1
|
Freitas-Castro F, Santana LS, Fagundes GFC, Lobato EC, Afonso ACF, Nakamura IT, Ledesma FL, Soares IC, Mendonca BB, Latronico AC, Stratakis CA, Almeida MQ. SLC25A11, a Novel Gene Associated With Carney-Stratakis Syndrome. J Endocr Soc 2025; 9:bvaf052. [PMID: 40242210 PMCID: PMC12000648 DOI: 10.1210/jendso/bvaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 04/18/2025] Open
Abstract
Background Carney-Stratakis syndrome (CSS), a rare condition characterized by paragangliomas and/or pheochromocytomas and gastrointestinal stromal tumors (GIST), is caused by germline heterozygous pathogenic variants in the succinate dehydrogenase subunit genes (SDHB, SDHC, SDHD). Methods Histological, genetic, and functional analyses were conducted in a 59-year-old female with CSS (9 cm left pheochromocytoma, 4.8 cm paraganglioma, and 9.3 cm GIST). Whole-exome sequencing (WES) of germline DNA paired with tumor DNA was performed. Results WES identified a rare heterozygous germline variant (c.293G>A/p.Arg98His) in the mitochondrial 2-oxoglutarate/malate carrier gene (SLC25A11). This variant, located in a highly conserved residue of the SLC25A11 mitochondrial carrier domain, is predicted to be deleterious in silico (REVEL score = 0.81). WES of pheochromocytoma, paraganglioma, and GIST did not reveal somatic pathogenic variants in genes previously associated with these tumors. A significant reduction in SLC25A11 expression was observed in the tumors of this patient with the SLC25A11 c.293G>A variant (0.69 ± 0.003) compared to tumors from cluster 1 (1.39 ± 0.45; P = 0.0229) and cluster 2 (1.79 ± 0.71; P = .0154). Consistent with the mRNA findings, SLC25A11 protein levels were markedly reduced in the pheochromocytoma and paraganglioma compared to other tumors. Negative staining for 5-hydroxymethylcytosine in all 3 tumors suggests a DNA hypermethylation profile characteristic of cluster 1A, despite normal SDHB expression levels. However, genome-wide copy number variation analysis did not reveal any loss of heterozygosity at the SLC25A11 locus. Conclusion The loss of SLC25A11 expression in tumors, the absence of somatic drivers, and the hypermethylation status strongly support the role of SLC25A11 in CSS pathogenesis.
Collapse
Affiliation(s)
- Felipe Freitas-Castro
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Lucas S Santana
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Gustavo F C Fagundes
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Eduardo C Lobato
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Ana Caroline F Afonso
- Laboratório de Hormônios e Genética Molecular LIM42 e Laboratório de Sequenciamento em Larga Escala (SELA), Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Izabel T Nakamura
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Felipe L Ledesma
- Divisão de Anatomia Patológica, Hospital das Clínicas HCFMUSP & Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Ibere C Soares
- Divisão de Anatomia Patológica, Hospital das Clínicas HCFMUSP & Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Berenice B Mendonca
- Laboratório de Hormônios e Genética Molecular LIM42 e Laboratório de Sequenciamento em Larga Escala (SELA), Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Ana Claudia Latronico
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
| | - Constantine A Stratakis
- Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Crete & ASTREA Health, Athens 11528, Greece
| | - Madson Q Almeida
- Unidade de Adrenal, Laboratório de Endocrinologia Molecular e Celular LIM25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brasil
- Unidade de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brasil
| |
Collapse
|
2
|
Xia Z, Cheng R, Liu Q, Zu Y, Liao S. Screening and validating genes associated with cuproptosis in systemic lupus erythematosus by expression profiling combined with machine learning. BIOMOLECULES & BIOMEDICINE 2025; 25:965-975. [PMID: 39388708 PMCID: PMC11959400 DOI: 10.17305/bb.2024.10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Cell death has long been a focal point in life sciences research, and recently, scientists have discovered a novel form of cell death induced by copper, termed cuproptosis. This paper aimed to identify genes associated with cuproptosis in systemic lupus erythematosus (SLE) through machine learning, combined with single-cell RNA sequencing (scRNA-seq), to screen and validate related genes. The analytical results were then experimentally verified. Two published microarray gene expression datasets (GSE65391 and GSE61635) from SLE and control peripheral blood samples were downloaded from the GEO database. The GSE65391 dataset was used as the training group, while the GSE61635 dataset served as the validation group. Differentially expressed genes from GSE65391 identified 12 differential genes. Nine diagnostic genes, considered potential biomarkers, were selected using the least absolute shrinkage and selection operator and support vector machine recursive feature elimination analysis. The receiver operating characteristic (ROC) curves for both the training and validation groups were used to calculate the area under the curve to assess discriminatory properties. CIBERSORT was used to assess the relationship between these diagnostic genes and a reference set of infiltrating immune cells. scRNA-seq data (GSE162577) from SLE patients were also obtained from the GEO database and analyzed. Experimental validation of the most important SLE biomarkers was performed. Twelve significantly different cuproptosis-related genes were identified in the GSE65391 training set. Immune cell analysis revealed 12 immune cell types and identified nine signature genes, including PDHB, glutaminase (GLS), DLAT, LIAS, MTF1, DLST, DLD, LIPT1, and FDX1. In the GSE61635 validation set, seven genes were weakly expressed, and two genes were strongly expressed in the treatment group. According to the ROC curves, PDHB and GLS demonstrated significant diagnostic value. Additionally, correlation analysis was conducted on the nine characteristic genes in relation to immune infiltration. The distribution of key genes in immune cells was determined using scRNA-seq data. Finally, the mRNA expression of the nine diagnostic genes was validated using qPCR.
Collapse
Affiliation(s)
- Zhongbin Xia
- Health Management Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ruoying Cheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxin Zu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shilu Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Monteagudo M, Calsina B, Salazar-Hidalgo ME, Martínez-Montes ÁM, Piñeiro-Yáñez E, Caleiras E, Martín MC, Rodríguez-Perales S, Letón R, Gil E, Buffet A, Burnichon N, Fernández-Sanromán Á, Díaz-Talavera A, Mellid S, Arroba E, Reglero C, Martínez-Puente N, Roncador G, Del Olmo MI, Corrales PJP, Oliveira CL, Álvarez-Escolá C, Gutiérrez MC, López-Fernández A, García NP, Regojo RM, Díaz LR, Laorden NR, Guadarrama OS, Bechmann N, Beuschlein F, Canu L, Eisenhofer G, Fassnacht M, Nölting S, Quinkler M, Rapizzi E, Remde H, Timmers HJ, Favier J, Gimenez-Roqueplo AP, Rodriguez-Antona C, Currás-Freixes M, Al-Shahrour F, Cascón A, Leandro-García LJ, Montero-Conde C, Robledo M. MAML3-fusions modulate vascular and immune tumour microenvironment and confer high metastatic risk in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101931. [PMID: 39218714 DOI: 10.1016/j.beem.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumours. Around 20-25 % of patients develop metastases, for which there is an urgent need of prognostic markers and therapeutic stratification strategies. The presence of a MAML3-fusion is associated with increased metastatic risk, but neither the processes underlying disease progression, nor targetable vulnerabilities have been addressed. We have compiled a cohort of 850 patients, which has shown a 3.65 % fusion prevalence and represents the largest MAML3-positive series reported to date. While MAML3-fusions mainly cause single pheochromocytomas, we also observed somatic post-zygotic events, resulting in multiple tumours in the same patient. MAML3-tumours show increased expression of neuroendocrine-to-mesenchymal transition markers, MYC-targets, and angiogenesis-related genes, leading to a distinct tumour microenvironment with unique vascular and immune profiles. Importantly, our findings have identified MAML3-tumours specific vulnerabilities beyond Wnt-pathway dysregulation, such as a rich vascular network, and overexpression of PD-L1 and CD40, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- María Monteagudo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Bruna Calsina
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Milton E Salazar-Hidalgo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ángel M Martínez-Montes
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Carmen Martín
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Ángel Fernández-Sanromán
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sara Mellid
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ester Arroba
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara Reglero
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Martínez-Puente
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Isabel Del Olmo
- Department of Endocrinology and Nutrition, University Hospital La Fe, Valencia, Spain
| | | | - Cristina Lamas Oliveira
- Department of Endocrinology and Nutrition Albacete University Hospital, SESCAM, Albacete, Spain
| | | | | | | | | | | | - Luis Robles Díaz
- Department of Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine Faculty of Medicine and University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden Germany, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV Klinikum der Universität München, Munich, Germany; Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland; LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Letizia Canu
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Graeme Eisenhofer
- Department of Medicine III University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I Division of Endocrinology and Diabetes University Hospital Würzburg University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Svenja Nölting
- Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland
| | - Marcus Quinkler
- Endocrinology in Charlottenburg Stuttgarter Platz 1, Berlin, Germany
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Hanna Remde
- Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Henri J Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith Favier
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Currás-Freixes
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luis J Leandro-García
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
4
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Allaire P, Mayer J, Moat L, Gabor R, Shay JW, He J, Zeng C, Bastarache L, Hebbring S. Long-telomeropathy is associated with tumor predisposition syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.26.24318007. [PMID: 39649603 PMCID: PMC11623752 DOI: 10.1101/2024.11.26.24318007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Telomeres protect chromosomal integrity, and telomere length (TL) is influenced by environmental and genetic factors. While short-telomeres are linked to rare telomeropathies, this study explored the hypothesis that a "long-telomeropathy" is associated with a cancer-predisposing syndrome. Using genomic and health data from 113,861 individuals, a trans-ancestry polygenic risk score for TL (PRS TL ) was developed. A phenome-wide association study (PheWAS) identified 65 tumor traits linked to elevated PRS TL . Using this result, a trans-ancestry phenotype risk score for a long-TL (PheRS LTL ) was develop and validated. Rare variant analyses revealed 13 genes associated with PheRS LTL . Individuals who were carriers of these rare variants had a predisposition for long-TL validating original hypothesis. Most of these genes were new to both cancer and telomere biology. In conclusion, this study identified a novel tumor-predisposing syndrome shaped by both common and rare genetic variants, broadening the understanding of telomeropathies to those with a predisposition for long telomeres.
Collapse
|
6
|
Snezhkina AV, Pavlov VS, Krasnov GS, Kalinin DV, Pudova EA, Stolbovskaya OV, Dunshina AV, Fedorova MS, Kudryavtseva AV. Non-Susceptibility Gene Variants in Head and Neck Paragangliomas. Int J Mol Sci 2024; 25:12762. [PMID: 39684472 DOI: 10.3390/ijms252312762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neoplasms that, along with pheochromocytomas and extra-adrenal paragangliomas, are associated with inherited mutations in at least 12 susceptibility genes in approximately 40% of cases. However, due to the rarity of HNPGLs, only a series of small-scale studies and individual cases have reported mutations in additional genes that may be involved in tumorigenesis. Consequently, numerous disease-causing mutations and genes responsible for the pathogenesis of HNPGLs remain poorly investigated. The aim of this study was to gain a deeper understanding of the genetic basis of HNPGLs by focusing on variants in genes that were not previously identified as well-known drivers. A whole-exome data analysis was conducted on a representative set of 152 HNPGLs. In 30% of the tumors examined, 53 potentially deleterious variants were identified in 36 different genes. The analysis identified pathogenic or likely pathogenic variants in the ARNT, IDH2, L2HGDH, MYH3, PIK3CA, and TERT genes. A functional network analysis of the mutated genes revealed numerous associations and a list of metabolic pathways (e.g., the TCA cycle, carbon metabolism, pyruvate metabolism, etc.) and signaling pathways (e.g., HIF1, PI3K-Akt, FoxO, AMPK, MAPK, etc.) that may play an important role in the development of HNPGLs. The identified range of genetic alterations affecting multiple genes and, potentially, influencing diverse cellular pathways provides an enhanced molecular genetic characterization of HNPGLs.
Collapse
Affiliation(s)
- Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav S Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V Stolbovskaya
- Department of Human Anatomy, Ulyanovsk State University, 432017 Ulyanovsk, Russia
| | | | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Cascón A, Robledo M. Clinical and molecular markers guide the genetics of pheochromocytoma and paraganglioma. Biochim Biophys Acta Rev Cancer 2024; 1879:189141. [PMID: 38908536 DOI: 10.1016/j.bbcan.2024.189141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Over the past two decades, research into the genetic susceptibility behind pheochromocytoma and paraganglioma (PPGL) has surged, ranking them among the most heritable tumors. Massive sequencing combined with careful patient selection has so far identified more than twenty susceptibility genes, leading to an over-detection of variants of unknown significance (VUS) that require precise molecular markers to determine their pathogenic role. Moreover, some PPGL patients remain undiagnosed, possibly due to mutations in regulatory regions of already known genes or mutations in undiscovered genes. Accurate classification of VUS and identification of new genes require well-defined clinical and molecular markers that allow effective genetic diagnosis of most PPGLs.
Collapse
Affiliation(s)
- Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
8
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Li C, Han L, Song Y, Liu R. Case report: A rare DLST mutation in patient with metastatic pheochromocytoma: clinical implications and management challenges. Front Oncol 2024; 14:1394552. [PMID: 38835385 PMCID: PMC11148276 DOI: 10.3389/fonc.2024.1394552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Background Pheochromocytoma is one of the most hereditary human tumors with at least 20 susceptible genes undergoing germline and somatic mutations, and other mutations less than 1% -2%. In recent years, other rare mutations have gradually been discovered to be possibly related to the pathogenesis and metastasis of pheochromocytoma. Most patients with pheochromocytoma experience common symptoms like headaches, palpitations, and sweating, while some may have less common symptoms. The diversity of symptoms, genetic mutations, and limited treatment options make management challenging. Case presentation A 53-year-old woman was hospitalized after experiencing episodic epigastric pain for one month. A mass was found in her right adrenal gland and she underwent robot-assisted laparoscopic surgery, revealing a pheochromocytoma. At the 16-month follow-up, multiple metastatic lesions consistent with metastatic pheochromocytoma were found. A germline mutation in the dihydrolipoamide succinyltransferase (DLST) gene (c.330 + 14A>G) was detected, and despite trying chemotherapy and adjuvant therapy, the patient had a limited response with an overall survival of 27 months. Conclusions DLST mutation is one of the rare pheochromocytoma-related mutated genes, and genetic sequencing is crucial for effective clinical management.
Collapse
Affiliation(s)
- Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuming Song
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Liu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
11
|
Chatzikyriakou P, Brempou D, Quinn M, Fishbein L, Noberini R, Anastopoulos IN, Tufton N, Lim ES, Obholzer R, Hubbard JG, Moonim M, Bonaldi T, Nathanson KL, Izatt L, Oakey RJ. A comprehensive characterisation of phaeochromocytoma and paraganglioma tumours through histone protein profiling, DNA methylation and transcriptomic analysis genome wide. Clin Epigenetics 2023; 15:196. [PMID: 38124114 PMCID: PMC10734084 DOI: 10.1186/s13148-023-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase. Within inherited PPGLs, these are the most common. PPGL tumours are known to undergo epigenetic reprograming, and here, we report on global histone post-translational modifications and DNA methylation levels, alongside clinical phenotypes. RESULTS Out of the 25 histone post-translational modifications examined, Cluster 1A PPGLs were distinguished from other tumours by a decrease in hyper-acetylated peptides and an increase in H3K4me2. DNA methylation was compared between tumours from individuals who developed metastatic disease versus those that did not. The majority of differentially methylated sites identified tended to be completely methylated or unmethylated in non-metastatic tumours, with low inter-sample variance. Metastatic tumours by contrast consistently had an intermediate DNA methylation state, including the ephrin receptor EPHA4 and its ligand EFNA3. Gene expression analyses performed to identify genes involved in metastatic tumour behaviour pin-pointed a number of genes previously described as mis-regulated in Cluster 1A tumours, as well as highlighting the tumour suppressor RGS22 and the pituitary tumour-transforming gene PTTG1. CONCLUSIONS Combined transcriptomic and DNA methylation analyses revealed aberrant pathways, including ones that could be implicated in metastatic phenotypes and, for the first time, we report a decrease in hyper-acetylated histone marks in Cluster 1 PPGLs.
Collapse
Affiliation(s)
- Prodromos Chatzikyriakou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Comprehensive Cancer Centre, King's College London, London, SE5 8AF, UK
| | - Dimitria Brempou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Mark Quinn
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Lauren Fishbein
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes and Metabolism in the Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Ioannis N Anastopoulos
- Department of Biomolecular Engineering, UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicola Tufton
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Eugenie S Lim
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rupert Obholzer
- Department of ENT and Skull Base Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Johnathan G Hubbard
- Department of Endocrine Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Mufaddal Moonim
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
12
|
Zhu Y, Chang S, Liu J, Wang B. Identification of a novel cuproptosis-related gene signature for multiple myeloma diagnosis. Immun Inflamm Dis 2023; 11:e1058. [PMID: 38018590 PMCID: PMC10629272 DOI: 10.1002/iid3.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) ranks second among the most prevalent hematological malignancies. Recent studies have unearthed the promise of cuproptosis as a novel therapeutic intervention for cancer. However, no research has unveiled the particular roles of cuproptosis-related genes (CRGs) in the prediction of MM diagnosis. METHODS Microarray data and clinical characteristics of MM patients were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed gene analysis, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential signature genes for MM diagnosis. Predictive performance was further assessed by receiver operating characteristic (ROC) curves, nomogram analysis, and external data sets. Functional enrichment analysis was performed to elucidate the involved mechanisms. Finally, the expression of the identified genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in MM cell samples. RESULTS The optimal gene signature was identified using LASSO and SVM-RFE algorithms based on the differentially expressed CRGs: ATP7A, FDX1, PDHA1, PDHB, MTF1, CDKN2A, and DLST. Our gene signature-based nomogram revealed a high degree of accuracy in predicting MM diagnosis. ROC curves showed the signature had dependable predictive ability across all data sets, with area under the curve values exceeding 0.80. Additionally, functional enrichment analysis suggested significant associations between the signature genes and immune-related pathways. The expression of the genes was validated in MM cells, indicating the robustness of these findings. CONCLUSION We discovered and validated a novel CRG signature with strong predictive capability for diagnosing MM, potentially implicated in MM pathogenesis and progression through immune-related pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Shuaikang Chang
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Bo Wang
- Department of Endocrinology, Yangpu HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Serrath SN, Pontes AS, Paloschi MV, Silva MDS, Lopes JA, Boeno CN, Silva CP, Santana HM, Cardozo DG, Ugarte AVE, Magalhães JGS, Cruz LF, Setubal SS, Soares AM, Cavecci-Mendonça B, Santos LD, Zuliani JP. Exosome Liberation by Human Neutrophils under L-Amino Acid Oxidase of Calloselasma rhodostoma Venom Action. Toxins (Basel) 2023; 15:625. [PMID: 37999488 PMCID: PMC10674320 DOI: 10.3390/toxins15110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 μg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.
Collapse
Affiliation(s)
- Suzanne N. Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Adriana S. Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Mauro V. Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Milena D. S. Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Jéssica A. Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Charles N. Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Carolina P. Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Hallison M. Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Daniel G. Cardozo
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Andrey V. E. Ugarte
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - João G. S. Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Larissa F. Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Sulamita S. Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Andreimar M. Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT), National Institute of Science and Technology in Epidemiology of the Occidental Amazonia0 (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho 76801-059, RO, Brazil;
| | - Bruna Cavecci-Mendonça
- Biotechonology Institute (IBTEC), São Paulo State University, Botucatu 01049-010, SP, Brazil; (B.C.-M.); (L.D.S.)
| | - Lucilene D. Santos
- Biotechonology Institute (IBTEC), São Paulo State University, Botucatu 01049-010, SP, Brazil; (B.C.-M.); (L.D.S.)
- Graduate Program in Tropical Diseases and Graduate Program in Medical Biotechnology, Botucatu Medical School (FMB), São Paulo State University, Botucatu 18618-687, SP, Brazil
| | - Juliana P. Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
- Departamento de Medicina, Universidade Federal de Rondônia, Porto Velho 76801-059, RO, Brazil
| |
Collapse
|
14
|
Mellid S, García F, Leandro-García LJ, Díaz-Talavera A, Martínez-Montes ÁM, Gil E, Calsina B, Monteagudo M, Letón R, Roldán-Romero JM, Santos M, Lanillos J, Valdivia C, Martínez-Puente N, de Nicolás-Hernández J, Jiménez S, Pérez-Martínez M, Honrado E, Coloma J, Cerezo A, Santiveri CM, Esteller M, Campos-Olivas R, Caleiras E, Montero-Conde C, Rodríguez-Antona C, Muñoz J, Robledo M, Cascón A. DLST mutations in pheochromocytoma and paraganglioma cause proteome hyposuccinylation and metabolic remodeling. Cancer Commun (Lond) 2023. [PMID: 37139660 PMCID: PMC10354410 DOI: 10.1002/cac2.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Sara Mellid
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando García
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Eduardo Gil
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Monteagudo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Juan María Roldán-Romero
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Santos
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Lanillos
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlos Valdivia
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Martínez-Puente
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Scherezade Jiménez
- Monoclonal Antibodies Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Confocal Microscopy Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Emiliano Honrado
- Anatomical Pathology Service, Hospital of León, León, Castilla y León, Spain
| | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cerezo
- CNIO-Lilly Cell Signalling and Immunometabolism Section, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara María Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Signaling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
15
|
Tabata S, Kojima Y, Sakamoto T, Igarashi K, Umetsu K, Ishikawa T, Hirayama A, Kajino-Sakamoto R, Sakamoto N, Yasumoto KI, Okano K, Suzuki Y, Yachida S, Aoki M, Soga T. L-2hydroxyglutaric acid rewires amino acid metabolism in colorectal cancer via the mTOR-ATF4 axis. Oncogene 2023; 42:1294-1307. [PMID: 36879117 PMCID: PMC10101855 DOI: 10.1038/s41388-023-02632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. .,Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Ko Umetsu
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Rie Kajino-Sakamoto
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ken-Ichi Yasumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, 761-0793, Japan
| | - Yasuyuki Suzuki
- Hyogo Prefectural Awaji Medical Center, Sumoto, Hyogo, 656-0021, Japan
| | - Shinichi Yachida
- Department of Genomic Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan.,Department of Cancer Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
16
|
Mellid S, Gil E, Letón R, Caleiras E, Honrado E, Richter S, Palacios N, Lahera M, Galofré JC, López-Fernández A, Calatayud M, Herrera-Martínez AD, Galvez MA, Matias-Guiu X, Balbín M, Korpershoek E, Lim ES, Maletta F, Lider S, Fliedner SMJ, Bechmann N, Eisenhofer G, Canu L, Rapizzi E, Bancos I, Robledo M, Cascón A. Co-occurrence of mutations in NF1 and other susceptibility genes in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 13:1070074. [PMID: 36760809 PMCID: PMC9905101 DOI: 10.3389/fendo.2022.1070074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction The percentage of patients diagnosed with pheochromocytoma and paraganglioma (altogether PPGL) carrying known germline mutations in one of the over fifteen susceptibility genes identified to date has dramatically increased during the last two decades, accounting for up to 35-40% of PPGL patients. Moreover, the application of NGS to the diagnosis of PPGL detects unexpected co-occurrences of pathogenic allelic variants in different susceptibility genes. Methods Herein we uncover several cases with dual mutations in NF1 and other PPGL genes by targeted sequencing. We studied the molecular characteristics of the tumours with co-occurrent mutations, using omic tools to gain insight into the role of these events in tumour development. Results Amongst 23 patients carrying germline NF1 mutations, targeted sequencing revealed additional pathogenic germline variants in DLST (n=1) and MDH2 (n=2), and two somatic mutations in H3-3A and PRKAR1A. Three additional patients, with somatic mutations in NF1 were found carrying germline pathogenic mutations in SDHB or DLST, and a somatic truncating mutation in ATRX. Two of the cases with dual germline mutations showed multiple pheochromocytomas or extra-adrenal paragangliomas - an extremely rare clinical finding in NF1 patients. Transcriptional and methylation profiling and metabolite assessment showed an "intermediate signature" to suggest that both variants had a pathological role in tumour development. Discussion In conclusion, mutations affecting genes involved in different pathways (pseudohypoxic and receptor tyrosine kinase signalling) co-occurring in the same patient could provide a selective advantage for the development of PPGL, and explain the variable expressivity and incomplete penetrance observed in some patients.
Collapse
Affiliation(s)
- Sara Mellid
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nuria Palacios
- Endocrinology Department, University Hospital Puerta de Hierro, Madrid, Spain
| | - Marcos Lahera
- Endocrinology and Nutrition Department, La Princesa University Hospital, Madrid, Spain
| | - Juan C. Galofré
- Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Adriá López-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria Calatayud
- Department of Endocrinology and Nutrition, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - María A. Galvez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Bellvitge University Hospital, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Milagros Balbín
- Molecular Oncology Laboratory, Instituto Universitario de Oncologia del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Esther Korpershoek
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Eugénie S. Lim
- Department of Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Maletta
- Pathology Unit , Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Sofia Lider
- Endocrinology Department, National Institute of Endocrinology, Bucharest, Romania
| | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Letizia Canu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Li M, Prodanov T, Meuter L, Kerstens MN, Bechmann N, Prejbisz A, Remde H, Timmers HJLM, Nölting S, Talvacchio S, Berends AMA, Fliedner S, Robledo M, Lenders JWM, Pacak K, Eisenhofer G, Pamporaki C. Recurrent Disease in Patients With Sporadic Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 2023; 108:397-404. [PMID: 36190922 PMCID: PMC10091496 DOI: 10.1210/clinem/dgac563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Long-term follow-up has been recommended for patients with pheochromocytoma or paraganglioma (PPGL) due to potential for recurrent disease. However, the need to follow patients with sporadic PPGL has recently become controversial. OBJECTIVE To investigate the prevalence of recurrence among patients with sporadic compared with hereditary PPGL and to identify predictors of recurrence for sporadic disease. METHODS This multicenter study included retrospective data from 1127 patients with PPGL. In addition to sex and age at primary tumor diagnosis, clinical information included location, size, and catecholamine phenotype of primary tumors, genetic test results, and subsequent development of recurrent and/or metastatic disease. Patients with sporadic PPGL were defined as those with negative genetic test results. RESULTS Prevalence of recurrence among patients with sporadic PPGL (14.7%) was lower (P < 0.001) than for patients with pathogenic variants that activate pseudohypoxia pathways (47.5%), but similar to those with variants that activate kinase pathways (14.9%). Among patients with sporadic recurrent PPGL, 29.1% and 17.7% were respectively diagnosed at least 10 and 15 years after first diagnosis. Multivariable regression analysis showed that a noradrenergic/dopaminergic phenotype (HR 2.73; 95% CI, 1.553-4.802; P < 0.001), larger size (HR 1.82; 95% CI, 1.113-2.962; P = 0.017) and extra-adrenal location (HR 1.79; 95% CI, 1.002-3.187; P = 0.049) of primary tumors were independent predictors of recurrence in sporadic PPGL. CONCLUSION Patients with sporadic PPGL require long-term follow-up, as supported by the 14.7% prevalence of recurrent disease, including recurrences at more than 10 years after first diagnosis. The nature of follow-up could be individualized according to tumor size, location, and biochemical phenotype.
Collapse
Affiliation(s)
- Minghao Li
- Department of Medicine ΙΙΙ, University Hospital Carl Gustav Carus at the TU Dresden, Dresden 01307, Germany
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda 20892, USA
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda 20892, USA
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden 01307, Germany
| | | | - Hanna Remde
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg 97080, Germany
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Hospital, Nijmegen 6500, The Netherlands
| | - Svenja Nölting
- Department of Internal Medicine, University Hospital of Munich, Munich 80539, Germany
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital, Zurich 8091, Switzerland
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda 20892, USA
| | - Annika M A Berends
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Stephanie Fliedner
- Department of Medicine, University Medical Center Schleswig-Holstein, Luebeck 23538, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Jacques W M Lenders
- Department of Medicine ΙΙΙ, University Hospital Carl Gustav Carus at the TU Dresden, Dresden 01307, Germany
- Department of Internal Medicine, Radboud University Hospital, Nijmegen 6500, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda 20892, USA
| | - Graeme Eisenhofer
- Department of Medicine ΙΙΙ, University Hospital Carl Gustav Carus at the TU Dresden, Dresden 01307, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden 01307, Germany
| | - Christina Pamporaki
- Department of Medicine ΙΙΙ, University Hospital Carl Gustav Carus at the TU Dresden, Dresden 01307, Germany
| |
Collapse
|
18
|
Tabebi M, Söderkvist P, Gimm O. Nuclear and mitochondrial DNA alterations in pheochromocytomas and paragangliomas, and their potential treatment. Endocr Relat Cancer 2023; 30:ERC-22-0217. [PMID: 36219865 DOI: 10.1530/erc-22-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Mitochondrial DNA (mtDNA) alterations have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is little information about its involvement in pheochromocytomas and paragangliomas (PCCs/PGLs) formation. PCCs and PGLs are rare endocrine tumors of the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia that can synthesize and secrete catecholamines. Over the last 3 decades, the genetic background of about 60% of PCCs/PGLs involving nuclear DNA alterations has been determined. Recently, a study showed that mitochondrial alterations can be found in around 17% of the remaining PCCs/PGLs. In this review, we summarize recent knowledge regarding both nuclear and mitochondrial alterations and their involvement in PCCs/PGLs. We also provide brief insights into the genetics and the molecular pathways associated with PCCs/PGLs and potential therapeutical targets.
Collapse
Affiliation(s)
- Mouna Tabebi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
20
|
Advances in Adrenal and Extra-adrenal Paraganglioma: Practical Synopsis for Pathologists. Adv Anat Pathol 2023; 30:47-57. [PMID: 36136370 DOI: 10.1097/pap.0000000000000365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adrenal paraganglioma (or "pheochromocytoma") and extra-adrenal paraganglioma, collectively abbreviated PPGL, are rare but spectacular nonepithelial neuroendocrine neoplasms. These are the most inheritable neoplasia of all, with a metastatic potential in a varying degree. As of such, these lesions demand careful histologic, immunohistochemical, and genetic characterization to provide the clinical team with a detailed report taking into account the anticipated prognosis and risk of syndromic/inherited disease. While no histologic algorithm, immunohistochemical biomarker, or molecular aberration single-handedly can identify potentially lethal cases upfront, the combined analysis of various risk parameters may stratify PPGL patients more stringently than previously. Moreover, the novel 2022 WHO Classification of Endocrine and Neuroendocrine Tumors also brings some new concepts into play, not least the reclassification of special neuroendocrine neoplasms (cauda equina neuroendocrine tumor and composite gangliocytoma/neuroma-neuroendocrine tumor) previously thought to belong to the spectrum of PPGL. This review focuses on updated key diagnostic and prognostic concepts that will aid when facing this rather enigmatic tumor entity in clinical practice.
Collapse
|
21
|
Martinelli S, Riverso M, Mello T, Amore F, Parri M, Simeone I, Mannelli M, Maggi M, Rapizzi E. SDHB and SDHD silenced pheochromocytoma spheroids respond differently to tumour microenvironment and their aggressiveness is inhibited by impairing stroma metabolism. Mol Cell Endocrinol 2022; 547:111594. [PMID: 35149119 DOI: 10.1016/j.mce.2022.111594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
Abstract
Germline mutations in more than 20 genes, including those encoding for the succinate dehydrogenase (SDH), predispose to rare tumours, such as pheochromocytoma/paraganglioma (PPGL). Despite encoding for the same enzymatic complex, SDHC and SDHD mutated PHEO/PGLs are generally benign, while up to 80% of SDHB mutated ones are malignant. In this study, we evaluated the different effects of tumour microenvironment on tumour cell migration/invasion, by co-culturing SDHB or SDHD silenced tumour spheroids with primary cancer-associated fibroblasts (CAFs). We observed that SDHD silenced spheroids had an intermediate migration pattern, compared to the highest migration capability of SDHB and the lowest one of the wild type (Wt) spheroids. Interestingly, we noticed that co-culturing Wt, SDHB and SDHD silenced spheroids with CAFs in low glucose (1 g/l) medium, caused a decreased migration of all the spheroids, but only for SDHB silenced ones this reduction was significant. Moreover, the collective migration, observed in high glucose (4.5 g/l) and characteristic of the SDHB silenced cells, was completely lost in low glucose. Importantly, migration could not be recovered even adding glucose (3.5 g/l) to low glucose conditioned medium. When we investigated cell metabolism, we found that low glucose concentration led to a reduction of oxygen consumption rate (OCR), basal and maximal oxidative metabolism, and ATP production only in CAFs, but not in tumour cells. These results suggest that CAFs metabolism impairment was responsible for the decreased invasion process of tumour cells, most likely preventing the release of the pro-migratory factors produced by CAFs. In conclusion, the interplay between CAFs and tumour cells is distinctive depending on the gene involved, and highlights the possibility to inhibit CAF-induced migration by impairing CAFs metabolism, indicating new potential therapeutic scenarios for medical therapy.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Maria Riverso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Irene Simeone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|
22
|
Chang LC, Chiang SK, Chen SE, Hung MC. Targeting 2-oxoglutarate dehydrogenase for cancer treatment. Am J Cancer Res 2022; 12:1436-1455. [PMID: 35530286 PMCID: PMC9077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023] Open
Abstract
Tricarboxylic acid (TCA) cycle, also called Krebs cycle or citric acid cycle, is an amphoteric pathway, contributing to catabolic degradation and anaplerotic reactions to supply precursors for macromolecule biosynthesis. Oxoglutarate dehydrogenase complex (OGDHc, also called α-ketoglutarate dehydrogenase) a highly regulated enzyme in TCA cycle, converts α-ketoglutarate (αKG) to succinyl-Coenzyme A in accompany with NADH generation for ATP generation through oxidative phosphorylation. The step collaborates with glutaminolysis at an intersectional point to govern αKG levels for energy production, nucleotide and amino acid syntheses, and the resources for macromolecule synthesis in cancer cells with rapid proliferation. Despite being a flavoenzyme susceptible to electron leakage contributing to mitochondrial reactive oxygen species (ROS) production, OGDHc is highly sensitive to peroxides such as HNE (4-hydroxy-2-nonenal) and moreover, its activity mediates the activation of several antioxidant pathways. The characteristics endow OGDHc as a critical redox sensor in mitochondria. Accumulating evidences suggest that dysregulation of OGDHc impairs cellular redox homeostasis and disturbs substrate fluxes, leading to a buildup of oncometabolites along the pathogenesis and development of cancers. In this review, we describe molecular interactions, regulation of OGDHc expression and activity and its relationships with diseases, specifically focusing on cancers. In the end, we discuss the potential of OGDHs as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing UniversityTaichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing UniversityTaiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Deparment of Biotechnology, Asia UniversityTaichung 413, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
23
|
Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, Eisenhofer G, Grossman A, Pacak K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43:199-239. [PMID: 34147030 PMCID: PMC8905338 DOI: 10.1210/endrev/bnab019] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling-related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling-related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX2 6HG, UK.,Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK.,ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| |
Collapse
|
24
|
Genetics of Pheochromocytomas and Paragangliomas Determine the Therapeutical Approach. Int J Mol Sci 2022; 23:ijms23031450. [PMID: 35163370 PMCID: PMC8836037 DOI: 10.3390/ijms23031450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas and paragangliomas are the most heritable endocrine tumors. In addition to the inherited mutation other driver mutations have also been identified in tumor tissues. All these genetic alterations are clustered in distinct groups which determine the pathomechanisms. Most of these tumors are benign and their surgical removal will resolve patient management. However, 5–15% of them are malignant and therapeutical possibilities for them are limited. This review provides a brief insight about the tumorigenesis associated with pheochromocytomas/paragangliomas in order to present them as potential therapeutical targets.
Collapse
|
25
|
Kakizawa K, Yamashita M, Nakashima M, Kawauchi Y, Ikeya A, Matsushita A, Sasaki S, Oki Y. Retroperitoneal Paraganglioma With Asymptomatic Follicular Lymphoma: A Case Report. J Endocr Soc 2021; 5:bvab171. [PMID: 34877445 PMCID: PMC8645164 DOI: 10.1210/jendso/bvab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/22/2022] Open
Abstract
Paraganglioma (PGL) is a rare tumor originating from extra-adrenal paraganglionic chromaffin tissues, and most sympathetic PGLs have excessive catecholamine secretion. However, nonfunctional PGLs are sometimes found. Although malignant PGL is defined by metastasis to nonchromaffin tissues, it is difficult to predict malignancies due to the lack of reliable markers of potential malignancies. We report the case of a 69-year-old Japanese woman with an incidental retroperitoneal tumor and multiple enlarged mesenteric lymph nodes simultaneously. The patient had no subjective symptoms and there were no laboratory findings suggesting catecholamine hypersecretion. Both the retroperitoneal tumor and the enlarged mesenteric lymph nodes showed high accumulation of fluorodeoxyglucose (FDG), whereas metaiodobenzylguanidine (MIBG) was accumulated only at the retroperitoneal tumor. Although a retroperitoneal tumor was diagnosed as nonfunctional PGL by examination including MIBG scintigraphy, the cause of enlarged mesenteric lymph nodes could not be diagnosed by imaging and biochemical tests. As a result of retroperitoneal tumor resection and mesenteric lymph nodes sampling, histopathological examination revealed that a retroperitoneal tumor was PGL and enlarged mesenteric lymph nodes were follicular lymphoma. To reveal an underlying genetic factor, we performed whole exome sequencing of genomic DNA, and we identified 2 possible candidate variants in SDHD and DLST, but the pathogenicity of these variants remains uncertain in the present case. This rare case reinforces the importance of histopathological diagnosis of nonchromaffin tissue lesions in patients with PGL for the appropriate treatment strategy.
Collapse
Affiliation(s)
- Keisuke Kakizawa
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Miho Yamashita
- Department of Internationalization Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuto Kawauchi
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Akira Ikeya
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Akio Matsushita
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shigekazu Sasaki
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yutaka Oki
- Department of Internal Medicine, Hamamatsu Kita Hospital, Hamamatsu, Shizuoka, 431-3113, Japan
| |
Collapse
|
26
|
Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13194758. [PMID: 34638246 PMCID: PMC8507560 DOI: 10.3390/cancers13194758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Telomere maintenance involving TERT and ATRX genes has been recently described in metastatic pheochromocytoma and paraganglioma, reinforcing the importance of immortalization mechanisms in the progression of these tumors. Thus, the aim of this study was to analyze additional telomere-related genes to uncover potential new markers capable of identifying metastatic-risk patients more accurately. After analyzing 29 telomere-related genes, we were able to validate the predictive value of TERT and ATRX in mPPGL progression. In addition, we were able to identify NOP10 as a novel prognostic risk marker of mPPGLs, which also facilitates telomerase-dependent telomere length maintenance in these tumors. Interestingly, NOP10 overexpression assessment by IHC could be easily included within the current battery of markers for stratifying PPGL patients to fine-tune their clinical diagnoses. Abstract One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
Collapse
|
27
|
Flores SK, Estrada-Zuniga CM, Thallapureddy K, Armaiz-Peña G, Dahia PLM. Insights into Mechanisms of Pheochromocytomas and Paragangliomas Driven by Known or New Genetic Drivers. Cancers (Basel) 2021; 13:cancers13184602. [PMID: 34572828 PMCID: PMC8467373 DOI: 10.3390/cancers13184602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Pheochromocytomas and paragangliomas are rare neuroendocrine tumors that are often hereditary. Although research has advanced considerably, significant gaps still persist in understanding risk factors, predicting metastatic potential and treating aggressive tumors. The study of rare mutations can provide new insights into how pheochromocytomas and paragangliomas develop. In this review, we provide examples of such rare events and how they can inform our understanding of the spectrum of mutations that can lead to these tumors and improve our ability to provide a genetic diagnosis. Abstract Pheochromocytomas and paragangliomas are rare tumors of neural crest origin. Their remarkable genetic diversity and high heritability have enabled discoveries of bona fide cancer driver genes with an impact on diagnosis and clinical management and have consistently shed light on new paradigms in cancer. In this review, we explore unique mechanisms of pheochromocytoma and paraganglioma initiation and management by drawing from recent examples involving rare mutations of hypoxia-related genes VHL, EPAS1 and SDHB, and of a poorly known susceptibility gene, TMEM127. These models expand our ability to predict variant pathogenicity, inform new functional domains, recognize environmental-gene connections, and highlight persistent therapeutic challenges for tumors with aggressive behavior.
Collapse
Affiliation(s)
- Shahida K. Flores
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Cynthia M. Estrada-Zuniga
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Keerthi Thallapureddy
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Gustavo Armaiz-Peña
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Patricia L. M. Dahia
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
28
|
Mete O, Pakbaz S, Lerario AM, Giordano TJ, Asa SL. Significance of Alpha-inhibin Expression in Pheochromocytomas and Paragangliomas. Am J Surg Pathol 2021; 45:1264-1273. [PMID: 33826547 DOI: 10.1097/pas.0000000000001715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-inhibin expression has been reported in pheochromocytomas and paragangliomas (PPGLs). We analyzed alpha-inhibin immunohistochemistry in 77 PPGLs (37 pheochromocytomas [PCCs] and 40 paragangliomas) and correlated the results with catecholamine profile, tumor size, Ki-67 labeling index, succinate dehydrogenase B subunit and carbonic anhydrase IX (CAIX) staining, and genetic pathogenesis. PPGLs were classified as pseudohypoxic cluster 1 disease with documented VHL mutation or SDHx mutation or biochemical phenotype, whereas NF1-driven and RET-driven PPGLs and those with a mature secretory (adrenergic or mixed adrenergic and noradrenergic) phenotype were classified as cluster 2 disease. The Cancer Genome Atlas data on INHA expression in PPGLs was examined. Alpha-inhibin was positive in 43 PPGLs (56%). Ki-67 labeling indices were 8.07% and 4.43% in inhibin-positive and inhibin-negative PPGLs, respectively (P<0.05). Alpha-inhibin expression did not correlate with tumor size. Alpha-inhibin was expressed in 92% of SDHx-related and 86% of VHL-related PPGLs. CAIX membranous staining was found in 8 of 51 (16%) tumors, including 1 SDHx-related PCC and all 5 VHL-related PCCs. NF1-driven and RET-driven PPGLs were negative for alpha-inhibin and CAIX. Alpha-inhibin was expressed in 77% of PPGLs with a pseudohypoxia signature, and 20% of PPGLs without a pseudohypoxia signature (P<0.05). PPGLs with a mature secretory phenotype were negative for CAIX. The Cancer Genome Atlas data confirmed higher expression of INHA in cluster 1 than in cluster 2 PPGLs. This study identifies alpha-inhibin as a highly sensitive (90.3%) marker for SDHx/VHL-driven pseudohypoxic PPGLs. Although CAIX has low sensitivity, it is the most specific biomarker of VHL-related pathogenesis. While alpha-inhibin cannot replace succinate dehydrogenase B subunit immunohistochemistry for detection of SDHx-related disease, it adds value in prediction of cluster 1 disease. Importantly, these data emphasize that alpha-inhibin is not a specific marker of adrenal cortical differentiation, as it is also expressed in PCCs.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Endocrine Oncology Site, The Princess Margaret Cancer Centre
| | - Sara Pakbaz
- Department of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
| | - Thomas J Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH
| |
Collapse
|
29
|
Casey R, Neumann HPH, Maher ER. Genetic stratification of inherited and sporadic phaeochromocytoma and paraganglioma: implications for precision medicine. Hum Mol Genet 2021; 29:R128-R137. [PMID: 33059362 DOI: 10.1093/hmg/ddaa201] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades advances in genomic technologies have transformed knowledge of the genetic basis of phaeochromocytoma and paraganglioma (PPGL). Though traditional teaching suggested that inherited cases accounted for only 10% of all phaeochromocytoma diagnosis, current estimates are at least three times this proportion. Inherited PPGL is a highly genetically heterogeneous disorder but the most frequently results from inactivating variants in genes encoding subunits of succinate dehydrogenase. Expanding knowledge of the genetics of PPGL has been translated into clinical practice by the provision of widespread testing for inherited PPGL. In this review, we explore how the molecular stratification of PPGL is being utilized to enable more personalized strategies for investigation, surveillance and management of affected individuals and their families. Translating recent genetic research advances into clinical service can not only bring benefits through more accurate diagnosis and risk prediction but also challenges when there is a suboptimal evidence base for the clinical consequences or significance of rare genotypes. In such cases, clinical, biochemical, pathological and functional imaging assessments can all contribute to more accurate interpretation and clinical management.
Collapse
Affiliation(s)
- Ruth Casey
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.,Department of Endocrinology, Cambridge University Hospital Foundation Trust, Cambridge CB2 0QQ, UK
| | - Hartmut P H Neumann
- Section for Preventive Medicine, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| |
Collapse
|
30
|
Anderson NM, Qin X, Finan JM, Lam A, Athoe J, Missiaen R, Skuli N, Kennedy A, Saini AS, Tao T, Zhu S, Nissim I, Look AT, Qing G, Simon MC, Feng H. Metabolic Enzyme DLST Promotes Tumor Aggression and Reveals a Vulnerability to OXPHOS Inhibition in High-Risk Neuroblastoma. Cancer Res 2021; 81:4417-4430. [PMID: 34233924 DOI: 10.1158/0008-5472.can-20-2153] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/13/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
High-risk neuroblastoma remains therapeutically challenging to treat, and the mechanisms promoting disease aggression are poorly understood. Here, we show that elevated expression of dihydrolipoamide S-succinyltransferase (DLST) predicts poor treatment outcome and aggressive disease in patients with neuroblastoma. DLST is an E2 component of the α-ketoglutarate (αKG) dehydrogenase complex, which governs the entry of glutamine into the tricarboxylic acid cycle (TCA) for oxidative decarboxylation. During this irreversible step, αKG is converted into succinyl-CoA, producing NADH for oxidative phosphorylation (OXPHOS). Utilizing a zebrafish model of MYCN-driven neuroblastoma, we demonstrate that even modest increases in DLST expression promote tumor aggression, while monoallelic dlst loss impedes disease initiation and progression. DLST depletion in human MYCN-amplified neuroblastoma cells minimally affected glutamine anaplerosis and did not alter TCA cycle metabolites other than αKG. However, DLST loss significantly suppressed NADH production and impaired OXPHOS, leading to growth arrest and apoptosis of neuroblastoma cells. In addition, multiple inhibitors targeting the electron transport chain, including the potent IACS-010759 that is currently in clinical testing for other cancers, efficiently reduced neuroblastoma proliferation in vitro. IACS-010759 also suppressed tumor growth in zebrafish and mouse xenograft models of high-risk neuroblastoma. Together, these results demonstrate that DLST promotes neuroblastoma aggression and unveils OXPHOS as an essential contributor to high-risk neuroblastoma. SIGNIFICANCE: These findings demonstrate a novel role for DLST in neuroblastoma aggression and identify the OXPHOS inhibitor IACS-010759 as a potential therapeutic strategy for this deadly disease.
Collapse
Affiliation(s)
- Nicole M Anderson
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer M Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew Lam
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Jacob Athoe
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Rindert Missiaen
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Annie Kennedy
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amandeep S Saini
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Ting Tao
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guoliang Qing
- Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
31
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of germline and somatic genetics and genomics of pheochromocytomas and paragangliomas (PCC/PGL), describes existing knowledge gaps, and discusses future research directions. RECENT FINDINGS Germline pathogenic variants (PVs) are found in up to 40% of those with PCC/PGL. Tumors with germline PVs are broadly categorized as Cluster 1 (pseudohypoxia), including those with SDH, VHL, FH, and EPAS1 PVs, or Cluster 2 (kinase signaling) including those with NF1, RET, TMEM127, and MAX PVs. Somatic driver mutations exist in some of the same genes (RET, VHL, NF1, EPAS1) as well as in additional genes including HRAS, CSDE1 and genes involved in cell immortalization (ATRX and TERT). Other somatic driver events include recurrent fusion genes involving MAML3. SUMMARY PCC/PGL have the highest association with germline PVs of all human solid tumors. Expanding our understanding of the molecular pathogenesis of PCC/PGL is essential to advancements in diagnosis and surveillance and the development of novel therapies for these unique tumors.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren Fishbein
- University of Colorado School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and the Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
33
|
Granberg D, Juhlin CC, Falhammar H. Metastatic Pheochromocytomas and Abdominal Paragangliomas. J Clin Endocrinol Metab 2021; 106:e1937-e1952. [PMID: 33462603 PMCID: PMC8063253 DOI: 10.1210/clinem/dgaa982] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are believed to harbor malignant potential; about 10% to 15% of pheochromocytomas and up to 50% of abdominal paragangliomas will exhibit metastatic behavior. EVIDENCE ACQUISITION Extensive searches in the PubMed database with various combinations of the key words pheochromocytoma, paraganglioma, metastatic, malignant, diagnosis, pathology, genetic, and treatment were the basis for the present review. DATA SYNTHESIS To pinpoint metastatic potential in PPGLs is difficult, but nevertheless crucial for the individual patient to receive tailor-made follow-up and adjuvant treatment following primary surgery. A combination of histological workup and molecular predictive markers can possibly aid the clinicians in this aspect. Most patients with PPGLs have localized disease and may be cured by surgery. Plasma metanephrines are the main biochemical tests. Genetic testing is important, both for counseling and prognostic estimation. Apart from computed tomography and magnetic resonance imaging, molecular imaging using 68Ga-DOTATOC/DOTATATE should be performed. 123I-MIBG scintigraphy may be performed to determine whether 131I-MIBG therapy is a possible option. As first-line treatment in patients with metastatic disease, 177Lu-DOTATATE or 131I-MIBG is recommended, depending on which shows best expression. In patients with very low proliferative activity, watch-and-wait or primary treatment with long-acting somatostatin analogues may be considered. As second-line treatment, or first-line in patients with high proliferative rate, chemotherapy with temozolomide or cyclophosphamide + vincristine + dacarbazine is the therapy of choice. Other therapies, including sunitinib, cabozantinib, everolimus, and PD-1/PDL-1 inhibitors, have shown modest effect. CONCLUSIONS Metastatic PPGLs need individualized management and should always be discussed in specialized and interdisciplinary tumor boards. Further studies and newer treatment modalities are urgently needed.
Collapse
Affiliation(s)
- Dan Granberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Fishbein L, Del Rivero J, Else T, Howe JR, Asa SL, Cohen DL, Dahia PLM, Fraker DL, Goodman KA, Hope TA, Kunz PL, Perez K, Perrier ND, Pryma DA, Ryder M, Sasson AR, Soulen MC, Jimenez C. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma. Pancreas 2021; 50:469-493. [PMID: 33939658 DOI: 10.1097/mpa.0000000000001792] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT This manuscript is the result of the North American Neuroendocrine Tumor Society consensus conference on the medical management and surveillance of metastatic and unresectable pheochromocytoma and paraganglioma held on October 2 and 3, 2019. The panelists consisted of endocrinologists, medical oncologists, surgeons, radiologists/nuclear medicine physicians, nephrologists, pathologists, and radiation oncologists. The panelists performed a literature review on a series of questions regarding the medical management of metastatic and unresectable pheochromocytoma and paraganglioma as well as questions regarding surveillance after resection. The panelists voted on controversial topics, and final recommendations were sent to all panel members for final approval.
Collapse
Affiliation(s)
- Lauren Fishbein
- From the Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - James R Howe
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center and University Health Network, Toronto, Case Western Reserve University, Cleveland, OH
| | - Debbie L Cohen
- Renal Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Patricia L M Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Douglas L Fraker
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Pamela L Kunz
- Division of Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nancy D Perrier
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel A Pryma
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mabel Ryder
- Endocrine Oncology Tumor Group, Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - Aaron R Sasson
- Division of Surgical Oncology, Department of Surgery, Stony Brook University Medical Center, Stony Brook, NY
| | - Michael C Soulen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
35
|
Gao Y, Ling C, Ma X, Wang H, Cui Y, Nie M, Tong A. Recurrent Germline Mutations of CHEK2 as a New Susceptibility Gene in Patients with Pheochromocytomas and Paragangliomas. Int J Endocrinol 2021; 2021:1392386. [PMID: 34630562 PMCID: PMC8497153 DOI: 10.1155/2021/1392386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Recently, pheochromocytomas and paragangliomas (PPGLs) have been strongly suspected as hereditary tumors, as approximately 40% of patients carry germline mutations. In the cancers where defects occur to corrupt DNA repair and facilitate tumorigenesis, a CHEK2 strong association has been observed. Therefore, the purpose of this study was to investigate the effect of CHEK2 mutations for its possible pathogenicity in PPGLs. METHODS Four patients with CHEK2 mutations were recruited, as previously detected by the whole exome sequencing. Sanger sequencing was used to verify the germline mutations as well as the loss of heterozygosities (LOHs) in their somatic DNAs. Immunohistochemistry was used to analyze the expression of CHEK2 and its downstream target p53 Ser20 (phosphorylated p53). RESULTS The average age of studied patients was 44.25 ± 11.18 years, at the time diagnosis. One patient had multiple tumors which recurred quickly, while two patients had distant metastasis. None of the patient had any relevant family history. Four germline CHEK2 mutations were identified (c.246_260del; c.715G > A; c.1008+3A > T; and c.1111C > T). All the patients were predicted to have either pathogenic or suspected pathogenic mutations. There was no LOH of CHEK2 gene in somatic DNAs found. Additionally, neither CHEK2 proteins nor its downstream target p53 Ser20 were expressed in the tumor tissues. The inactivation of CHEK2 leads to the decrease in the p53 phosphorylation, which might promote tumorigenesis. CONCLUSIONS For the first time, CHEK2 was identified as a susceptibility gene for PPGLs. However, the penetrance of CHEK2 gene with genotype-phenotype correlation needs to be investigated.
Collapse
Affiliation(s)
- Yinjie Gao
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chao Ling
- Laboratory of Clinical Genetics (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaosen Ma
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huiping Wang
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yunying Cui
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Nie
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Anli Tong
- NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
36
|
Dariane C, Goncalves J, Timsit MO, Favier J. An update on adult forms of hereditary pheochromocytomas and paragangliomas. Curr Opin Oncol 2021; 33:23-32. [PMID: 33186184 DOI: 10.1097/cco.0000000000000694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas (PPGL) display a strong genetic determinism with 40% of inherited forms. The purpose of this review is to provide an update on current knowledge on adult forms of hereditary PPGL and their management. RECENT FINDINGS PPGL are genetically-driven in 70% of cases, with germline and/or somatic mutations identified in more than 20 genes. Although eight new susceptibility genes have recently emerged, mutations on SDHx genes remain the most frequent. In addition to SDHB, mutations in SLC25A11, FH and MDH2 may predispose to a metastatic disease and somatic alterations including TERT and ATRX mutations, and the differential expression on noncoding RNAs are also associated with the occurrence of metastases.The biochemical diagnosis remains the mainstay of functional PPGL and does not differ between hereditary PPGL while the choice of the best nuclear imaging approach is dictated by the tumor type and can be influenced by the presence of a germline mutation (18F-DOPA PET/CT for cluster 2 mutation and Ga-DOTATATE PET/CT for cluster 1 mutation). SUMMARY A systematic genetic testing and counselling is recommended for all PPGL patients and should lead to conservative surgery and an adapted follow up, in case of hereditary form.
Collapse
Affiliation(s)
- Charles Dariane
- Service d'urologie, Hôpital européen Georges-Pompidou, Université de Paris
| | - Judith Goncalves
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Marc-Olivier Timsit
- Service d'urologie, Hôpital européen Georges-Pompidou, Université de Paris
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| |
Collapse
|
37
|
Novel DNMT3A Germline Variant in a Patient with Multiple Paragangliomas and Papillary Thyroid Carcinoma. Cancers (Basel) 2020; 12:cancers12113304. [PMID: 33182397 PMCID: PMC7697455 DOI: 10.3390/cancers12113304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The use of next generation technologies has helped to unravel the genetics of rare inherited diseases, facilitating the discovery of new susceptibility genes. Nonetheless, the sequencing of all protein-coding genes of an individual may lead to doubtful assignments of causality for non-pathological variants, so it is mandatory to perform comprehensive studies and screening of additional patients for new mutations. Here we describe a novel DNMT3A germline variant identified by whole-exome sequencing in a patient with multiple paragangliomas and papillary thyroid carcinoma. The increased methylation of DNMT3A target genes observed in the proband’s sample points towards a gain-of-function effect of the variant, contrasting with the inactivation caused by loss-of-function alterations commonly seen in other neoplasia and in patients with Tatton-Brown-Rahman syndrome. This finding stresses the diverse molecular outcomes and suggests a heterogeneous phenotypic spectrum related to DNMT3A germline variants. Abstract Over the past few years, next generation technologies have been applied to unravel the genetics of rare inherited diseases, facilitating the discovery of new susceptibility genes. We recently found germline DNMT3A gain-of-function variants in two patients with head and neck paragangliomas causing a characteristic hypermethylated DNA profile. Here, whole-exome sequencing identifies a novel germline DNMT3A variant (p.Gly332Arg) in a patient with bilateral carotid paragangliomas, papillary thyroid carcinoma and idiopathic intellectual disability. The variant, located in the Pro-Trp-Trp-Pro (PWWP) domain of the protein involved in chromatin targeting, affects a residue mutated in papillary thyroid tumors and located between the two residues found mutated in microcephalic dwarfism patients. Structural modelling of the variant in the DNMT3A PWWP domain predicts that the interaction with H3K36me3 will be altered. An increased methylation of DNMT3A target genes, compatible with a gain-of-function effect of the alteration, was observed in saliva DNA from the proband and in one independent acute myeloid leukemia sample carrying the same p.Gly332Arg variant. Although further studies are needed to support a causal role of DNMT3A variants in paraganglioma, the description of a new DNMT3A alteration in a patient with multiple clinical features suggests a heterogeneous phenotypic spectrum related to DNMT3A germline variants.
Collapse
|
38
|
Bailey PSJ, Ortmann BM, Martinelli AW, Houghton JW, Costa ASH, Burr SP, Antrobus R, Frezza C, Nathan JA. ABHD11 maintains 2-oxoglutarate metabolism by preserving functional lipoylation of the 2-oxoglutarate dehydrogenase complex. Nat Commun 2020; 11:4046. [PMID: 32792488 PMCID: PMC7426941 DOI: 10.1038/s41467-020-17862-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG dependent dioxygenase function. ABHD11 loss or inhibition drives a rapid increase in 2-OG levels by impairing lipoylation of the 2-OG dehydrogenase complex (OGDHc)-the rate limiting step for mitochondrial 2-OG metabolism. Rather than facilitating lipoate conjugation, ABHD11 associates with the OGDHc and maintains catalytic activity of lipoyl domain by preventing the formation of lipoyl adducts, highlighting ABHD11 as a regulator of functional lipoylation and 2-OG metabolism.
Collapse
Affiliation(s)
- Peter S J Bailey
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Anthony W Martinelli
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jack W Houghton
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Stephen P Burr
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - James A Nathan
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
39
|
Sciacovelli M, Schmidt C, Maher ER, Frezza C. Metabolic Drivers in Hereditary Cancer Syndromes. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033612] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is a multifaceted disease in which inherited genetic variants can be important drivers of tumorigenesis. The discovery that germline mutations of metabolic genes predispose to familial forms of cancer caused a shift in our understanding of how metabolism contributes to tumorigenesis, providing evidence that metabolic alterations can be oncogenic. In this review, we focus on mitochondrial enzymes whose mutations predispose to familial cancer, and we fully appraise their involvement in cancer formation and progression. Elucidating the molecular mechanisms that orchestrate transformation in these diverse tumors may answer key biological questions about tumor formation and evolution, leading to the identification of new therapeutic targets of intervention.
Collapse
Affiliation(s)
- Marco Sciacovelli
- MRC (Medical Research Council) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom;,
| | - Christina Schmidt
- MRC (Medical Research Council) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom;,
| | - Eamonn R. Maher
- Department of Medical Genetics, NIHR (National Institute of Health Research) Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Christian Frezza
- MRC (Medical Research Council) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom;,
| |
Collapse
|
40
|
Buffet A, Burnichon N, Favier J, Gimenez-Roqueplo AP. An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2020; 34:101416. [PMID: 32295730 DOI: 10.1016/j.beem.2020.101416] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paragangliomas and pheochromocytomas (PPGL) are rare neuroendocrine tumours characterized by a strong genetic determinism. Over the past 20 years, evolution of PPGL genetics has revealed that around 40% of PPGL are genetically determined, secondary to a germline mutation in one of more than twenty susceptibility genes reported so far. More than half of the mutations occur in one of the SDHx genes (SDHA, SDHB, SDHC, SDHD, SDHAF2), which encode the different subunits and assembly protein of a mitochondrial enzyme, succinate dehydrogenase. These susceptibility genes predispose to early forms (VHL, RET, SDHD, EPAS1, DLST), syndromic (RET, VHL, EPAS1, NF1, FH), multiple (SDHD, TMEM127, MAX, DLST, MDH2, GOT2) or malignant (SDHB, FH, SLC25A11) PPGL. The discovery of a germline mutation in one of these genes changes the patient's follow-up and allows genetic screening of affected families and the presymptomatic follow-up of relatives carrying a mutation.
Collapse
Affiliation(s)
- Alexandre Buffet
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015, Paris, France.
| | - Nelly Burnichon
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015, Paris, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015, Paris, France
| |
Collapse
|
41
|
Albattal S, Alswailem M, Moria Y, Al-Hindi H, Dasouki M, Abouelhoda M, Alkhail HA, Alsuhaibani E, Alzahrani AS. Mutational profile and genotype/phenotype correlation of non-familial pheochromocytoma and paraganglioma. Oncotarget 2019; 10:5919-5931. [PMID: 31666924 PMCID: PMC6800268 DOI: 10.18632/oncotarget.27194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
About 30%-40% of patients with pheochromocytoma (PCC) and paraganglioma (PGL) have underlying germline mutations in certain susceptibility genes despite absent family history of these tumors. Here, we present mutational profile of 101 such patients with PCC/PGL (PPGL) from the highly consanguineous population of Saudi Arabia. Results: Of 101 cases with PPGL, 37/101 (36.6%) had germline mutations. Mutations were detected in 30 cases by PCR and direct Sanger sequencing and in 7 additional cases by NGS. The most commonly mutated gene was SDHB (21/101 cases, 20.8%) and the most common SDHB mutation was c.268C>T, p.R90X occurring in 12/21 (57%) cases. Mutations also occurred in SDHC (4/101, 3.96%), SDHD (3/101, 3%), VHL (2/101, 2%) and MAX (2/101, 2%) genes. The following genes were mutated in 1 patient each (1%), RET, SDHA, SDHAF2, TMEM127 and NF1. Metastatic PPGL occurred in 6/21 cases (28.6%) with SDHB mutations and in 1 case with SDHAF2 mutation. Patients and Methods: DNA was isolated from peripheral blood (53 patients) or from non-tumorous formalin fixed paraffin embedded (FFPE) tissue (48 patients). PCR and direct Sanger sequencing of RET, SDHx, VHL, MAX and TMEM127 genes were performed. Cases without mutations were subjected to whole exome sequencing using next generation sequencing (NGS). Conclusion: About 37% of PPGL without family history of such tumors harbor germline mutations. The most commonly mutated gene is SDHB followed by SDHC, SDHD, VHL, MAX and rarely RET, SDHA, SDHAF2, TMEM127 and NF1. SDHB mutations were associated with metastatic PPGL in more than a quarter of cases.
Collapse
Affiliation(s)
- Shatha Albattal
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Faculty of Science, King Saud University, Riyadh 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yosra Moria
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Hala Aba Alkhail
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
42
|
Abstract
Pheochromocytomas and paragangliomas (PCC/PGL) are neuroendocrine tumors of the adrenal medulla and extra-adrenal ganglia which often over-secrete catecholamines leading to cardiovascular morbidity and even mortality. These unique tumors have the highest heritability of all solid tumor types with up to 35-40% of patients with PCC/PGL having a germline predisposition. PURPOSE OF REVIEW: To review the germline susceptibility genes and clinical syndromes associated with PCC/PGL. RECENT FINDINGS: There are over 12 PCC/PGL susceptibility genes identified in a wide range of pathways. Each gene is associated with a clinical syndrome with varying penetrance for both primary and metastatic PCC/PGL and often includes increased risk for additional tumors besides PCC/PGL. Patients with sporadic or hereditary PCC/PGL should be monitored for life given the risk of multiple primary tumors, recurrence, and metastatic disease. All patients with PCC/PGL should be referred for consideration for clinical genetic testing given the high heritability of disease.
Collapse
Affiliation(s)
- Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, 12801 E. 17th Ave, MS 8106, Aurora, CO, 80045, USA.
| |
Collapse
|
43
|
Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers (Basel) 2019; 11:cancers11060809. [PMID: 31212687 PMCID: PMC6627084 DOI: 10.3390/cancers11060809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors with a strong hereditary background and a large genetic heterogeneity. Identification of the underlying genetic cause is crucial for the management of patients and their families as it aids differentiation between hereditary and sporadic cases. To improve diagnostics and clinical management we tailored an enrichment based comprehensive multi-gene next generation sequencing panel applicable to both analyses of tumor tissue and blood samples. We applied this panel to tumor samples and compared its performance to our current routine diagnostic approach. Routine diagnostic sequencing of 11 PPGL susceptibility genes was applied to blood samples of 65 unselected PPGL patients at a single center in Dresden, Germany. Predisposing germline mutations were identified in 19 (29.2%) patients. Analyses of 28 PPGL tumor tissues using the dedicated PPGL panel revealed pathogenic or likely pathogenic variants in known PPGL susceptibility genes in 21 (75%) cases, including mutations in IDH2, ATRX and HRAS. These mutations suggest sporadic tumor development. Our results imply a diagnostic benefit from extended molecular tumor testing of PPGLs and consequent improvement of patient management. The approach is promising for determination of prognostic biomarkers that support therapeutic decision-making.
Collapse
|
44
|
Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background. Cancers (Basel) 2019; 11:cancers11060743. [PMID: 31142060 PMCID: PMC6627450 DOI: 10.3390/cancers11060743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel–Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.
Collapse
|
45
|
Cascón A, Remacha L, Calsina B, Robledo M. Pheochromocytomas and Paragangliomas: Bypassing Cellular Respiration. Cancers (Basel) 2019; 11:E683. [PMID: 31100940 PMCID: PMC6562521 DOI: 10.3390/cancers11050683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract: Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors that show the highest heritability of all human neoplasms and represent a paradoxical example of genetic heterogeneity. Amongst the elevated number of genes involved in the hereditary predisposition to the disease (at least nineteen) there are eleven tricarboxylic acid (TCA) cycle-related genes, some of which are also involved in the development of congenital recessive neurological disorders and other cancers such as cutaneous and uterine leiomyomas, gastrointestinal tumors and renal cancer. Somatic or germline mutation of genes encoding enzymes catalyzing pivotal steps of the TCA cycle not only disrupts cellular respiration, but also causes severe alterations in mitochondrial metabolite pools. These latter alterations lead to aberrant accumulation of "oncometabolites" that, in the end, may lead to deregulation of the metabolic adaptation of cells to hypoxia, inhibition of the DNA repair processes and overall pathological changes in gene expression. In this review, we will address the TCA cycle mutations leading to the development of PPGL, and we will discuss the relevance of these mutations for the transformation of neural crest-derived cells and potential therapeutic approaches based on the emerging knowledge of underlying molecular alterations.
Collapse
Affiliation(s)
- Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Laura Remacha
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|