical screen to identify compounds that rescue the SN differentiation inefficiency in FD. We identified that genipin restores neural crest and SN development in patient-derived iPSCs and in two mouse models of FD. Additionally, genipin prevented FD degeneration in SNs derived from patients with FD, suggesting that it could be used to ameliorate neurodegeneration. Moreover, genipin cross-linked the extracellular matrix (ECM), increased the stiffness of the ECM, reorganized the actin cytoskeleton, and promoted transcription of yes-associated protein-dependent genes. Last, genipin enhanced axon regeneration in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system) in in vitro axotomy models. Our results suggest that genipin has the potential to treat FD-related neurodevelopmental and neurodegenerative phenotypes and to enhance neuronal regeneration of healthy neurons after injury. Moreover, this suggests that the ECM can be targeted to treat FD.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Paula Dietrich
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tripti Saini
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Md Mamunur Rashid
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Xin Sun
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sydney Bedillion
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Anthony Robert Prudden
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Camryn Gale Wzientek
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental, and Regenerative Biology, Institute for Airway Sciences, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3508 TC Utrecht, Netherlands
| | - Shuibing Chen
- Department of Surgery and Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Michael Tiemeyer
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Bingqian Xu
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Liu Y, Gao X, Cao L, Ren J, Miao Y, Cai X. Exploration of the causative gene in a case of multiple nevoid basal cell carcinoma: A case report. Rare Tumors 2024; 16:20363613241290394. [PMID: 39399445 PMCID: PMC11468328 DOI: 10.1177/20363613241290394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Nevoid basal cell carcinoma syndrome is a rare autosomal dominant disorder characterized by a diverse clinical presentation, which includes developmental abnormalities and tumorigenesis that can impact multiple organ systems. Basal cell carcinoma is the most common and characteristic clinical presentation in patients with NBCCS. There are three identified causative genes for this disease, the PTCH1 gene located at 9q22-31, the PTCH2 gene at 1p32-34, and the SUFU gene at 10q24.32. In this paper, we report a case of multiple nevoid basal cell carcinoma. The mutated gene in this patient was determined to be the ELP1 gene located on chromosome 9. This patient's ELP1 gene mutation may contribute to the development of multiple nevoid basal cell carcinomas on the face.
Collapse
Affiliation(s)
- Yutong Liu
- Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejun Gao
- Thyroid Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lianjing Cao
- Gastroenterology Department, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jizhen Ren
- Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanxin Miao
- Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Cai
- Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
7
|
Riccardi F, Romano G, Licastro D, Pagani F. Age-dependent regulation of ELP1 exon 20 splicing in Familial Dysautonomia by RNA Polymerase II kinetics and chromatin structure. PLoS One 2024; 19:e0298965. [PMID: 38829854 PMCID: PMC11146744 DOI: 10.1371/journal.pone.0298965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/01/2024] [Indexed: 06/05/2024] Open
Abstract
Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.
Collapse
Affiliation(s)
- Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| | - Giulia Romano
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| | - Danilo Licastro
- Laboratorio di Genomica ed Epigenomica, AREA Science Park, Padriciano, Trieste, Italy
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano, Trieste, Italy
| |
Collapse
|
8
|
Abbassi NEH, Jaciuk M, Scherf D, Böhnert P, Rau A, Hammermeister A, Rawski M, Indyka P, Wazny G, Chramiec-Głąbik A, Dobosz D, Skupien-Rabian B, Jankowska U, Rappsilber J, Schaffrath R, Lin TY, Glatt S. Cryo-EM structures of the human Elongator complex at work. Nat Commun 2024; 15:4094. [PMID: 38750017 PMCID: PMC11096365 DOI: 10.1038/s41467-024-48251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.
Collapse
Affiliation(s)
- Nour-El-Hana Abbassi
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - David Scherf
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel, Germany
| | - Pauline Böhnert
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel, Germany
| | - Alexander Rau
- Bioanalytics, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | | | - Michał Rawski
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Paulina Indyka
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wazny
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | | | - Dominika Dobosz
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | | | - Urszula Jankowska
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Raffael Schaffrath
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel, Germany.
| | - Ting-Yu Lin
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland.
- Department of Biosciences, Durham University, Durham, UK.
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Harripaul R, Morini E, Salani M, Logan E, Kirchner E, Bolduc J, Chekuri A, Currall B, Yadav R, Erdin S, Talkowski ME, Gao D, Slaugenhaupt S. Transcriptome analysis in a humanized mouse model of familial dysautonomia reveals tissue-specific gene expression disruption in the peripheral nervous system. Sci Rep 2024; 14:570. [PMID: 38177237 PMCID: PMC10766950 DOI: 10.1038/s41598-023-51137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024] Open
Abstract
Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 (ELP1) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9; Elp1Δ20/flox. This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.
Collapse
Affiliation(s)
- Ricardo Harripaul
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jessica Bolduc
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin Currall
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Susan Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Macefield VG, Smith LJ, Norcliffe‐Kaufmann L, Palma J, Kaufmann H. Sensorimotor control in the congenital absence of functional muscle spindles. Exp Physiol 2024; 109:27-34. [PMID: 37029664 PMCID: PMC10988665 DOI: 10.1113/ep090768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
Hereditary sensory and autonomic neuropathy type III (HSAN III), also known as familial dysautonomia or Riley-Day syndrome, results from an autosomal recessive genetic mutation that causes a selective loss of specific sensory neurones, leading to greatly elevated pain and temperature thresholds, poor proprioception, marked ataxia and disturbances in blood pressure control. Stretch reflexes are absent throughout the body, which can be explained by the absence of functional muscle spindle afferents - assessed by intraneural microelectrodes inserted into peripheral nerves in the upper and lower limbs. This also explains the greatly compromised proprioception at the knee joint, as assessed by passive joint-angle matching. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. Surprisingly, proprioception is normal at the elbow, suggesting that participants are relying more on sensory cues from the overlying skin; microelectrode recordings have shown that myelinated tactile afferents in the upper and lower limbs appear to be normal. Nevertheless, the lack of muscle spindles does affect sensorimotor control in the upper limb: in addition to poor performance in the finger-to-nose test, manual performance in the Purdue pegboard task is much worse than in age-matched healthy controls. Unlike those rare individuals with large-fibre sensory neuropathy, in which both muscle spindle and cutaneous afferents are absent, those with HSAN III present as a means of assessing sensorimotor control following the selective loss of muscle spindle afferents.
Collapse
Affiliation(s)
| | - Lyndon J. Smith
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Lucy Norcliffe‐Kaufmann
- Dysautonomia Center, Department of NeurologyNew York University School of MedicineNew YorkNYUSA
| | - Jose‐Alberto Palma
- Dysautonomia Center, Department of NeurologyNew York University School of MedicineNew YorkNYUSA
| | - Horacio Kaufmann
- Dysautonomia Center, Department of NeurologyNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
11
|
Schultz A, Cheng SY, Kirchner E, Costello S, Miettinen H, Chaverra M, King C, George L, Zhao X, Narasimhan J, Weetall M, Slaugenhaupt S, Morini E, Punzo C, Lefcort F. Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators. Sci Rep 2023; 13:18600. [PMID: 37903840 PMCID: PMC10616160 DOI: 10.1038/s41598-023-45376-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 (ELP1) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical foundational data for translation to FD patients.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology, Neurobiology and Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emily Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Stephanann Costello
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heini Miettinen
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Marta Chaverra
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Colin King
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lynn George
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Biological and Physical Science, Montana State University Billings, Billings, MT, USA
| | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ, 07080, USA
| | | | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ, 07080, USA
| | - Susan Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Claudio Punzo
- Department of Ophthalmology, Neurobiology and Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
12
|
Harripaul R, Morini E, Salani M, Logan E, Kirchner E, Bolduc J, Chekuri A, Currall B, Yadav R, Erdin S, Talkowski ME, Gao D, Slaugenhaupt S. Transcriptome analysis in a humanized mouse model of familial dysautonomia reveals tissue-specific gene expression disruption in the peripheral nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559870. [PMID: 37808686 PMCID: PMC10557663 DOI: 10.1101/2023.09.28.559870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 ( ELP1 ) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9 ; Elp1 Δ 20/flox . This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.
Collapse
|
13
|
González-Duarte A, Cotrina-Vidal M, Kaufmann H, Norcliffe-Kaufmann L. Familial dysautonomia. Clin Auton Res 2023; 33:269-280. [PMID: 37204536 DOI: 10.1007/s10286-023-00941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
Familial dysautonomia (FD) is an autosomal recessive hereditary sensory and autonomic neuropathy (HSAN, type 3) expressed at birth with profound sensory loss and early death. The FD founder mutation in the ELP1 gene arose within the Ashkenazi Jews in the sixteenth century and is present in 1:30 Jews of European ancestry. The mutation yield a tissue-specific skipping of exon 20 and a loss of function of the elongator-1 protein (ELP1), which is essential for the development and survival of neurons. Patients with FD produce variable amounts of ELP1 in different tissues, with the brain producing mostly mutant transcripts. Patients have excessive blood pressure variability due to the failure of the IXth and Xth cranial nerves to carry baroreceptor signals. Neurogenic dysphagia causes frequent aspiration leading to chronic pulmonary disease. Characteristic hyperadrenergic "autonomic crises" consisting of brisk episodes of severe hypertension, tachycardia, skin blotching, retching, and vomiting occur in all patients. Progressive features of the disease include retinal nerve fiber loss and blindness, and proprioceptive ataxia with severe gait impairment. Chemoreflex failure may explain the high frequency of sudden death in sleep. Although 99.5% of patients are homozygous for the founder mutation, phenotypic severity varies, suggesting that modifier genes impact expression. Medical management is currently symptomatic and preventive. Disease-modifying therapies are close to clinical testing. Endpoints to measure efficacy have been developed, and the ELP1 levels are a good surrogate endpoint for target engagement. Early intervention may be critical for treatment to be successful.
Collapse
Affiliation(s)
- Alejandra González-Duarte
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, USA.
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CdMx, México.
| | - Maria Cotrina-Vidal
- Department of Neurology, Stroke Division. New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, USA
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Schultz A, Cheng SY, Kirchner E, Costello S, Miettinen H, Chaverra M, King C, George L, Zhao X, Narasimhan J, Weetall M, Slaugenhaupt S, Morini E, Punzo C, Lefcort F. Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541535. [PMID: 37293016 PMCID: PMC10245894 DOI: 10.1101/2023.05.22.541535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 ( ELP1 ) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently, patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical data foundation for translation to FD patients.
Collapse
|
15
|
Saito-Diaz K, Dietrich P, Wu HF, Sun X, Patel AJ, Wzientek CG, Prudden AR, Boons GJ, Chen S, Studer L, Xu B, Dragatsis I, Zeltner N. Genipin Crosslinks the Extracellular Matrix to Rescue Developmental and Degenerative Defects, and Accelerates Regeneration of Peripheral Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533831. [PMID: 36993570 PMCID: PMC10055431 DOI: 10.1101/2023.03.22.533831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the population suffer nerve degeneration or peripheral damage. For example, over 40% of patients with diabetes or undergoing chemotherapy develop peripheral neuropathies. Despite this, there are major gaps in the knowledge of human PNS development and therefore, there are no available treatments. Familial Dysautonomia (FD) is a devastating disorder that specifically affects the PNS making it an ideal model to study PNS dysfunction. FD is caused by a homozygous point mutation in ELP1 leading to developmental and degenerative defects in the sensory and autonomic lineages. We previously employed human pluripotent stem cells (hPSCs) to show that peripheral sensory neurons (SNs) are not generated efficiently and degenerate over time in FD. Here, we conducted a chemical screen to identify compounds able to rescue this SN differentiation inefficiency. We identified that genipin, a compound prescribed in Traditional Chinese Medicine for neurodegenerative disorders, restores neural crest and SN development in FD, both in the hPSC model and in a FD mouse model. Additionally, genipin prevented FD neuronal degeneration, suggesting that it could be offered to patients suffering from PNS neurodegenerative disorders. We found that genipin crosslinks the extracellular matrix, increases the stiffness of the ECM, reorganizes the actin cytoskeleton, and promotes transcription of YAP-dependent genes. Finally, we show that genipin enhances axon regeneration in an in vitro axotomy model in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system, CNS). Our results suggest genipin can be used as a promising drug candidate for treatment of neurodevelopmental and neurodegenerative diseases, and as a enhancer of neuronal regeneration.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens GA, USA
| | - Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA, USA
| | - Xin Sun
- College of Engineering, University of Georgia, Athens GA, USA
| | | | | | | | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Shuibing Chen
- Department of Surgery and Department of Biochemistry at Weill Cornell Medical College, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Bingqian Xu
- College of Engineering, University of Georgia, Athens GA, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA, USA
- Department of Cellular Biology, University of Georgia, Athens GA, USA
| |
Collapse
|
16
|
Morini E, Chekuri A, Logan EM, Bolduc JM, Kirchner EG, Salani M, Krauson AJ, Narasimhan J, Gabbeta V, Grover S, Dakka A, Mollin A, Jung SP, Zhao X, Zhang N, Zhang S, Arnold M, Woll MG, Naryshkin NA, Weetall M, Slaugenhaupt SA. Development of an oral treatment that rescues gait ataxia and retinal degeneration in a phenotypic mouse model of familial dysautonomia. Am J Hum Genet 2023; 110:531-547. [PMID: 36809767 PMCID: PMC10027479 DOI: 10.1016/j.ajhg.2023.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a splicing mutation in elongator acetyltransferase complex subunit 1 (ELP1). This mutation leads to the skipping of exon 20 and a tissue-specific reduction of ELP1, mainly in the central and peripheral nervous systems. FD is a complex neurological disorder accompanied by severe gait ataxia and retinal degeneration. There is currently no effective treatment to restore ELP1 production in individuals with FD, and the disease is ultimately fatal. After identifying kinetin as a small molecule able to correct the ELP1 splicing defect, we worked on its optimization to generate novel splicing modulator compounds (SMCs) that can be used in individuals with FD. Here, we optimize the potency, efficacy, and bio-distribution of second-generation kinetin derivatives to develop an oral treatment for FD that can efficiently pass the blood-brain barrier and correct the ELP1 splicing defect in the nervous system. We demonstrate that the novel compound PTC258 efficiently restores correct ELP1 splicing in mouse tissues, including brain, and most importantly, prevents the progressive neuronal degeneration that is characteristic of FD. Postnatal oral administration of PTC258 to the phenotypic mouse model TgFD9;Elp1Δ20/flox increases full-length ELP1 transcript in a dose-dependent manner and leads to a 2-fold increase in functional ELP1 in the brain. Remarkably, PTC258 treatment improves survival, gait ataxia, and retinal degeneration in the phenotypic FD mice. Our findings highlight the great therapeutic potential of this novel class of small molecules as an oral treatment for FD.
Collapse
Affiliation(s)
- Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jessica M Bolduc
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily G Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | | | | | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Nanjing Zhang
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Sophie Zhang
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | | | | | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Younger DS. Autonomic failure: Clinicopathologic, physiologic, and genetic aspects. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:55-102. [PMID: 37562886 DOI: 10.1016/b978-0-323-98818-6.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Over the past century, generations of neuroscientists, pathologists, and clinicians have elucidated the underlying causes of autonomic failure found in neurodegenerative, inherited, and antibody-mediated autoimmune disorders, each with pathognomonic clinicopathologic features. Autonomic failure affects central autonomic nervous system components in the α-synucleinopathy, multiple system atrophy, characterized clinically by levodopa-unresponsive parkinsonism or cerebellar ataxia, and pathologically by argyrophilic glial cytoplasmic inclusions (GCIs). Two other central neurodegenerative disorders, pure autonomic failure characterized clinically by deficits in norepinephrine synthesis and release from peripheral sympathetic nerve terminals; and Parkinson's disease, with early and widespread autonomic deficits independent of the loss of striatal dopamine terminals, both express Lewy pathology. The rare congenital disorder, hereditary sensory, and autonomic neuropathy type III (or Riley-Day, familial dysautonomia) causes life-threatening autonomic failure due to a genetic mutation that results in loss of functioning baroreceptors, effectively separating afferent mechanosensing neurons from the brain. Autoimmune autonomic ganglionopathy caused by autoantibodies targeting ganglionic α3-acetylcholine receptors instead presents with subacute isolated autonomic failure affecting sympathetic, parasympathetic, and enteric nervous system function in various combinations. This chapter is an overview of these major autonomic disorders with an emphasis on their historical background, neuropathological features, etiopathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
18
|
Gaik M, Kojic M, Wainwright BJ, Glatt S. Elongator and the role of its subcomplexes in human diseases. EMBO Mol Med 2022; 15:e16418. [PMID: 36448458 PMCID: PMC9906326 DOI: 10.15252/emmm.202216418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
The Elongator complex was initially identified in yeast, and a variety of distinct cellular functions have been assigned to the complex. In the last decade, several research groups focussed on dissecting its structure, tRNA modification activity and role in translation regulation. Recently, Elongator emerged as a crucial factor for various human diseases, and its involvement has triggered a strong interest in the complex from numerous clinical groups. The Elongator complex is highly conserved among eukaryotes, with all six subunits (Elp1-6) contributing to its stability and function. Yet, recent studies have shown that the two subcomplexes, namely the catalytic Elp123 and accessory Elp456, may have distinct roles in the development of different neuronal subtypes. This Commentary aims to provide a brief overview and new perspectives for more systematic efforts to explore the functions of the Elongator in health and disease.
Collapse
Affiliation(s)
- Monika Gaik
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Marija Kojic
- Faculty of Medicine, The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Brandon J Wainwright
- Faculty of Medicine, The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQLDAustralia
| | - Sebastian Glatt
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
19
|
Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022; 50:223-232. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
tRNAs are essential modulators that recognize mRNA codons and bridge amino acids for mRNA translation. The tRNAs are heavily modified, which is essential for forming a complex secondary structure that facilitates codon recognition and mRNA translation. In recent years, studies have identified the regulatory roles of tRNA modifications in mRNA translation networks. Misregulation of tRNA modifications is closely related to the progression of developmental diseases and cancers. In this review, we summarize the tRNA biogenesis process and then discuss the effects and mechanisms of tRNA modifications on tRNA processing and mRNA translation. Finally, we provide a comprehensive overview of tRNA modifications' physiological and pathological functions, focusing on diseases including cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
20
|
Rescue of a familial dysautonomia mouse model by AAV9-Exon-specific U1 snRNA. Am J Hum Genet 2022; 109:1534-1548. [PMID: 35905737 PMCID: PMC9388384 DOI: 10.1016/j.ajhg.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.
Collapse
|
21
|
Morini E, Gao D, Logan EM, Salani M, Krauson AJ, Chekuri A, Chen YT, Ragavendran A, Chakravarty P, Erdin S, Stortchevoi A, Svejstrup JQ, Talkowski ME, Slaugenhaupt SA. Developmental regulation of neuronal gene expression by Elongator complex protein 1 dosage. J Genet Genomics 2022; 49:654-665. [PMID: 34896608 PMCID: PMC9254147 DOI: 10.1016/j.jgg.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 01/21/2023]
Abstract
Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by a mutation in the Elongator complex protein 1 (ELP1) gene that leads to a tissue-specific reduction of ELP1 protein. Our work to generate a phenotypic mouse model for FD headed to the discovery that homozygous deletion of the mouse Elp1 gene leads to embryonic lethality prior to mid-gestation. Given that FD is caused by a reduction, not loss, of ELP1, we generated two new mouse models by introducing different copy numbers of the human FD ELP1 transgene into the Elp1 knockout mouse (Elp1-/-) and observed that human ELP1 expression rescues embryonic development in a dose-dependent manner. We then conducted a comprehensive transcriptome analysis in mouse embryos to identify genes and pathways whose expression correlates with the amount of ELP1. We found that ELP1 is essential for the expression of genes responsible for nervous system development. Further, gene length analysis of the differentially expressed genes showed that the loss of Elp1 mainly impacts the expression of long genes and that by gradually restoring Elongator, their expression is progressively rescued. Finally, through evaluation of co-expression modules, we identified gene sets with unique expression patterns that depended on ELP1 expression.
Collapse
Affiliation(s)
- Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Ashok Ragavendran
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alexei Stortchevoi
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
23
|
Chekuri A, Logan EM, Krauson AJ, Salani M, Ackerman S, Kirchner EG, Bolduc JM, Wang X, Dietrich P, Dragatsis I, Vandenberghe LH, Slaugenhaupt SA, Morini E. Selective retinal ganglion cell loss and optic neuropathy in a humanized mouse model of familial dysautonomia. Hum Mol Genet 2022; 31:1776-1787. [PMID: 34908112 PMCID: PMC9169455 DOI: 10.1093/hmg/ddab359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.
Collapse
Affiliation(s)
- Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sophie Ackerman
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily G Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jessica M Bolduc
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Xia Wang
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Mucke HA. Patent highlights June-July 2021. Pharm Pat Anal 2021; 10:237-244. [PMID: 34753317 DOI: 10.4155/ppa-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
25
|
Dor L, Rabinski T, Zlotnik D, Shilian M, Weil M, Vatine GD. Induced pluripotent stem cell (iPSC) lines from two individuals carrying a homozygous (BGUi007-A) and a heterozygous (BGUi006-A) mutation in ELP1 for in vitro modeling of familial dysautonomia. Stem Cell Res 2021; 55:102495. [PMID: 34419746 DOI: 10.1016/j.scr.2021.102495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy affecting the development and function of the peripheral nervous system. FD causing gene is IKBKAP, encoding IkappaB kinase complex-associated protein also named elongator complex like protein 1 (IKAP/ELP1). The most common mutation (IVS20 + 6 T > C) causes an exon 20 skipping, leading to a truncated protein. We report the generation of two induced pluripotent stem cell lines from an FD patient with a homozygous mutation in ELP1 and his heterozygous healthy family relative. Both lines highly express pluripotency markers, can differentiate into the three germ layers, retain the disease-causing mutation and display normal karyotypes.
Collapse
Affiliation(s)
- Lior Dor
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel; The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 85205, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tatiana Rabinski
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Dor Zlotnik
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 85205, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Michal Shilian
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 85205, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
26
|
Ajiro M, Awaya T, Kim YJ, Iida K, Denawa M, Tanaka N, Kurosawa R, Matsushima S, Shibata S, Sakamoto T, Studer R, Krainer AR, Hagiwara M. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat Commun 2021; 12:4507. [PMID: 34301951 PMCID: PMC8302731 DOI: 10.1038/s41467-021-24705-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Approximately half of genetic disease-associated mutations cause aberrant splicing. However, a widely applicable therapeutic strategy to splicing diseases is yet to be developed. Here, we analyze the mechanism whereby IKBKAP-familial dysautonomia (FD) exon 20 inclusion is specifically promoted by a small molecule splice modulator, RECTAS, even though IKBKAP-FD exon 20 has a suboptimal 5' splice site due to the IVS20 + 6 T > C mutation. Knockdown experiments reveal that exon 20 inclusion is suppressed in the absence of serine/arginine-rich splicing factor 6 (SRSF6) binding to an intronic splicing enhancer in intron 20. We show that RECTAS directly interacts with CDC-like kinases (CLKs) and enhances SRSF6 phosphorylation. Consistently, exon 20 splicing is bidirectionally manipulated by targeting cellular CLK activity with RECTAS versus CLK inhibitors. The therapeutic potential of RECTAS is validated in multiple FD disease models. Our study indicates that small synthetic molecules affecting phosphorylation state of SRSFs is available as a new therapeutic modality for mechanism-oriented precision medicine of splicing diseases.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kei Iida
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuo Tanaka
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Kurosawa
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Matsushima
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Shibata
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsunori Sakamoto
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rolenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA
| | | | - Masatoshi Hagiwara
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
27
|
A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat Commun 2021; 12:3332. [PMID: 34099697 PMCID: PMC8185002 DOI: 10.1038/s41467-021-23663-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.
Collapse
|
28
|
Ghosh S, Tourtellotte WG. The Complex Clinical and Genetic Landscape of Hereditary Peripheral Neuropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:487-509. [PMID: 33497257 DOI: 10.1146/annurev-pathol-030320-100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| |
Collapse
|
29
|
Palma JA, Yadav R, Gao D, Norcliffe-Kaufmann L, Slaugenhaupt S, Kaufmann H. Expanding the Genotypic Spectrum of Congenital Sensory and Autonomic Neuropathies Using Whole-Exome Sequencing. NEUROLOGY-GENETICS 2021; 7:e568. [PMID: 33884296 PMCID: PMC8054964 DOI: 10.1212/nxg.0000000000000568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 01/29/2023]
Abstract
Objective To test the hypothesis that many patients presenting with congenital insensitivity to pain have lesser known or unidentified mutations not captured by conventional genetic panels, we performed whole-exome sequencing in a cohort of well-characterized patients with a clinical diagnosis of congenital hereditary sensory and autonomic neuropathy with unrevealing conventional genetic testing. Methods We performed whole-exome sequencing (WES) in 13 patients with congenital impaired or absent sensation to pain and temperature with no identified molecular diagnosis from a conventional genetic panel. Patients underwent a comprehensive phenotypic assessment including autonomic function testing, and neurologic and ophthalmologic examinations. Results We identified known or likely pathogenic genetic causes of congenital insensitivity to pain in all 13 patients, spanning 9 genes, the vast majority of which were inherited in an autosomal recessive manner. These included known pathogenic variants (3 patients harboring mutations in TECPR2 and SCN11A), suspected pathogenic variants in genes described to cause congenital sensory and autonomic syndromes (7 patients harboring variants in NGF, LIFR, SCN9A, and PRDM12), and likely pathogenic variants in novel genes (4 patients harboring variants in SMPDL3A, PLEKHN1, and SCN10A). Conclusions Our results expand the genetic landscape of congenital sensory and autonomic neuropathies. Further validation of some identified variants should confirm their pathogenicity. WES should be clinically considered to expedite diagnosis, reduce laboratory investigations, and guide enrollment in future gene therapy trials.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Rachita Yadav
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Dadi Gao
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Lucy Norcliffe-Kaufmann
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Susan Slaugenhaupt
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Horacio Kaufmann
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| |
Collapse
|
30
|
Jacot-Descombes S, Keshav N, Brosch CMS, Wicinski B, Warda T, Norcliffe-Kaufmann L, Kaufmann H, Varghese M, Hof PR. Von Economo Neuron Pathology in Familial Dysautonomia: Quantitative Assessment and Possible Implications. J Neuropathol Exp Neurol 2021; 79:1072-1083. [PMID: 32954436 DOI: 10.1093/jnen/nlaa095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Von Economo neurons (VENs) and fork cells are principally located in the anterior cingulate cortex (ACC) and the frontoinsular cortex (FI). Both of these regions integrate inputs from the autonomic nervous system (ANS) and are involved in decision-making and perception of the emotional states of self and others. Familial dysautonomia (FD) is an orphan disorder characterized by autonomic dysfunction and behavioral abnormalities including repetitive behavior and emotional rigidity, which are also seen in autism spectrum disorder. To understand a possible link between the ANS and the cortical regions implicated in emotion regulation we studied VENs and fork cells in an autonomic disorder. We determined the densities of VENs, fork cells, and pyramidal neurons and the ratio of VENs and fork cells to pyramidal neurons in ACC and FI in 4 FD patient and 6 matched control brains using a stereologic approach. We identified alterations in densities of VENs and pyramidal neurons and their distributions in the ACC and FI in FD brains. These data suggest that alterations in migration and numbers of VENs may be involved in FD pathophysiology thereby supporting the notion of a functional link between VENs, the ANS and the peripheral nervous system in general.
Collapse
Affiliation(s)
- Sarah Jacot-Descombes
- Nash Family Department of Neuroscience.,Friedman Brain Institute.,Icahn School of Medicine at Mount Sinai, New York, New York; University Center of Legal Medicine, Lausanne - Geneva, Geneva University Hospitals
| | - Neha Keshav
- Nash Family Department of Neuroscience.,Friedman Brain Institute.,Seaver Autism Center for Research and Treatment
| | - Carla Micaela Santos Brosch
- Nash Family Department of Neuroscience.,Department of Mental Health and Psychiatry, University Hospitals and School of Medicine Geneva, Switzerland
| | - Bridget Wicinski
- Nash Family Department of Neuroscience.,Friedman Brain Institute
| | - Tahia Warda
- Nash Family Department of Neuroscience.,Friedman Brain Institute
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, New York
| | - Merina Varghese
- Nash Family Department of Neuroscience.,Friedman Brain Institute
| | - Patrick R Hof
- Nash Family Department of Neuroscience.,Friedman Brain Institute.,Seaver Autism Center for Research and Treatment
| |
Collapse
|
31
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
32
|
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet 2020; 22:185-198. [PMID: 33235359 DOI: 10.1038/s41576-020-00302-y] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
RNA-binding proteins (RBPs) are critical effectors of gene expression, and as such their malfunction underlies the origin of many diseases. RBPs can recognize hundreds of transcripts and form extensive regulatory networks that help to maintain cell homeostasis. System-wide unbiased identification of RBPs has increased the number of recognized RBPs into the four-digit range and revealed new paradigms: from the prevalence of structurally disordered RNA-binding regions with roles in the formation of membraneless organelles to unsuspected and potentially pervasive connections between intermediary metabolism and RNA regulation. Together with an increasingly detailed understanding of molecular mechanisms of RBP function, these insights are facilitating the development of new therapies to treat malignancies. Here, we provide an overview of RBPs involved in human genetic disorders, both Mendelian and somatic, and discuss emerging aspects in the field with emphasis on molecular mechanisms of disease and therapeutic interventions.
Collapse
Affiliation(s)
- Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain. .,University Pompeu Fabra (UPF), Barcelona, Spain.
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
33
|
Abbassi NEH, Biela A, Glatt S, Lin TY. How Elongator Acetylates tRNA Bases. Int J Mol Sci 2020; 21:E8209. [PMID: 33152999 PMCID: PMC7663514 DOI: 10.3390/ijms21218209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Elp3, the catalytic subunit of the eukaryotic Elongator complex, is a lysine acetyltransferase that acetylates the C5 position of wobble-base uridines (U34) in transfer RNAs (tRNAs). This Elongator-dependent RNA acetylation of anticodon bases affects the ribosomal translation elongation rates and directly links acetyl-CoA metabolism to both protein synthesis rates and the proteome integrity. Of note, several human diseases, including various cancers and neurodegenerative disorders, correlate with the dysregulation of Elongator's tRNA modification activity. In this review, we focus on recent findings regarding the structure of Elp3 and the role of acetyl-CoA during its unique modification reaction.
Collapse
Affiliation(s)
- Nour-el-Hana Abbassi
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (N.-e.-H.A.); (A.B.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (N.-e.-H.A.); (A.B.)
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (N.-e.-H.A.); (A.B.)
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (N.-e.-H.A.); (A.B.)
| |
Collapse
|
34
|
Smith L, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Macefield VG. Elbow proprioception is normal in patients with a congenital absence of functional muscle spindles. J Physiol 2020; 598:3521-3529. [PMID: 32452029 DOI: 10.1113/jp279931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Individuals with hereditary sensory and autonomic neuropathy type III (HSAN III), also known as Riley-Day syndrome or familial dysautonomia, do not have functional muscle spindle afferents but do have essentially normal cutaneous mechanoreceptors. Lack of muscle spindle feedback from the legs may account for the poor proprioception at the knee and the ataxic gait typical of HSAN III. Given that functional muscle spindle afferents are also absent in the upper limb, we assessed whether proprioception at the elbow was likewise compromised. Passive joint angle matching showed that proprioception was normal at the elbow, suggesting that individuals with HSAN III rely more on cutaneous afferents around the elbow. ABSTRACT Hereditary sensory and autonomic neuropathy type III (HSAN III) is a rare neurological condition that features a marked ataxic gait that progressively worsens over time. We have shown that functional muscle spindle afferents are absent in the upper and lower limbs in HSAN III, and we have argued that this may account for the ataxia. We recently used passive joint angle matching to demonstrate that proprioception of the knee joint is very poor in HSAN III but can be improved towards normal by application of elastic kinesiology tape across the knee joints, which we attribute to the presence of intact cutaneous mechanoreceptors. Here we assessed whether proprioception was equally compromised at the elbow joint, and whether it could be improved through taping. Proprioception at the elbow joint was assessed using passive joint angle matching in 12 HSAN III patients and 12 age-matched controls. There was no difference in absolute error, gradient or correlation coefficient of the relationship between joint angles of the reference and indicator arms. Unlike at the knee, taping did not improve elbow proprioception in either group. Clearly, the lack of muscle spindles compromised proprioception at the knee but not at the elbow, and we suggest that the HSAN III patients rely more on proprioceptive signals from the skin around the elbow.
Collapse
Affiliation(s)
- Lyndon Smith
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Lucy Norcliffe-Kaufmann
- Dysautonomia Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Jose-Alberto Palma
- Dysautonomia Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Horacio Kaufmann
- Dysautonomia Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
35
|
Affiliation(s)
- Horacio Kaufmann
- From the Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York
| | - Lucy Norcliffe-Kaufmann
- From the Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York
| | - Jose-Alberto Palma
- From the Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York
| |
Collapse
|