1
|
Yu T, Yu M, Liu X, Wang H. TUBGCP2 variants cause lissencephaly spectrum disorders: a case report and literature review. Front Pediatr 2025; 13:1476390. [PMID: 40017707 PMCID: PMC11866843 DOI: 10.3389/fped.2025.1476390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Background TUBGCP2 variants are associated with the LIS spectrum disorders, but its pathogenesis remains unclear. To retrospectively analyze the clinical features and genetic information of patients having lissencephaly spectrum disorders associated with TUBGCP2 variants. Methods Clinical and genetic data of a patient diagnosed with TUBGCP2-related lissencephaly spectrum disorder at the Department of Pediatric Neurology, Shengjing Hospital, in March 2022 were collected. Furthermore, we reviewed previously reported literature on patients with the same gene variation. Results A 6-year-old female patient presented with microcephaly (head circumference: 46 cm, Z score: <-3), narrow forehead, thick eyebrows, bulbous nose, smooth philtrum, widened and separated teeth, speech and motor developmental delay, intellectual disability, and seizures. Brain magnetic resonance imaging showed pachygyria in the temporal, parietal, and occipital lobes. Gene testing identified hemizygous variation in TUBGCP2 (missense variants: c.178 C>T, c.538T>C, and maternal exon variant: 2-14 deletion). A literature search revealed seven patients with lissencephaly spectrum disorders associated with TUBGCP2 variants, including eight gene variation types. Moreover, the TUBGCP2 variants were found to cause lissencephaly spectrum diseases, with the main clinical manifestations being microcephaly, lissencephaly (including agyria, pachygyria, or subcortical band heterotopia), dysmorphic facial features (e.g., narrow forehead, thick eyebrows, bulbous nose, prominent ears, and widened and separated teeth), and developmental delay, with or without seizures. Conclusion Our study expands the genotype of this brain malformation disorder associated with TUBGCP2 variants by presenting the first case of TUBGCP2 variants causing lissencephaly spectrum disorders in China.
Collapse
Affiliation(s)
| | | | - Xueyan Liu
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Kooshavar D, Amor DJ, Boggs K, Baker N, Barnett C, de Silva MG, Edwards S, Fahey MC, Marum JE, Snell P, Bozaoglu K, Pope K, Mohammad SS, Riney K, Sachdev R, Scheffer IE, Schenscher S, Silberstein J, Smith N, Tom M, Ware TL, Lockhart PJ, Leventer RJ. Diagnostic utility of exome sequencing followed by research reanalysis in human brain malformations. Brain Commun 2024; 6:fcae056. [PMID: 38444904 PMCID: PMC10914449 DOI: 10.1093/braincomms/fcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to determine the diagnostic yield of singleton exome sequencing and subsequent research-based trio exome analysis in children with a spectrum of brain malformations seen commonly in clinical practice. We recruited children ≤ 18 years old with a brain malformation diagnosed by magnetic resonance imaging and consistent with an established list of known genetic causes. Patients were ascertained nationally from eight tertiary paediatric centres as part of the Australian Genomics Brain Malformation Flagship. Chromosome microarray was required for all children, and those with pathogenic copy number changes were excluded. Cytomegalovirus polymerase chain reaction on neonatal blood spots was performed on all children with polymicrogyria with positive patients excluded. Singleton exome sequencing was performed through a diagnostic laboratory and analysed using a clinical exome sequencing pipeline. Undiagnosed patients were followed up in a research setting, including reanalysis of the singleton exome data and subsequent trio exome sequencing. A total of 102 children were recruited. Ten malformation subtypes were identified with the commonest being polymicrogyria (36%), pontocerebellar hypoplasia (14%), periventricular nodular heterotopia (11%), tubulinopathy (10%), lissencephaly (10%) and cortical dysplasia (9%). The overall diagnostic yield for the clinical singleton exome sequencing was 36%, which increased to 43% after research follow-up. The main source of increased diagnostic yield was the reanalysis of the singleton exome data to include newly discovered gene-disease associations. One additional diagnosis was made by trio exome sequencing. The highest phenotype-based diagnostic yields were for cobblestone malformation, tubulinopathy and lissencephaly and the lowest for cortical dysplasia and polymicrogyria. Pathogenic variants were identified in 32 genes, with variants in 6/32 genes occurring in more than one patient. The most frequent genetic diagnosis was pathogenic variants in TUBA1A. This study shows that over 40% of patients with common brain malformations have a genetic aetiology identified by exome sequencing. Periodic reanalysis of exome data to include newly identified genes was of greater value in increasing diagnostic yield than the expansion to trio exome. This study highlights the genetic and phenotypic heterogeneity of brain malformations, the importance of a multidisciplinary approach to diagnosis and the large number of patients that remain without a genetic diagnosis despite clinical exome sequencing and research reanalysis.
Collapse
Affiliation(s)
- Daniz Kooshavar
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kirsten Boggs
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Department of Clinical Genetics, The Children’s Hospital Westmead, Westmead, NSW 2145, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Naomi Baker
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Christopher Barnett
- SA Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Michelle G de Silva
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | | | - Penny Snell
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Kiymet Bozaoglu
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kate Pope
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Shekeeb S Mohammad
- Department of Neurology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kate Riney
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Ingrid E Scheffer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health and Florey Institute, Heidelberg, VIC 3084, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Sarah Schenscher
- Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, Adelaide, SA 5006Australia
| | - John Silberstein
- Department of Neurology, Princess Margaret Hospital, Nedlands, WA 6009, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Melanie Tom
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4029Australia
| | - Tyson L Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Paul J Lockhart
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard J Leventer
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Ramesh Babu PB. Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools. J Genet Eng Biotechnol 2023; 21:78. [PMID: 37466845 DOI: 10.1186/s43141-023-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Tubulins are highly conserved globular proteins involved in stabilization of cellular cytoskeletal microtubules during cell cycle. Different isoforms of tubulins are differentially expressed in various cell types, and their protein-protein interactions (PPIs) analysis will help in identifying the anti-microtubular drug targets for cancer and neurological disorders. Numerous web-based PPIs analysis methods are recently being used, and in this paper, I used Gene Ontology (GO) tools, e.g., Stringbase, ProteomeHD, GeneMANIA, and ShinyGO, to identify anti-microtubular target proteins by selecting strongly interacting proteins of tubulins. RESULTS I used 6 different human tubulin isoforms (two from each of α-, β-, and γ-tubulin) and found several thousands of node-to-node protein interactions (highest 4956 in GeneMANIA) and selected top 10 strongly interacting node-to-node interactions with highest score, which included 7 tubulin family protein and 6 non-tubulin family proteins (total 13). Functional enrichment analysis indicated a significant role of these 13 proteins in nucleation, polymerization or depolymerization of microtubules, membrane tethering and docking, dorsal root ganglion development, mitotic cycle, and cytoskeletal organization. I found γ-tubulins (TUBG1, TUBGCP4, and TUBBGCP6) were known to contribute majorly for tubulin-associated functions followed by α-tubulin (TUBA1A) and β-tubulins (TUBB AND TUBB3). In PPI results, I found several non-tubular proteins interacting with tubulins, and six of them (HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41) were found closely associated with their functions. CONCLUSIONS Increasing number of regulatory proteins and subpopulation of tubulin proteins are being reported with poor understanding in their association with microtubule assembly and disassembly. The functional enrichment analysis of tubulin isoforms using recent GO tools resulted in identification of γ-tubulins playing a key role in microtubule functions and observed non-tubulin family of proteins HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41 strongly interacting functional proteins of tubulins. The present study yields a promising model system using GO tools to narrow down tubulin-associated proteins as a drug target in cancer, Alzheimer's, neurological disorders, etc.
Collapse
Affiliation(s)
- Polani B Ramesh Babu
- Center for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath Institute of Science and Technology, Selaiyur, Tambaram, Chennai, India.
| |
Collapse
|
4
|
Tuncay IO, DeVries D, Gogate A, Kaur K, Kumar A, Xing C, Goodspeed K, Seyoum-Tesfa L, Chahrour MH. The genetics of autism spectrum disorder in an East African familial cohort. CELL GENOMICS 2023; 3:100322. [PMID: 37492102 PMCID: PMC10363748 DOI: 10.1016/j.xgen.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 04/16/2023] [Indexed: 07/27/2023]
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions affecting communication and social interaction in 2.3% of children. Studies that demonstrated its complex genetic architecture have been mainly performed in populations of European ancestry. We investigate the genetics of ASD in an East African cohort (129 individuals) from a population with higher prevalence (5%). Whole-genome sequencing identified 2.13 million private variants in the cohort and potentially pathogenic variants in known ASD genes (including CACNA1C, CHD7, FMR1, and TCF7L2). Admixture analysis demonstrated that the cohort comprises two ancestral populations, African and Eurasian. Admixture mapping discovered 10 regions that confer ASD risk on the African haplotypes, containing several known ASD genes. The increased ASD prevalence in this population suggests decreased heterogeneity in the underlying genetic etiology, enabling risk allele identification. Our approach emphasizes the power of African genetic variation and admixture analysis to inform the architecture of complex disorders.
Collapse
Affiliation(s)
- Islam Oguz Tuncay
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Bartoszewski S, Dawidziuk M, Kasica N, Durak R, Jurek M, Podwysocka A, Guilbride DL, Podlasz P, Winata CL, Gawlinski P. A Zebrafish/Drosophila Dual System Model for Investigating Human Microcephaly. Cells 2022; 11:cells11172727. [PMID: 36078134 PMCID: PMC9455030 DOI: 10.3390/cells11172727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Microcephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in TUBGCP2, a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall short. We present an alternative simple vertebrate/invertebrate dual system to investigate fundamental TUBGCP2-related processes driving human microcephaly and associated developmental traits. We show that antisense morpholino knockdown (KD) of the Danio rerio homolog, tubgcp2, recapitulates human TUBGCP2-associated microcephaly. Co-injection of wild type mRNA pre-empts microcephaly in 55% of KD zebrafish larvae, confirming causality. Body shortening observed in morphants is also rescued. Mitotic marker (pH3) staining further reveals aberrantly accumulated dividing brain cells in microcephalic tubgcp2 KD morphants, indicating that tubgcp2 depletion disrupts normal mitosis and/or proliferation in zebrafish neural progenitor brain cells. Drosophila melanogaster double knockouts (KO) for TUBGCP2 homologs Grip84/cg7716 also develop microcephalic brains with general microsomia. Exacerbated Grip84/cg7716-linked developmental aberration versus single mutations strongly suggests interactive or coinciding gene functions. We infer that tubgcp2 and Grip84/cg7716 affect brain size similarly to TUBGCP2 and recapitulate both microcephaly and microcephaly-associated developmental impact, validating the zebrafish/fly research model for human microcephaly. Given the conserved cross-phyla homolog function, the data also strongly support mitotic and/or proliferative disruption linked to aberrant microtubule nucleation in progenitor brain cells as key mechanistic defects for human microcephaly.
Collapse
Affiliation(s)
- Slawomir Bartoszewski
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Roma Durak
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Marta Jurek
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Aleksandra Podwysocka
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Cecilia Lanny Winata
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
- Correspondence:
| |
Collapse
|
6
|
Herman I, Jolly A, Du H, Dawood M, Abdel-Salam GMH, Marafi D, Mitani T, Calame DG, Coban-Akdemir Z, Fatih JM, Hegazy I, Jhangiani SN, Gibbs RA, Pehlivan D, Posey JE, Lupski JR. Quantitative dissection of multilocus pathogenic variation in an Egyptian infant with severe neurodevelopmental disorder resulting from multiple molecular diagnoses. Am J Med Genet A 2022; 188:735-750. [PMID: 34816580 PMCID: PMC8837671 DOI: 10.1002/ajmg.a.62565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.
Collapse
Affiliation(s)
- Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Ghada M. H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Daniel G. Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Ibrahim Hegazy
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA,Texas Children's Hospital, Houston, Texas, 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
7
|
Martín-Rivada Á, Pozo-Román J, Güemes M, Ortiz-Cabrera NV, Pérez-Jurado LA, Argente J. Primary Dwarfism, Microcephaly, and Chorioretinopathy due to a PLK4 Mutation in Two Siblings. Horm Res Paediatr 2022; 93:567-572. [PMID: 33756487 DOI: 10.1159/000514280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Primary autosomal recessive microcephalies (MCPHs) are characterized by primary dwarfism with MCPH and may present delayed psychomotor development and visual impairment. Biallelic loss of function variants in the PLK4 gene, which encodes the polo-like kinase 4 protein involved in centriole biogenesis, has been recently identified in several patients with MCPH and various ethnic backgrounds. CASE PRESENTATION Here, we describe 2 siblings of different sex from Equatorial Guinea harboring a homozygous frameshift mutation in PLK4 (c.1299_1303del, p.Phe433Leufs*6). A Seckel syndrome spectrum phenotype was present in both siblings, with short stature, severe MCPH, reduced brain volume, and distinctive facial features. They also presented severe intellectual disability, lissencephaly/pachygyria, subependymal heterotopia, and ophthalmological impairment. One of them suffered from deafness, and scoliosis was observed in the other. DISCUSSION/CONCLUSION Biallelic variants in PLK4 lead to a syndrome where severe short stature, MCPH, and cognitive impairment are constant features. However, ocular, skeletal, and other neurological manifestations can vary upon the same genetic basis.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa,", Madrid, Spain
| | - Jesús Pozo-Román
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa,", Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Güemes
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa,", Madrid, Spain
| | | | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Women's and Children's Hospital, South Australian Health and Medical Research Institute (SAHMRI), The University of Adelaide, Adelaide, South Australia, Australia
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa,", Madrid, Spain, .,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain, .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain, .,IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, Madrid, Spain,
| |
Collapse
|
8
|
Martín Fernández-Mayoralas D, Albert J, López-Martín S, de la Peña MJ, Fernández-Perrone AL, Jiménez de Domingo A, Calleja-Pérez B, Martínez-García M, Álvarez S, Fernández-Jaén A. Bi-Allelic c.1746G>T; p.Leu582= Variants in TUBGCP4 in a Boy with Autism: Clinical Data and Literature Review. Mol Syndromol 2022; 13:165-170. [PMID: 35418825 PMCID: PMC8928183 DOI: 10.1159/000519365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 02/12/2024] Open
Abstract
Bi-allelic mutations in the TUBGCP4 gene have been recently associated with autosomal recessive microcephaly with chorioretinopathy. However, little is known about the genotype-phenotype characteristics of this disorder. Here, we describe a 5-year-old male patient with autism and a normal occipitofrontal circumference. No retinal abnormalities were observed. Brain MRI revealed the presence of enlarged sheaths of both tortuous optic nerves; both eyes had shorter axial lengths. Whole-exome sequencing in trio revealed synonymous TUBGCP4 variants in homozygous state: c.1746G>T; p.Leu582=. This synonymous variant has been previously described and probably leads to skipping of exon 16 of TUBGCP4. These results broaden the clinical spectrum of this new syndrome and suggest that TUBGCP4 bi-allelic mutations may underlie complex neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara López-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Neuromottiva, Madrid, Spain
| | | | | | | | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain
- School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Koenig M, Dobyns WB, Di Donato N. Lissencephaly: Update on diagnostics and clinical management. Eur J Paediatr Neurol 2021; 35:147-152. [PMID: 34731701 DOI: 10.1016/j.ejpn.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Lissencephaly represents a spectrum of rare malformations of cortical development including agyria, pachygyria and subcortical band heterotopia. The progress in molecular genetics has led to identification of 31 lissencephaly-associated genes with the overall diagnostic yield over 80%. In this review, we focus on clinical and molecular diagnosis of lissencephaly and summarize the current knowledge on histopathological changes and their correlation with the MRI imaging. Additionally we provide the overview of clinical follow-up recommendations and available data on epilepsy management in patients with lissencephaly.
Collapse
Affiliation(s)
- Matti Koenig
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, Minneapolis, MN, USA
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Schweizer N, Haren L, Dutto I, Viais R, Lacasa C, Merdes A, Lüders J. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 2021; 12:6042. [PMID: 34654813 PMCID: PMC8519919 DOI: 10.1038/s41467-021-26252-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Ilaria Dutto
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ricardo Viais
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Cristina Lacasa
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
12
|
Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, Herman I, Akay G, Du H, Calame DG, Ayaz A, Tos T, Yesil G, Aydin H, Geckinli B, Elcioglu N, Candan S, Sezer O, Erdem HB, Gul D, Demiral E, Elmas M, Yesilbas O, Kilic B, Gungor S, Ceylan AC, Bozdogan S, Ozalp O, Cicek S, Aslan H, Yalcintepe S, Topcu V, Bayram Y, Grochowski CM, Jolly A, Dawood M, Duan R, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Marafi D, Akdemir ZC, Karaca E, Carvalho CMB, Gibbs RA, Posey JE, Lupski JR, Pehlivan D. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet 2021; 108:1981-2005. [PMID: 34582790 PMCID: PMC8546040 DOI: 10.1016/j.ajhg.2021.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akif Ayaz
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey; Departments of Medical Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Tulay Tos
- University of Health Sciences Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Gozde Yesil
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul 34093, Turkey
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Private Reyap Istanbul Hospital, Istanbul 34515, Turkey
| | - Bilgen Geckinli
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey; Eastern Mediterranean University Medical School, Magosa, Mersin 10, Turkey
| | - Sukru Candan
- Medical Genetics Section, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun 55100, Turkey
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Emine Demiral
- Department of Medical Genetics, School of Medicine, University of Inonu, Malatya 44280, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Bezmialem Foundation University, Istanbul 34093, Turkey; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Betul Kilic
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Serdal Gungor
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Ahmet C Ceylan
- Department of Medical Genetics, University of Health Sciences, Ankara Training and Research Hospital, Ankara 06110, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana 01330, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Salih Cicek
- Department of Medical Genetics, Konya Training and Research Hospital, Konya 42250, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, School of Medicine, Trakya University, Edirne 22130, Turkey
| | - Vehap Topcu
- Department of Medical Genetics, Ankara City Hospital, Ankara 06800, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Peng SW, Peng KP, Tian GX, Cao XY, Liu MH, Dong QY. Ultrasonic Diagnosis of Lissencephaly: Literature Review and A Case Report. JOURNAL OF FETAL MEDICINE 2021. [DOI: 10.1007/s40556-021-00313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Dobyns WB. The Names of Things: The 2018 Bernard Sachs Lecture. Pediatr Neurol 2021; 122:41-49. [PMID: 34330614 DOI: 10.1016/j.pediatrneurol.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
In 2018, I was honored to receive the Bernard Sachs Award for a lifetime of work expanding knowledge of diverse neurodevelopmental disorders. Summarizing work over more than 30 years is difficult but is an opportunity to chronicle the dramatic changes in the medical and scientific world that have transformed the field of Child Neurology over this time, as reflected in my own work. Here I have chosen to highlight five broad themes of my research beginning with my interest in descriptive terms that drive wider understanding and my choice for the title of this review. From there I will go on to contrast the state of knowledge as I entered the field with the state of knowledge today for four human brain malformations-lissencephaly, megalencephaly, cerebellar malformations, and polymicrogyria. For all, the changes have been dramatic.
Collapse
Affiliation(s)
- William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
15
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Böhler A, Vermeulen BJA, Würtz M, Zupa E, Pfeffer S, Schiebel E. The gamma-tubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. Bioessays 2021; 43:e2100114. [PMID: 34160844 DOI: 10.1002/bies.202100114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022]
Abstract
Microtubules are protein cylinders with functions in cell motility, signal sensing, cell organization, intracellular transport, and chromosome segregation. One of the key properties of microtubules is their dynamic architecture, allowing them to grow and shrink in length by adding or removing copies of their basic subunit, the heterodimer αβ-tubulin. In higher eukaryotes, de novo assembly of microtubules from αβ-tubulin is initiated by a 2 MDa multi-subunit complex, the gamma-tubulin ring complex (γ-TuRC). For many years, the structure of the γ-TuRC and the function of its subunits remained enigmatic, although structural data from the much simpler yeast counterpart, the γ-tubulin small complex (γ-TuSC), were available. Two recent breakthroughs in the field, high-resolution structural analysis and recombinant reconstitution of the complex, have revolutionized our knowledge about the architecture and function of the γ-TuRC and will form the basis for addressing outstanding questions about biogenesis and regulation of this essential microtubule organizer.
Collapse
Affiliation(s)
- Anna Böhler
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Calame DG, Herman I, Fatih JM, Du H, Akay G, Jhangiani SN, Coban-Akdemir Z, Milewicz DM, Gibbs RA, Posey JE, Marafi D, Hunter JV, Fan Y, Lupski JR, Miyake CY. Risk of sudden cardiac death in EXOSC5-related disease. Am J Med Genet A 2021; 185:2532-2540. [PMID: 34089229 DOI: 10.1002/ajmg.a.62352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 11/07/2022]
Abstract
The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.
Collapse
Affiliation(s)
- Daniel G Calame
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabella Herman
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Center at Houston, Houston, Texas, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA.,E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, USA
| | - Yuxin Fan
- John Welsh Cardiovascular Diagnostic Laboratory, Departments of Pediatrics and Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Christina Y Miyake
- Department of Pediatrics, Division of Cardiology, Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Gungor S, Oktay Y, Hiz S, Aranguren-Ibáñez Á, Kalafatcilar I, Yaramis A, Karaca E, Yis U, Sonmezler E, Ekinci B, Aslan M, Yilmaz E, Özgör B, Balaraju S, Szabo N, Laurie S, Beltran S, MacArthur DG, Hathazi D, Töpf A, Roos A, Lochmuller H, Vernos I, Horvath R. Autosomal recessive variants in TUBGCP2 alter the γ-tubulin ring complex leading to neurodevelopmental disease. iScience 2021; 24:101948. [PMID: 33458610 PMCID: PMC7797523 DOI: 10.1016/j.isci.2020.101948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Microtubules help building the cytoskeleton of neurons and other cells. Several components of the gamma-tubulin (γ-tubulin) complex have been previously reported in human neurodevelopmental diseases. We describe two siblings from a consanguineous Turkish family with dysmorphic features, developmental delay, brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys) in TUBGCP2 encoding the γ-tubulin complex 2 (GCP2) protein. This variant is predicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fibroblasts carrying the variant, we observed a faint delocalization of γ-tubulin during the cell cycle but normal GCP2 protein levels. Through mass spectrometry, we observed dysregulation of multiple proteins involved in the assembly and organization of the cytoskeleton and the extracellular matrix, controlling cellular adhesion and of proteins crucial for neuronal homeostasis including axon guidance. In summary, our functional and proteomic studies link TUBGCP2 and the γ-tubulin complex to the development of the central nervous system in humans.
Collapse
Affiliation(s)
- Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Álvaro Aranguren-Ibáñez
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ipek Kalafatcilar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ahmet Yaramis
- Pediatric Neurology Clinic, Private Office, Diyarbakir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Burcu Ekinci
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Mahmut Aslan
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Elmasnur Yilmaz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bilge Özgör
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Sunitha Balaraju
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Nora Szabo
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
- Budai Children Hospital, Észak-Közép-budai Centrum, Új Szent János Kórház és Szakrendelő, Budapest, Hungary
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Leibniz Institut für Analytische Wissenschaften, ISAS, Dortmund, Germany & Pediatric Neurology, University Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, the Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Kolbjer S, Martin DA, Pettersson M, Dahlin M, Anderlid BM. Lissencephaly in an epilepsy cohort: Molecular, radiological and clinical aspects. Eur J Paediatr Neurol 2021; 30:71-81. [PMID: 33453472 DOI: 10.1016/j.ejpn.2020.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lissencephaly is a rare malformation of cortical development due to abnormal transmantle migration resulting in absent or reduced gyration. The lissencephaly spectrum consists of agyria, pachygyria and subcortical band heterotopia. In this study we compared genetic aetiology, neuroradiology, clinical phenotype and response to antiepileptic drugs in patients with epilepsy and lissencephaly spectrum malformations. METHODS The study group consisted of 20 patients - 13 males and 7 females, aged 18 months to 21 years at the time of data collection. Genetic testing was performed by oligonucleotide array comparative genomic hybridization (microarray), multiplex ligation-dependent probe amplification (MLPA), targeted gene panels and whole exome/genome sequencing. All neuroradiological investigations were re-evaluated and the malformations were classified by the same neuroradiologist. Clinical features and response to anti-epileptic drugs (AEDs) were evaluated by retrospective review of medical records. RESULTS In eleven patients (55%) mutations in PAFAH1B1 (LIS1) or variable microdeletions of 17p13.3 including the PAFAH1B1 gene were detected. Four patients (20%) had tubulin encoding gene mutations (TUBA1A, TUBG1 and TUBGCP6). Mutations in DCX, DYNC1H1, ADGRG1 and WDR62 were identified in single patients. In one patient, a possibly pathogenic intragenic deletion in TRIO was detected. A clear radiologic distinction could be made between tubulinopathies and PAFAH1B1 related lissencephaly. The majority of the patients had therapy resistant epilepsy and epileptic spasms was the most prominent seizure type. The best therapeutic response to seizure control in our cohort was obtained by the ketogenic diet, vigabatrin, clobazam, phenobarbital and valproate. CONCLUSION The most common genetic aetiologies in our cohort of 20 individuals with epilepsy and lissencephaly spectrum were intragenic deletions or single nucleotide mutations in PAFAH1B1 or larger deletions in 17p13.3, encompassing PAFAH1B1, followed by mutations in tubulin encoding genes. Radiological findings could reliably predict molecular results only in agyria with a posterior to anterior gradient. Radiological and molecular findings did not correlate consistently with severity of clinical outcome or therapeutic response.
Collapse
Affiliation(s)
- Sintia Kolbjer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel A Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Paediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Mukherjee A, Brooks PS, Bernard F, Guichet A, Conduit PT. Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons. eLife 2020; 9:e58943. [PMID: 32657758 PMCID: PMC7394546 DOI: 10.7554/elife.58943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Paul S Brooks
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Fred Bernard
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| | - Antoine Guichet
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| | - Paul T Conduit
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Université de Paris, CNRS, Institut Jacques MonodParisFrance
| |
Collapse
|