1
|
Liu Y, Fang Y, Dhikhirullahi O, Zhang L, Zhang Z. Intraflagellar Transport (IFT) and Sperm Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:395-409. [PMID: 40301266 DOI: 10.1007/978-3-031-82990-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Intraflagellar transport (IFT) is a conserved mechanism for cilia formation. Twenty-two IFT components form the IFT-A complex (six components) and IFT-B complex (sixteen components). Driven by kinesin and dynein motor proteins, these IFT complexes are involved in the trafficking of proteins needed for cilia assembly by anterograde transport and retrograde transport. IFT core components also associate with other proteins for cilia formation. Mutations in IFT core components result in ciliogenesis defects and human diseases, including male infertility. Sperm flagella are specialized motile cilia that not only have core axoneme structure but also possess accessory structures. IFT is required to assemble these structures to form functional sperm. This summary highlights the regulatory roles of specific IFT proteins in spermatogenesis. A deeper understanding of IFT-related mechanisms can shed light on the etiology and pathophysiology of certain male infertility cases, as well as provide insights for the development of novel male contraceptives.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yu Fang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | | | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Boeykens F, Abitbol M, Anderson H, Casselman I, de Citres CD, Hayward JJ, Häggström J, Kittleson MD, Lepri E, Ljungvall I, Longeri M, Lyons LA, Ohlsson Å, Peelman L, Smets P, Vezzosi T, van Steenbeek FG, Broeckx BJ. Development and validation of animal variant classification guidelines to objectively evaluate genetic variant pathogenicity in domestic animals. Front Vet Sci 2024; 11:1497817. [PMID: 39703406 PMCID: PMC11656590 DOI: 10.3389/fvets.2024.1497817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Assessing the pathogenicity of a disease-associated genetic variant in animals accurately is vital, both on a population and individual scale. At the population level, breeding decisions based on invalid DNA tests can lead to the incorrect inclusion or exclusion of animals and compromise the long-term health of a population, and at the level of the individual animal, lead to incorrect treatment and even life-ending decisions. Criteria to determine pathogenicity are not standardized, i.e., no guidelines for animal variants are available. Here, we aimed to develop and validate guidelines to be used by the community for Mendelian disorders in domestic animals to classify variants in categories based on standardized criteria. These so-called animal variant classification guidelines (AVCG) were based on those developed for humans by The American College of Medical Genetics and Genomics (ACMG). In a direct comparison, 83% of the pathogenic variants were correctly classified with ACMG, while this increased to 92% with AVCG. We described methods to develop datasets for benchmarking the criteria and identified the most optimal in silico variant effect predictor tools. As the reproducibility was high, we classified 72 known disease-associated variants in cats and 40 other disease-associated variants in eight additional species.
Collapse
Affiliation(s)
- Fréderique Boeykens
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marie Abitbol
- Univ Lyon, VetAgro Sup, 69280 Marcy-l’Etoile, France and Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard, Lyon, France
| | - Heidi Anderson
- Wisdom Panel, Mars Petcare Science and Diagnostics, Helsinki, Finland
| | - Iris Casselman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Jessica J. Hayward
- Department of Biomedical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jens Häggström
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mark D. Kittleson
- School of Veterinary Medicine and Epidemiology, University of California, Davis, Davis, CA, United States
- Veterinary Information Network, 777 West Covell Boulevard, Davis, CA, United States
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Longeri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Åsa Ohlsson
- Department of Animal Biosciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luc Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Pascale Smets
- Small Animal Department, Ghent University, Merelbeke, Belgium
| | - Tommaso Vezzosi
- Italian Veterinary Observatory for Cardiac Diseases (OVIC), Associazione Cardiologi ed Ecografisti Clinici Veterinari (CARDIEC), Bergamo, Italy
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart J.G. Broeckx
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Centre for Clinical Genetics of Companion Animals, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
4
|
Adams JM, Sawe C, Rogers S, Reid J, Dasari R, Engelke MF. Characterization of the disease-causing mechanism of KIF3B mutations from ciliopathy patients. Front Mol Biosci 2024; 11:1327963. [PMID: 38665936 PMCID: PMC11043552 DOI: 10.3389/fmolb.2024.1327963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
The heterodimeric kinesin-2 motor (KIF3A/KIF3B with accessory protein KAP3) drives intraflagellar transport, essential for ciliogenesis and ciliary function. Three point mutations in the KIF3B subunit have recently been linked to disease in humans (E250Q and L523P) and Bengal cats (A334T) (Cogné et al., Am. J. Hum. Genet., 2020, 106, 893-904). Patients display retinal atrophy and, in some cases, other ciliopathy phenotypes. However, the molecular mechanism leading to disease is currently unknown. Here, we used Kif3a -/- ;Kif3b -/- (knockout) 3T3 cells, which cannot make cilia, to characterize these mutations. While reexpression of KIF3B(E250Q) and KIF3B(L523P) did not rescue ciliogenesis, reexpression of wildtype or KIF3B(A334T) restored ciliogenesis to wildtype levels. Fluorescent tagging revealed that the E250Q mutant decorated microtubules and thus is a rigor mutation. The L523P mutation, in the alpha-helical stalk domain, surprisingly did not affect formation of the KIF3A/KIF3B/KAP3 complex but instead impaired motility along microtubules. Lastly, expression of the A334T motor was reduced in comparison to all other motors, and this motor displayed an impaired ability to disperse the Golgi complex when artificially linked to this high-load cargo. In summary, this work uses cell-based assays to elucidate the molecular effects of disease-causing mutations in the KIF3B subunit on the kinesin-2 holoenzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL, United States
| |
Collapse
|
5
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Katz ML, Cook J, Vite CH, Campbell RS, Coghill LM, Lyons LA. Beta-mannosidosis in a domestic cat associated with a missense variant in MANBA. Gene 2024; 893:147941. [PMID: 37913889 PMCID: PMC10841995 DOI: 10.1016/j.gene.2023.147941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
A 6-month-old cat of unknown ancestry presented for a neurologic evaluation due to progressive motor impairment. Complete physical and neurologic examinations suggested the disorder was likely to be hereditary, although the signs were not consistent with any previously described inherited disorders in cats. Due to the progression of disease signs including severely impaired motor function and cognitive decline, the cat was euthanized at approximately 10.5 months of age. Whole genome sequence analysis identified a homozygous missense variant c.2506G > A in MANBA that predicts a p.Gly836Arg alteration in the encoded lysosomal enzyme β -mannosidase. This variant was not present in the whole genome or whole exome sequences of any of the 424 cats represented in the 99 Lives Cat Genome dataset. β -Mannosidase enzyme activity was undetectable in brain tissue homogenates from the affected cat, whereas α-mannosidase enzyme activities were elevated compared to an unaffected cat. Postmortem examination of brain and retinal tissues revealed massive accumulations of vacuolar inclusions in most cells, similar to those reported in animals of other species with hereditary β -mannosidosis. Based on these findings, the cat likely suffered from β -mannosidosis due to the abolition of β -mannosidase activity associated with the p.Gly836Arg amino acid substitution. p.Gly836 is located in the C-terminal region of the protein and was not previously known to be involved in modulating enzyme activity. In addition to the vacuolar inclusions, some cells in the brain of the affected cat contained inclusions that exhibited lipofuscin-like autofluorescence. Electron microscopic examinations suggested these inclusions formed via an autophagy-like process.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO 65212, USA.
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Rebecca S Campbell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lyndon M Coghill
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Leslie A Lyons
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Jiang X, Ogawa T, Yonezawa K, Shimizu N, Ichinose S, Uchihashi T, Nagaike W, Moriya T, Adachi N, Kawasaki M, Dohmae N, Senda T, Hirokawa N. The two-step cargo recognition mechanism of heterotrimeric kinesin. EMBO Rep 2023; 24:e56864. [PMID: 37575008 PMCID: PMC10626431 DOI: 10.15252/embr.202356864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023] Open
Abstract
Kinesin-driven intracellular transport is essential for various cell biological events and thus plays a crucial role in many pathological processes. However, little is known about the molecular basis of the specific and dynamic cargo-binding mechanism of kinesins. Here, an integrated structural analysis of the KIF3/KAP3 and KIF3/KAP3-APC complexes unveils the mechanism by which KIF3/KAP3 can dynamically grasp APC in a two-step manner, which suggests kinesin-cargo recognition dynamics composed of cargo loading, locking, and release. Our finding is the first demonstration of the two-step cargo recognition and stabilization mechanism of kinesins, which provides novel insights into the intracellular trafficking machinery.
Collapse
Affiliation(s)
- Xuguang Jiang
- Department of Cell Biology and Anatomy, Graduate School of MedicineThe University of TokyoTokyoJapan
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of MedicineThe University of TokyoTokyoJapan
- Research Center for Advanced Medical ScienceDokkyo Medical UniversityTochigiJapan
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource ScienceWakoJapan
| | - Kento Yonezawa
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)TsukubaJapan
- Center for Digital Green‐InnovationNara Institute of Science and TechnologyNaraJapan
| | - Nobutaka Shimizu
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Anatomy, Graduate School of MedicineGunma UniversityGunmaJapan
| | - Takayuki Uchihashi
- Department of PhysicsNagoya UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesOkazakiJapan
| | | | - Toshio Moriya
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Naruhiko Adachi
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Masato Kawasaki
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Naoshi Dohmae
- Biomolecular Characterization UnitRIKEN Center for Sustainable Resource ScienceWakoJapan
| | - Toshiya Senda
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of MedicineThe University of TokyoTokyoJapan
- Juntendo Advanced Research Institute for Health ScienceJuntendo UniversityTokyoJapan
| |
Collapse
|
9
|
Bilgen N, Çınar Kul B, Akkurt MY, Bakıcı C, Buckley RM, Lyons LA, Coghill LM, Çıldır ÖŞ, Kutlu F. Cardiomyopathy associated 5 ( CMYA5) implicated as a genetic risk factor for radial hemimelia in Siamese cats. J Feline Med Surg 2023; 25:1098612X231193557. [PMID: 37791865 PMCID: PMC10812016 DOI: 10.1177/1098612x231193557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVES The present study aimed to determine the inheritance pattern and genetic cause of congenital radial hemimelia (RH) in cats. METHODS Clinical and genetic analyses were conducted on a Siamese cat family (n = 18), including two siblings with RH. Radiographs were obtained for the affected kittens and echocardiograms of an affected kitten and sire. Whole genome sequencing was completed on the two cases and the parents. Genomic data were compared with the 99 Lives Cat Genome data set of 420 additional domestic cats with whole genome and whole exome sequencing data. Variants were considered as homozygous in the two cases of the siblings with RH and heterozygous in the parents. Candidate variants were genotyped by Sanger sequencing in the extended pedigree. RESULTS Radiographs of the female kitten revealed bilateral absence of the radii and bowing of the humeri, while the male kitten showed a dysplastic right radius. Echocardiography suggested the female kitten had restrictive cardiomyopathy with a positive left atrial-to-aortic root ratio (LA:Ao = 1.83 cm), whereas hypertrophic cardiomyopathy was more likely in the sire, showing diastolic dysfunction using tissue Doppler imaging (59.06 cm/s). Twenty-two DNA variants were unique and homozygous in the affected kittens and heterozygous in the parents. Seven variants clustered in one chromosomal region, including two frameshift variants in cardiomyopathy associated 5 (CMYA5) and five variants in junction mediating and regulatory protein, P53 cofactor (JMY ), including a missense and an in-frame deletion. CONCLUSIONS AND RELEVANCE The present study suggested an autosomal recessive mode of inheritance with variable expression for RH in the Siamese cat family. Candidate variants for the phenotype were identified, implicating their roles in bone development. These genes should be considered as potentially causal for other cats with RH. Siamese cat breeders should consider genetically testing their cats for these variants to prevent further dissemination of the suspected variants within the breed.
Collapse
Affiliation(s)
- Nüket Bilgen
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Türkiye
| | - Bengi Çınar Kul
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Türkiye
| | - Mustafa Yenal Akkurt
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Türkiye
| | - Caner Bakıcı
- Faculty of Veterinary Medicine, Department of Anatomy, Ankara University, Ankara, Türkiye
| | - Reuben M Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Lyndon M Coghill
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Özge Şebnem Çıldır
- Faculty of Veterinary Medicine, Department of Genetics, Kafkas University, Kars, Türkiye
| | - Furkan Kutlu
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Türkiye
| |
Collapse
|
10
|
Tebbe L, Mwoyosvi ML, Crane R, Makia MS, Kakakhel M, Cosgrove D, Al-Ubaidi MR, Naash MI. The usherin mutation c.2299delG leads to its mislocalization and disrupts interactions with whirlin and VLGR1. Nat Commun 2023; 14:972. [PMID: 36810733 PMCID: PMC9944904 DOI: 10.1038/s41467-023-36431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a-/- model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.2299delG. This mouse exhibits retinal degeneration and expresses a truncated, glycosylated protein which is mislocalized to the photoreceptor inner segment. The degeneration is associated with a decline in retinal function, structural abnormalities in connecting cilium and outer segment and mislocaliztion of the usherin interactors very long G-protein receptor 1 and whirlin. The onset of symptoms is significantly earlier compared to Ush2a-/-, proving expression of mutated protein is required to recapitulate the patients' retinal phenotype.
Collapse
Affiliation(s)
- Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
11
|
Iwano T, Sobajima T, Takeda S, Harada A, Yoshimura SI. The Rab GTPase-binding protein EHBP1L1 and its interactors CD2AP/CIN85 negatively regulate the length of primary cilia via actin remodeling. J Biol Chem 2023; 299:102985. [PMID: 36754282 PMCID: PMC9986712 DOI: 10.1016/j.jbc.2023.102985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Primary cilia are organelles consisting of axonemal microtubules and plasma membranes, and they protrude from the cell surface to the extracellular region and function in signal sensing and transduction. The integrity of cilia, including the length and structure, is associated with signaling functions; however, factors involved in regulating the integrity of cilia have not been fully elucidated. Here, we showed that the Rab GTPase-binding protein EHBP1L1 and its newly identified interactors CD2AP and CIN85, known as adaptor proteins of actin regulators, are involved in ciliary length control. Immunofluorescence microscopy showed that EHBP1L1 and CD2AP/CIN85 are localized to the ciliary sheath. EHBP1L1 depletion caused mislocalization of CD2AP/CIN85, suggesting that CD2AP/CIN85 localization to the ciliary sheath is dependent on EHBP1L1. Additionally, we determined that EHBP1L1- and CD2AP/CIN85-depleted cells had elongated cilia. The aberrantly elongated cilia phenotype and the ciliary localization defect of CD2AP/CIN85 in EHBP1L1-depleted cells were rescued by the expression of WT EHBP1L1, although this was not observed in the CD2AP/CIN85-binding-deficient mutant, indicating that the EHBP1L1-CD2AP/CIN85 interaction is crucial for controlling ciliary length. Furthermore, EHBP1L1- and CD2AP/CIN85-depleted cells exhibited actin nucleation and branching defects around the ciliary base. Taken together, our data demonstrate that the EHBP1L1-CD2AP/CIN85 axis negatively regulates ciliary length via actin network remodeling around the basal body.
Collapse
Affiliation(s)
- Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tomoaki Sobajima
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sén Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan; Department of Anatomy, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Higashida M, Niwa S. Dynein intermediate chains DYCI-1 and WDR-60 have specific functions in Caenorhabditis elegans. Genes Cells 2023; 28:97-110. [PMID: 36461782 DOI: 10.1111/gtc.12996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Dynein is a microtubule-dependent motor protein required for cell division, retrograde intracellular transport, and intraflagellar transport (IFT). Dynein 1 and dynein 2 serve as molecular motors in the cytoplasm and cilia, respectively. Each dynein consists of multiple subunits. Although the components of dynein 1 and dynein 2 are different and specific in most species, a previous study has suggested that dynein intermediate chain subunit DYCI-1 is shared by both dynein 1 and 2 in Caenorhabditis elegans (C. elegans). Here, we show that C. elegans has two dynein intermediate chains-DYCI-1 and WDR-60-and their functions are different. Mutational analysis showed that dyci-1 is essential for the retrograde axonal transport of synaptic vesicles. In the same mutant allele, IFT is not affected at all. Instead, wdr-60 is essential for IFT. Thus, we suggest that dynein 1 and dynein 2 have specific intermediate chains in C. elegans as in other organisms.
Collapse
Affiliation(s)
- Maki Higashida
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Bott MMP, Chahory S. Epidemiology and clinical presentation of feline presumed hereditary or breed-related ocular diseases in France: retrospective study of 129 cats. J Feline Med Surg 2022; 24:1274-1282. [PMID: 35257624 PMCID: PMC10812340 DOI: 10.1177/1098612x221080598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study aimed to describe the epidemiology and clinical presentation of presumed hereditary or presumed breed-related ocular diseases in a population of cats in France. METHODS Medical records from between September 2013 and August 2017 were reviewed to identify cats with at least one presumed hereditary or breed-related ocular disease. Cats with concurrent, or a history of, ocular or systemic infectious diseases were excluded. Signalment, history and clinical findings were recorded. RESULTS Of the 1161 cats that presented to our institution during the study period, 129 were diagnosed with at least one presumed hereditary or presumed breed-related ocular disease (11.1%, 95% confidence interval [CI] 9.3-12.9). Five ocular abnormalities had a prevalence of >1%: entropion, corneal sequestration, persistent pupillary membrane, cataract and retinal dysplasia. The prevalence of entropion was 2.2% (95% CI 1.3-3.0), with Persians (P = 0.03), Maine Coons (P <0.01) and male cats (P <0.01) being over-represented. The prevalence of corneal sequestration was 2.4% (95% CI 1.5-3.3), with Persians (P <0.01) and Exotic Shorthairs (P = 0.02) being over-represented. Persistent pupillary membranes and cataracts had the same prevalence of 2.3% (95% CI 1.5-3.2), with no particular sex or breed significantly over-represented. Retinal dysplasia had a prevalence of 1.6% (95% CI 0.8-2.3) and Persian cats were over-represented (P = 0.04). Anterior segment dysgenesis had a low prevalence (0.9%, 95% CI 0.4-1.5), with all affected cats being domestic shorthairs and this breed therefore was over-represented (P = 0.04). CONCLUSIONS AND RELEVANCE In a French population of cats, presumed hereditary or breed-related ocular diseases accounted for 11.1% of all ocular diseases. Cataracts, corneal sequestration, persistent pupillary membrane, entropion and retinal dysplasia were the most common conditions. Statistical breed over-representation was observed for entropion, corneal sequestration and retinal dysplasia. We recommend that more systematic screening of feline species is conducted.
Collapse
Affiliation(s)
- Matthieu MP Bott
- Ecole Nationale Vétérinaire d’Alfort, CHUV-AC, Ophthalmology Unit, Maisons-Alfort F-94700, France
| | - Sabine Chahory
- Ecole Nationale Vétérinaire d’Alfort, CHUV-AC, Ophthalmology Unit, Maisons-Alfort F-94700, France
| |
Collapse
|
14
|
Zebrafish and inherited photoreceptor disease: Models and insights. Prog Retin Eye Res 2022; 91:101096. [PMID: 35811244 DOI: 10.1016/j.preteyeres.2022.101096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Photoreceptor dysfunctions and degenerative diseases are significant causes of vision loss in patients, with few effective treatments available. Targeted interventions to prevent or reverse photoreceptor-related vision loss are not possible without a thorough understanding of the underlying mechanism leading to disease, which is exceedingly difficult to accomplish in the human system. Cone diseases are particularly challenging to model, as some popular genetically modifiable model animals are nocturnal with a rod-dominant visual system and cones that have dissimilarities to human cones. As a result, cone diseases, which affect visual acuity, colour perception, and central vision in patients, are generally poorly understood in terms of pathology and mechanism. Zebrafish (Danio rerio) provide the opportunity to model photoreceptor diseases in a diurnal vertebrate with a cone-rich retina which develops many macular degeneration-like pathologies. Zebrafish undergo external development, allowing early-onset retinal diseases to be detected and studied, and many ophthalmic tools are available for zebrafish visual assessment during development and adulthood. There are numerous zebrafish models of photoreceptor disease, spanning the various types of photoreceptor disease (developmental, rod, cone, and mixed photoreceptor diseases) and genetic/molecular cause. In this review, we explore the features of zebrafish that make them uniquely poised to model cone diseases, summarize the established zebrafish models of inherited photoreceptor disease, and discuss how disease in these models compares to the human presentation, where applicable. Further, we highlight the contributions of these zebrafish models to our understanding of photoreceptor biology and disease, and discuss future directions for utilising and investigating these diverse models.
Collapse
|
15
|
Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, Rogers J, Hahn MW. De novo Mutations in Domestic Cat are Consistent with an Effect of Reproductive Longevity on Both the Rate and Spectrum of Mutations. Mol Biol Evol 2022; 39:msac147. [PMID: 35771663 PMCID: PMC9290555 DOI: 10.1093/molbev/msac147] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mutation rate is a fundamental evolutionary parameter with direct and appreciable effects on the health and function of individuals. Here, we examine this important parameter in the domestic cat, a beloved companion animal as well as a valuable biomedical model. We estimate a mutation rate of 0.86 × 10-8 per bp per generation for the domestic cat (at an average parental age of 3.8 years). We find evidence for a significant paternal age effect, with more mutations transmitted by older sires. Our analyses suggest that the cat and the human have accrued similar numbers of mutations in the germline before reaching sexual maturity. The per-generation mutation rate in the cat is 28% lower than what has been observed in humans, but is consistent with the shorter generation time in the cat. Using a model of reproductive longevity, which takes into account differences in the reproductive age and time to sexual maturity, we are able to explain much of the difference in per-generation rates between species. We further apply our reproductive longevity model in a novel analysis of mutation spectra and find that the spectrum for the cat resembles the human mutation spectrum at a younger age of reproduction. Together, these results implicate changes in life-history as a driver of mutation rate evolution between species. As the first direct observation of the paternal age effect outside of rodents and primates, our results also suggest a phenomenon that may be universal among mammals.
Collapse
Affiliation(s)
- Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
16
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
17
|
Anderson H, Davison S, Lytle KM, Honkanen L, Freyer J, Mathlin J, Kyöstilä K, Inman L, Louviere A, Chodroff Foran R, Forman OP, Lohi H, Donner J. Genetic epidemiology of blood type, disease and trait variants, and genome-wide genetic diversity in over 11,000 domestic cats. PLoS Genet 2022; 18:e1009804. [PMID: 35709088 PMCID: PMC9202916 DOI: 10.1371/journal.pgen.1009804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the largest DNA-based study of domestic cats to date, 11,036 individuals (10,419 pedigreed cats and 617 non-pedigreed cats) were genotyped via commercial panel testing elucidating the distribution and frequency of known disease, blood type, and physical trait associated genetic variants across cat breeds. This study provides allele frequencies for many disease-associated variants for the first time and provides updates on previously reported information with evidence suggesting that DNA testing has been effectively used to reduce disease associated variants within certain pedigreed cat populations over time. We identified 13 disease-associated variants in 47 breeds or breed types in which the variant had not previously been documented, highlighting the relevance of comprehensive genetic screening across breeds. Three disease-associated variants were discovered in non-pedigreed cats only. To investigate the causality of nine disease-associated variants in cats of different breed backgrounds our veterinarians conducted owner interviews, reviewed clinical records, and invited cats to have follow-up clinical examinations. Additionally, genetic variants determining blood types A, B and AB, which are relevant clinically and in cat breeding, were genotyped. Appearance-associated genetic variation in all cats is also discussed. Lastly, genome-wide SNP heterozygosity levels were calculated to obtain a comparable measure of the genetic diversity in different cat breeds. This study represents the first comprehensive exploration of informative Mendelian variants in felines by screening over 10,000 pedigreed cats. The results qualitatively contribute to the understanding of feline variant heritage and genetic diversity and demonstrate the clinical utility and importance of such information in supporting breeding programs and the research community. The work also highlights the crucial commitment of pedigreed cat breeders and registries in supporting the establishment of large genomic databases, that when combined with phenotype information can advance scientific understanding and provide insights that can be applied to improve the health and welfare of cats. Domestic cats are one of the world’s most popular companion animals, of which pedigreed cats represent small unique subpopulations. Genetic research on pedigreed cats has facilitated discoveries of heritable conditions resulting in the availability of DNA testing for studying and managing inherited disorders and traits in specific cat breeds. We have explored an extensive study cohort of 11,036 domestic cat samples representing pedigreed cats of 90 breeds and breed types. This work provided insight into the heritage of feline disease and trait alleles. We gained knowledge on the most common and relevant genetic markers for inherited disorders and physical traits, and the genetic determinants of the clinically relevant AB blood group system. We also used a measure of genetic diversity to compare inbreeding levels within and between breeds. This information can help support sustainable breeding goals within the cat fancy. Direct-to-consumer genetic tests help to raise awareness of various inherited single gene conditions in cats and provide information that owners can share with their veterinarians. In due course, ventures of this type will enable the genetics of common complex feline disease to be deciphered, paving the way for precision healthcare with the potential to ultimately improve welfare for all cats.
Collapse
Affiliation(s)
- Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
- * E-mail:
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Katherine M. Lytle
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Julia Mathlin
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
18
|
Cruz NM, Reddy R, McFaline-Figueroa JL, Tran C, Fu H, Freedman BS. Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nat Biomed Eng 2022; 6:463-475. [PMID: 35478224 PMCID: PMC9228023 DOI: 10.1038/s41551-022-00880-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022]
Abstract
The functions of cilia-antenna-like organelles associated with a spectrum of disease states-are poorly understood, particularly in human cells. Here we show that human pluripotent stem cells (hPSCs) edited via CRISPR to knock out the kinesin-2 subunits KIF3A or KIF3B can be used to model ciliopathy phenotypes and to reveal ciliary functions at the tissue scale. KIF3A-/- and KIF3B-/- hPSCs lacked cilia, yet remained robustly self-renewing and pluripotent. Tissues and organoids derived from these hPSCs displayed phenotypes that recapitulated defective neurogenesis and nephrogenesis, polycystic kidney disease (PKD) and other features of the ciliopathy spectrum. We also show that human cilia mediate a critical switch in hedgehog signalling during organoid differentiation, and that they constitutively release extracellular vesicles containing signalling molecules associated with ciliopathy phenotypes. The capacity of KIF3A-/- and KIF3B-/- hPSCs to reveal endogenous mechanisms underlying complex ciliary phenotypes may facilitate the discovery of candidate therapeutics.
Collapse
Affiliation(s)
- Nelly M Cruz
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Raghava Reddy
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Christine Tran
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Bioengineering (Adjunct), University of Washington School of Medicine, Seattle, WA, USA
| | - Benjamin S Freedman
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Bioengineering (Adjunct), University of Washington School of Medicine, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology (Adjunct), University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
19
|
Heydari R, Seresht-Ahmadi M, Mirshahvaladi S, Sabbaghian M, Mohseni-Meybodi A. KIF3B gene silent variant leading to sperm morphology and motility defects and male infertility. Biol Reprod 2021; 106:766-774. [DOI: 10.1093/biolre/ioab226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/10/2021] [Accepted: 12/05/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sperm structural and functional defects are leading causes of male infertility. Patients with immotile sperm disorders suffer from axoneme failure and show a significant reduction in sperm count. The kinesin family member 3B (KIF3B) is one of the genes involved in the proper formation of sperm with a critical role in intraflagellar and intramanchette transport. A part of exon 2 and exons 3–5 of the KIF3B encodes a protein coiled-coil domain that interacts with IFT20 from the IFT protein complex. In the present study, the coding region of KIF3B coiled-coil domain was assessed in 88 oligoasthenoteratozoospermic patients, and the protein expression was evaluated in the mature spermatozoa of the case and control groups using immunocytochemistry and western blotting. According to the results, there was no genetic variation in the exons 3–5 of the KIF3B, but a new A > T variant was identified within the exon 2 in 30 patients, where nothing was detected in the control group. In contrast to healthy individuals, significantly reduced protein expression was observable in oligoasthenoteratozoospermic (OAT) patients carrying variation where protein organization was disarranged, especially in the principal piece and midpiece of the sperm tail. Besides, the protein expression level was lower in the patients’ samples compared to that of the control group. According to the results of the present study the NM_004798.3:c.1032A > T, p.Pro344 = variant; which has been recently submitted to the Clinvar database; although synonymous, causes alterations in the transcription factor binding site, exon skipping, and also exonic splicing enhancer-binding site. Therefore, KIF3B can play an important role in spermatogenesis and the related protein reduction can cause male infertility.
Collapse
Affiliation(s)
- Raheleh Heydari
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shahab Mirshahvaladi
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anahita Mohseni-Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
20
|
Perea-Romero I, Blanco-Kelly F, Sanchez-Navarro I, Lorda-Sanchez I, Tahsin-Swafiri S, Avila-Fernandez A, Martin-Merida I, Trujillo-Tiebas MJ, Lopez-Rodriguez R, Rodriguez de Alba M, Iancu IF, Romero R, Quinodoz M, Hakonarson H, Garcia-Sandova B, Minguez P, Corton M, Rivolta C, Ayuso C. NGS and phenotypic ontology-based approaches increase the diagnostic yield in syndromic retinal diseases. Hum Genet 2021; 140:1665-1678. [PMID: 34448047 PMCID: PMC8553673 DOI: 10.1007/s00439-021-02343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Syndromic retinal diseases (SRDs) are a group of complex inherited systemic disorders, with challenging molecular underpinnings and clinical management. Our main goal is to improve clinical and molecular SRDs diagnosis, by applying a structured phenotypic ontology and next-generation sequencing (NGS)-based pipelines. A prospective and retrospective cohort study was performed on 100 probands with an a priori diagnosis of non-Usher SRDs, using available clinical data, including Human Phenotype Ontology annotation, and further classification into seven clinical categories (ciliopathies, specific syndromes and five others). Retrospective molecular diagnosis was assessed using different molecular and bioinformatic methods depending on availability. Subsequently, uncharacterized probands were prospectively screened using other NGS approaches to extend the number of analyzed genes. After phenotypic classification, ciliopathies were the most common SRD (35%). A global characterization rate of 52% was obtained, with six cases incompletely characterized for a gene that partially explained the phenotype. An improved characterization rate was achieved addressing prospective cases (83%) and well-recognizable syndrome (62%) subgroups. The 27% of the fully characterized cases were reclassified into a different clinical category after identification of the disease-causing gene. Clinical-exome sequencing is the most appropriate first-tier approach for prospective cases, whereas whole-exome sequencing and bioinformatic reanalysis increases the diagnosis of uncharacterized retrospective cases to 45%, mostly those with unspecific symptoms. Our study describes a comprehensive approach to SRDs in daily clinical practice and the importance of thorough clinical assessment and selection of the most appropriate molecular test to be used to solve these complex cases and elucidate novel associations.
Collapse
Affiliation(s)
- I Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - F Blanco-Kelly
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - I Sanchez-Navarro
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - I Lorda-Sanchez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - S Tahsin-Swafiri
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - A Avila-Fernandez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - I Martin-Merida
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M J Trujillo-Tiebas
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - R Lopez-Rodriguez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M Rodriguez de Alba
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - I F Iancu
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - R Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - H Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Garcia-Sandova
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Ophthalmology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - P Minguez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - M Corton
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - C Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - C Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Lyons LA, Buckley RM, Harvey RJ. Mining the 99 Lives Cat Genome Sequencing Consortium database implicates genes and variants for the Ticked locus in domestic cats (Felis catus). Anim Genet 2021; 52:321-332. [PMID: 33780570 PMCID: PMC8252059 DOI: 10.1111/age.13059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Tabby patterns of fur coats are defining characteristics in wild and domestic felids. Historically, three autosomal alleles at one locus (Tabby): Abyssinian (Ta ; a.k.a. ticked), mackerel (Tm ; a.k.a. striped) and blotched (tb ; a.k.a. classic, blotched) were thought to control these patterns in domestic cats and their breeds. Currently, at least three loci influence cat tabby markings, two of which are designated Tabby and Ticked. The Tabby locus is laeverin (LVRN) and affects the mackerel and blotched patterns. The unidentified gene for the Ticked locus on cat chromosome B1 was suggested to control the presence or absence of the ticked pattern (Tabby - Abyssinian (Ta ; a.k.a. ticked). The cat reference genome (Cinnamon, the Abyssinian) has the ticked phenotype and the variant dataset and coat phenotypes from the 99 Lives Cat Genome Consortium (195 cats) were used to identify candidate genes and variants associated with the Ticked locus. Two strategies were used to find the Ticked allele(s), one considered Cinnamon with the reference allele or heterozygous (Strategy A) and the other considered Cinnamon as having the variant allele or heterozygous (Strategy B). For Strategy A, two variants in Dickkopf Wnt Signaling Pathway Inhibitor 4 (DKK4), a p.Cys63Tyr (B1:41621481, c.188G>A) and a less common p.Ala18Val (B1:42620835, c.53C>T) variant are suggested as two alleles influencing the Ticked phenotype. Bioinformatic and molecular modeling analysis suggests that these changes disrupt a key disulfide bond in the Dkk4 cysteine-rich domain 1 or Dkk4 signal peptide cleavage respectively. All coding variants were excluded as Ticked alleles using Strategy B.
Collapse
Affiliation(s)
- L. A. Lyons
- Department of Veterinary Medicine and SurgeryCollege of Veterinary MedicineUniversity of Missouri – ColumbiaColumbiaMO65211USA
| | - R. M. Buckley
- Department of Veterinary Medicine and SurgeryCollege of Veterinary MedicineUniversity of Missouri – ColumbiaColumbiaMO65211USA
| | - R. J. Harvey
- School of Health and Behavioural SciencesUniversity of the Sunshine CoastSippy DownsQld4558Australia
| |
Collapse
|
22
|
A domestic cat whole exome sequencing resource for trait discovery. Sci Rep 2021; 11:7159. [PMID: 33785770 PMCID: PMC8009874 DOI: 10.1038/s41598-021-86200-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Over 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.
Collapse
|
23
|
Sánchez-Bellver L, Toulis V, Marfany G. On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:623734. [PMID: 33748110 PMCID: PMC7973215 DOI: 10.3389/fcell.2021.623734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Ciliopathies are a group of heterogeneous inherited disorders associated with dysfunction of the cilium, a ubiquitous microtubule-based organelle involved in a broad range of cellular functions. Most ciliopathies are syndromic, since several organs whose cells produce a cilium, such as the retina, cochlea or kidney, are affected by mutations in ciliary-related genes. In the retina, photoreceptor cells present a highly specialized neurosensory cilium, the outer segment, stacked with membranous disks where photoreception and phototransduction occurs. The daily renewal of the more distal disks is a unique characteristic of photoreceptor outer segments, resulting in an elevated protein demand. All components necessary for outer segment formation, maintenance and function have to be transported from the photoreceptor inner segment, where synthesis occurs, to the cilium. Therefore, efficient transport of selected proteins is critical for photoreceptor ciliogenesis and function, and any alteration in either cargo delivery to the cilium or intraciliary trafficking compromises photoreceptor survival and leads to retinal degeneration. To date, mutations in more than 100 ciliary genes have been associated with retinal dystrophies, accounting for almost 25% of these inherited rare diseases. Interestingly, not all mutations in ciliary genes that cause retinal degeneration are also involved in pleiotropic pathologies in other ciliated organs. Depending on the mutation, the same gene can cause syndromic or non-syndromic retinopathies, thus emphasizing the highly refined specialization of the photoreceptor neurosensory cilia, and raising the possibility of photoreceptor-specific molecular mechanisms underlying common ciliary functions such as ciliary transport. In this review, we will focus on ciliary transport in photoreceptor cells and discuss the molecular complexity underpinning retinal ciliopathies, with a special emphasis on ciliary genes that, when mutated, cause either syndromic or non-syndromic retinal ciliopathies.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
25
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Affiliation(s)
- Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
27
|
Review: Intraflagellar transport proteins in the retina. Mol Vis 2020; 26:652-660. [PMID: 33088169 PMCID: PMC7553723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/02/2020] [Indexed: 10/28/2022] Open
Abstract
Intraflagellar transport (IFT) is an essential process in all organisms that serves to move proteins along flagella or cilia in either direction. IFT is performed by IFT particles, which are multiprotein complexes organized into two subcomplexes, A and B. The IFT proteins form interactions with each other, with cargo proteins, and with membranes during the transport process. Several IFT proteins are expressed in many parts of the retina, such as the outer plexiform and outer nuclear layers, and function in the transport of photoreceptor proteins between the inner and outer segments. Mutants of IFT protein genes have been characterized in model organisms such as Chlamydomonas, C. elegans, zebrafish, and the mouse. These mutants have defective ciliogenesis or abnormalities in retinal photoreceptors. Mutations in IFT genes are associated with syndromic and non-syndromic forms of retinal disease in humans, frequently with early onset of disease.
Collapse
|