1
|
Hu K, Dong B, Wang Y, Meng X. The role of sperm protein in mammal fertilization: insights into gamete adhesion, membrane fusion and oocyte activation. ZYGOTE 2025:1-11. [PMID: 40356503 DOI: 10.1017/s0967199425000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Globally, numerous infertile couples have been assisted by extensive research on mammalian fertilization and the rapid development of Assisted Reproductive Technology (ART). However, 5%-15% of the couples that are selected for in vitro fertilization (IVF) experience a total fertilization failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. Notably, an essential early event in fertilization is the binding of spermatozoa to the oocyte's external envelope, which followed by the spermatozoa-oocyte fusion. Meanwhile, oocyte activation is a crucial cellular process necessary to block polyspermy and start the development of the zygote. Improper membrane fusion of gametes has been demonstrated to be one of the mechanisms of TFF. Moreover, considering the large amount of research on sperm proteins in recent years, thus in this review, we characterize the role and molecular mechanisms of sperm proteins in the three key processes of gamete adhesion and fusion and oocyte activation, which would provide a comprehensive understanding of the role of sperm proteins in fertilization in mammals and a favourable reference for future studies in assisted reproduction due to FF.
Collapse
Affiliation(s)
- Kaiyue Hu
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Reproductive Medicine, Luoyang, China
| | - Bo Dong
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Yugang Wang
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Zhang T, Peng Z, Meng F, Li Z, Chen J, Zhou Q, Leng L, Bo H, Lu G, Deng Y, Gu F, Lin G. Maternal transcription factor OTX2 directly induces SETD1A and promotes embryonic genome activation in human pre-implantation embryos. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2875-3. [PMID: 40285911 DOI: 10.1007/s11427-024-2875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 02/18/2025] [Indexed: 04/29/2025]
Abstract
Early embryonic development is controlled by maternal factors originating from mature oocytes. The zygotic genome is activated from a transcriptionally quiescent state through a process called embryonic genome activation (EGA), which involves the depletion and clearance of maternal factors. However, the mechanism by which maternal factors regulate EGA and embryonic development, particularly in humans, remains elusive. In this study, using tri-pronuclear (3PN) embryos and human embryonic stem cells (hESCs), we demonstrated that the maternal transcription factor Orthodenticle Homeobox 2 (OTX2), a paired-like homeobox gene, promotes EGA in human pre-implantation embryos. Knockdown of OTX2 through Trim-Away technology blocked embryonic development and minor EGA gene expression. Overexpression of OTX2 (OTX2OE) in hESCs increased transcript products, primarily at the 2-cell embryo stage genes, including genes encoding methyltransferase of histone H3K4. OTX2OE increased the level of H3K4me3 and increased the open chromatin region that co-occurs with the H3K4me3 region at the 4-cell stage in hESCs. Based on these findings in hESCs, we further verified that OTX2 directly induced the expression of SETD1A by binding to its promoter, leading to increased H3K4me3 levels in both hESCs and 3PN embryos. These findings suggest that the maternal transcription factor OTX2 regulates EGA and early embryogenesis via epigenetic mechanisms.
Collapse
Affiliation(s)
- Tianlei Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ziyan Peng
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
| | - Zhuo Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Qinwei Zhou
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
| | - Lizhi Leng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410008, China
| | - Hao Bo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410008, China
| | - Yun Deng
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
- Guangxiu Hospital Affiliated with Hunan Normal University (Hunan Guangxiu Hospital), Changsha, 410017, China.
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410205, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410008, China.
- Guangxiu Hospital Affiliated with Hunan Normal University (Hunan Guangxiu Hospital), Changsha, 410017, China.
| |
Collapse
|
3
|
He J, Lin X, Tan C, Li Y, Su L, Lin G, Tan YQ, Tu C. Molecular insights into sperm head shaping and its role in human male fertility. Hum Reprod Update 2025:dmaf003. [PMID: 40037590 DOI: 10.1093/humupd/dmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner. Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood. OBJECTIVE AND RATIONALE This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment. SEARCH METHODS We searched the PubMed database for articles published in English using the keyword 'sperm head shaping' in combination with the following terms: 'acrosome formation', 'proacrosomal vesicles (PAVs)', 'manchette', 'perinuclear theca (PT)', 'chromatin condensation', 'linker of nucleoskeleton and cytoskeleton (LINC) complex', 'histone-to-protamine (HTP) transition', 'male infertility', 'ICSI', and 'artificial oocyte activation (AOA)'. The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded. OUTCOMES A total of 6823 records were retrieved. After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis. Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition. Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia. Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head. WIDER IMPLICATIONS Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Collapse
Affiliation(s)
- Jiaxin He
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xinle Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lilan Su
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| |
Collapse
|
4
|
Chen D, Zhou S, Tang J, Xiong H, Li J, Li F. Dnajc5b contributes to male fertility by maintaining the mitochondrial functions and autophagic homeostasis during spermiogenesis. Cell Mol Life Sci 2025; 82:69. [PMID: 39899042 PMCID: PMC11790535 DOI: 10.1007/s00018-024-05552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025]
Abstract
DnaJ heat shock protein family member C5 beta (DNAJC5B), also known as cysteine-string protein beta, exhibits a prominent expression in testicular tissue and plays an important role in acrosomal exocytosis in vitro. Nevertheless, the precise role and underlying mechanism of DNAJC5B in spermatogenesis and male fertility remain poorly understood. The meta-analysis of RNA-sequencing datasets from porcine and murine testes reveals that Dnajc5b could be a pivotal factor in spermatogenesis. This study illustrates that male fertility declines with an increased ratio of abnormal spermatozoa in germ-cell knockout Dnajc5b mice. DNAJC5B has been identified as a mitochondrial protein with high expression in spermatids. The absence of DNAJC5B induces a cascade of mitochondrial damages, including oxidative stress, mitochondrial stress in the testes, and lower mitochondrial membrane potential of spermatozoa. In vivo and in vitro evidence demonstrates that DNAJC5B mitigates excessive cellular autophagy and mitophagy via DNAJ domain under environmental stress conditions, such as starvation or exposure to mitochondrial uncouplers FCCP and CCCP. This study highlights the important role of DNAJC5B in safeguarding male fertility by preserving mitochondrial function and regulating autophagy during spermiogenesis.
Collapse
Affiliation(s)
- Dake Chen
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shiqin Zhou
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinhua Tang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hao Xiong
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialian Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Zhang J, Sui Y, Xiao M, Sun X, Fu J. Assessing the impact of calcium ionophore on pregnancy outcomes in artificial oocyte activation cycles: a 10-year update of systematic review and meta-analysis. J Assist Reprod Genet 2025; 42:165-183. [PMID: 39557784 PMCID: PMC11806169 DOI: 10.1007/s10815-024-03319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE The objective is to evaluate the effectiveness and safety of calcium ionophore as an artificial oocyte activation (AOA) method on pregnancy outcomes in different groups of intracytoplasmic sperm injection (ICSI) patients, providing potential evidence to establish consensus on the indications of AOA. METHODS A systematic comprehensive search was performed in Medline, Embase, the Cochrane Library, and Google Scholar databases. Studies published from January 2014 to June 2024 were searched for analysis. All studies that compared ICSI with AOA-ICSI in routine indications composing impaired fertilization or embryo developmental arrest in previous cycles, or male-factor infertility were included. RESULTS Twelve studies were included in the meta-analysis. AOA-ICSI was associated with the increase in the overall fertilization rate (OR 1.99, 95% CI 1.16-3.41) and live birth rate (OR 4.58, 95% CI 1.52-13.80). All secondary outcomes including cleavage, blastocyst, high-quality embryo, implantation, biochemical pregnancy, clinical pregnancy presented superiority or equivalence in AOA-ICSI. And the use of calcium ionophore did not increase the miscarriage rate (OR 0.43, 95% CI 0.08-2.43). In subgroup analysis, AOA-ICSI exhibited a more significant effect on patients with indications of no or low fertilization. However, in patients with non-fertilization factors, no statistically significant improvements were observed in all outcomes. CONCLUSION Calcium ionophore is an effective artificial oocyte activation approach to improving pregnancy outcomes after ICSI, particularly in cases with indications of fertilization factors, providing further support for the application of AOA in specific populations. Further validation is needed to comprehensively establish the safety of AOA. TRIAL REGISTRATION PROSPERO registration number CRD42024551481.
Collapse
Affiliation(s)
- Jingqi Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yilun Sui
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Min Xiao
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
7
|
Cardona Barberán A, Reddy Guggilla R, Colenbier C, Van der Velden E, Rybouchkin A, Stoop D, Leybaert L, Coucke P, Symoens S, Boel A, Vanden Meerschaut F, Heindryckx B. High rate of detected variants in male PLCZ1 and ACTL7A genes causing failed fertilization after ICSI. Hum Reprod Open 2024; 2024:hoae057. [PMID: 39411542 PMCID: PMC11479693 DOI: 10.1093/hropen/hoae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
STUDY QUESTION What is the frequency of PLCZ1, ACTL7A, and ACTL9 variants in male patients showing fertilization failure after ICSI, and how effective is assisted oocyte activation (AOA) for them? SUMMARY ANSWER Male patients with fertilization failure after ICSI manifest variants in PLCZ1 (29.09%), ACTL7A (14.81%), and ACTL9 (3.70%), which can be efficiently overcome by AOA treatment with ionomycin. WHAT IS KNOWN ALREADY Genetic variants in PLCZ1, and more recently, in ACTL7A, and ACTL9 male genes, have been associated with total fertilization failure or low fertilization after ICSI. A larger patient cohort is required to understand the frequency at which these variants occur, and to assess their effect on the calcium ion (Ca2+) release during oocyte activation. AOA, using ionomycin, can restore fertilization and pregnancy rates in patients with PLCZ1 variants, but it remains unknown how efficient this is for patients with ACTL7A and ACTL9 variants. STUDY DESIGN SIZE DURATION This prospective study involved two patient cohorts. In the first setting, group 1 (N = 28, 2006-2020) underwent only PLCZ1 genetic screening, while group 2 (N = 27, 2020-2023) underwent PLCZ1, ACTL7A, and ACTL9 genetic screening. Patients were only recruited when they had a mean fertilization rate of ≤33.33% in at least one ICSI cycle with at least four MII oocytes. Patients underwent a mouse oocyte activation test (MOAT) and at least one ICSI-AOA cycle using calcium chloride (CaCl2) injection and double ionomycin exposure at our centre. All patients donated a saliva sample for genetic screening and a sperm sample for further diagnostic tests, including Ca2+ imaging. PARTICIPANTS/MATERIALS SETTING METHODS Genetic screening was performed via targeted next-generation sequencing. Identified variants were classified by applying the revised ACMG guidelines into a Bayesian framework and were confirmed by bidirectional Sanger sequencing. If variants of uncertain significance or likely pathogenic or pathogenic variants were found, patients underwent additional determination of the sperm Ca2+-releasing pattern in mouse (MOCA) and in IVM human (HOCA) oocytes. Additionally, ACTL7A immunofluorescence and acrosome ultrastructure analyses by transmission electron microscopy (TEM) were performed for patients with ACTL7A and/or ACTL9 variants. MAIN RESULTS AND THE ROLE OF CHANCE Overall, the frequency rate of PLCZ1 variants was 29.09%. Moreover, 14.81% of patients carried ACTL7A variants and 3.70% carried ACTL9 variants. Seven different PLCZ1 variants were identified (p.Ile74Thr, p.Gln94*, p.Arg141His, p.His233Leu, p.Lys322*, p.Ile379Thr, and p.Ser500Leu), five of which are novel. Interestingly, PLCZ1 variants p.Ser500Leu and p.His233Leu occurred in 14.55% and 9.09% of cases. Five different variants were found in ACTL7A (p.Tyr183His, p.Gly214Ser, p.Val340Met, p.Ser364Glnfs*9, p.Arg373Cys), four of them being identified for the first time. A novel variant in ACTL9 (p.Arg271Pro) was also described. Notably, both heterozygous and homozygous variants were identified.The MOCA and HOCA tests revealed abnormal or absent Ca2+ release during fertilization in all except one patient, including patients with PLCZ1 heterozygous variants. TEM analysis revealed abnormal acrosome ultrastructure in three patients with ACTL7A variants, but only patients with homozygous ACTL7A variants showed reduced fluorescence intensity in comparison to the control.AOA treatment significantly increased the fertilization rate in the 19 patients with detected variants (from 11.24% after conventional ICSI to 61.80% after ICSI-AOA), as well as positive hCG rate (from 10.64% to 60.00%) and live birth rate (from 6.38% to 37.14%), resulting in 13 healthy newborns. In particular, four live births and two ongoing pregnancies were produced using sperm from patients with ACTL7A variants. LIMITATIONS REASONS FOR CAUTION Genetic screening included exonic and outflanking intronic regions, which implies that deep intronic variants were missed. In addition, other male genes or possible female-related factors affecting the fertilization process remain to be investigated. WIDER IMPLICATIONS OF THE FINDINGS Genetic screening of PLCZ1, ACTL7A, and ACTL9 offers a fast, cost-efficient, and easily implementable diagnostic test for total fertilization failure or low fertilization after ICSI, eliminating the need for complex diagnostic tests like MOAT or Ca2+ analysis. Nonetheless, HOCA remains the most sensitive functional test to reveal causality of uncertain significance variants. Interestingly, heterozygous PLCZ1 variants are sufficient to cause inadequate Ca2+ release during ICSI. Most importantly, AOA treatment using CaCl2 injection followed by double ionomycin exposure is highly effective for this patient group, including those with ACTL7A variants, who also display a Ca2+-release deficiency. STUDY FUNDING/COMPETING INTERESTS This study was supported by the Flemish Fund for Scientific Research (FWO) (TBM-project grant T002223N awarded to B.H.) and by the Special Research Fund (BOF) (starting grant BOF.STG.2021.0042.01 awarded to B.H.). A.C.B., R.R.G., C.C., E.V.D.V., A.R., D.S., L.L., P.C., S.S., A.B., and F.V.M. have nothing to disclose. B.H. reports a research grant from FWO and BOF, and reports being a board member of the Belgian Ethical Committee on embryo research. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Arantxa Cardona Barberán
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ramesh Reddy Guggilla
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- MedGenome Labs Ltd, Narayana Health City, Bengaluru, India
| | - Cora Colenbier
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Emma Van der Velden
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andrei Rybouchkin
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Paul Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Frauke Vanden Meerschaut
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Li Q, Huang Y, Zhang S, Gong F, Lu G, Lin G, Dai J. Homozygous ACTL9 mutations cause irregular mitochondrial sheath arrangement and abnormal flagellum assembly in spermatozoa and male infertility. J Assist Reprod Genet 2024; 41:2271-2278. [PMID: 38963606 PMCID: PMC11405356 DOI: 10.1007/s10815-024-03171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE To identify novel variants in ACTL9 and new phenotypes responsible for male infertility. METHODS Genomic DNA was extracted from peripheral blood samples for whole-exome sequencing (WES). Computer-assisted sperm analysis (CASA) was used to test the motility of spermatozoa. The ultrastructure of flagella and the mitochondrial sheath were assessed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Immunostaining was used to validate the localization and expression of ACTL9 and ACTL7A. An Actl9-mutated mouse model was used to validate the phenotypes by CASA and TEM. RESULTS We identified novel homozygous variants in ACTL9 in two independent Chinese families. Spermatozoa with ACTL9 mutations showed decreased CASA parameters and a higher proportion of spermatozoa with abnormal morphology, exhibiting coiled flagella and a thickened midpiece. The spermatozoa were characterized by chaotic or irregular '9+2' structures and irregular mitochondrial sheath arrangements in the flagellum. Actl9 knock-in mice also showed abnormal CASA parameters and irregular '9+2' structures in flagella. CONCLUSIONS Our study expands the mutation spectrum and phenotypic spectrum of ACTL9.
Collapse
Affiliation(s)
- Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
| | - Yilian Huang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Shen Zhang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Guangxiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Jing Dai
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China.
| |
Collapse
|
9
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
10
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
Zhang Q, Jin H, Long S, Tang X, Li J, Liu W, Han W, Liao H, Fu T, Huang G, Chen S, Lin T. Deletion of ACTRT1 is associated with male infertility as sperm acrosomal ultrastructural defects and fertilization failure in human. Hum Reprod 2024; 39:880-891. [PMID: 38414365 DOI: 10.1093/humrep/deae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Indexed: 02/29/2024] Open
Abstract
STUDY QUESTION Could actin-related protein T1 (ACTRT1) deficiency be a potential pathogenic factor of human male infertility? SUMMARY ANSWER A 110-kb microdeletion of the X chromosome, only including the ACTRT1 gene, was identified as responsible for infertility in two Chinese males with sperm showing acrosomal ultrastructural defects and fertilization failure. WHAT IS KNOWN ALREADY The actin-related proteins (e.g. ACTRT1, ACTRT2, ACTL7A, and ACTL9) interact with each other to form a multimeric complex in the subacrosomal region of spermatids, which is crucial for the acrosome-nucleus junction. Actrt1-knockout (KO) mice are severely subfertile owing to malformed sperm heads with detached acrosomes and partial fertilization failure. There are currently no reports on the association between ACTRT1 deletion and male infertility in humans. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 120 infertile males with sperm head deformations at a large tertiary hospital from August 2019 to August 2023. Genomic DNA extracted from the affected individuals underwent whole exome sequencing (WES), and in silico analyses were performed to identify genetic variants. Morphological analysis, functional assays, and ART were performed in 2022 and 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS The ACTRT1 deficiency was identified by WES and confirmed by whole genome sequencing, PCR, and quantitative PCR. Genomic DNA of all family members was collected to define the hereditary mode. Papanicolaou staining and electronic microscopy were performed to reveal sperm morphological changes. Western blotting and immunostaining were performed to explore the pathological mechanism of ACTRT1 deficiency. ICSI combined with artificial oocyte activation (AOA) was applied for one proband. MAIN RESULTS AND THE ROLE OF CHANCE We identified a whole-gene deletion variant of ACTRT1 in two infertile males, which was inherited from their mothers, respectively. The probands exhibited sperm head deformations owing to acrosomal detachment, which is consistent with our previous observations on Actrt1-KO mice. Decreased expression and ectopic distribution of ACTL7A and phospholipase C zeta were observed in sperm samples from the probands. ICSI combined with AOA effectively solved the fertilization problem in Actrt1-KO mice and in one of the two probands. LIMITATIONS, REASONS FOR CAUTION Additional cases are needed to further confirm the genetic contribution of ACTRT1 variants to male infertility. WIDER IMPLICATIONS OF THE FINDINGS Our results reveal a gene-disease relation between the ACTRT1 deletion described here and human male infertility owing to acrosomal detachment and fertilization failure. This report also describes a good reproductive outcome of ART with ICSI-AOA for a proband. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Chongqing medical scientific research project (Joint project of Chongqing Health Commission and Science and Technology Bureau, 2023MSXM008 and 2023MSXM054). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qi Zhang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Huijuan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiaxun Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Haiyuan Liao
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Tao Fu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Suren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
13
|
Sinaei R, Eslami M, Dadfar M, Saberi A. Identification of a new mutation in the ACTL9 gene in men with unexplained infertility. Mol Genet Genomic Med 2024; 12:e2448. [PMID: 38769899 PMCID: PMC11106586 DOI: 10.1002/mgg3.2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Infertility is defined as the failure to achieve pregnancy after one year of unprotected intercourse within a marital relationship. Approximately 10%-15% of couples worldwide experience infertility issues, with nearly half of these cases attributed to male factors. Among men with unexplained infertility, genetic mutations have been identified as a potential cause. Studies have indicated that mutations affecting the function of the protein encoded by the ACTL9 gene may play a role in male infertility. METHODS The purpose of this research was to identify mutations in the ACTL9 gene associated with male infertility in a sample of 40 infertile men with unknown causes. Genomic DNA extraction and PCR amplification were carried out on samples from each individual. The genetic material was then analyzed using Sanger sequencing, followed by bioinformatics and segregation analysis to determine the potential effects of the observed variations. RESULT A novel genetic variant, c.376G>A (p.Glu126Lys), was identified in an infertile male individual, representing a previously unreported finding that was validated through segregation analyses. This specific variant induces a change from glutamate to lysine at the amino acid level by replacing the nucleotide G with A in the genomic DNA sequence, consequently impacting the secondary structure and function of the protein. CONCLUSIONS The conclusive analysis of the procedure indicated that this alteration has the potential to interfere with the process of fertilization, ultimately resulting in the complete failure of fertilization (TFF) and causing male infertility.
Collapse
Affiliation(s)
- Roya Sinaei
- Department of Genetics, Faculty of Advanced Science and TechnologyTehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Maryam Eslami
- Department of Genetics, Faculty of Advanced Science and TechnologyTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Applied Biotechnology Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- International FacultyTehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Alihossein Saberi
- Department of Medical Genetics, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Cellular and Molecular Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
14
|
Jin HJ, Fan Y, Yang X, Dong Y, Zhang XZ, Geng XY, Yan Z, Wu L, Ma M, Li B, Lyu Q, Pan Y, Liu M, Kuang Y, Chen SR. Disruption in CYLC1 leads to acrosome detachment, sperm head deformity, and male in/subfertility in humans and mice. eLife 2024; 13:RP95054. [PMID: 38573307 PMCID: PMC10994659 DOI: 10.7554/elife.95054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.
Collapse
Affiliation(s)
- Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Yong Fan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjingChina
| | - Xiao-Zhen Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng Ma
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjingChina
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical UniversityNanjingChina
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| |
Collapse
|
15
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
16
|
Wang Y, Huang X, Sun G, Chen J, Wu B, Luo J, Tang S, Dai P, Zhang F, Li J, Wang L. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice. J Genet Genomics 2024; 51:407-418. [PMID: 37709195 DOI: 10.1016/j.jgg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 in sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
Collapse
Affiliation(s)
- Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoying Sun
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jingwen Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiahui Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Shuyan Tang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|
17
|
Buranaamnuay K. Male reproductive phenotypes of genetically altered laboratory mice ( Mus musculus): a review based on pertinent literature from the last three decades. Front Vet Sci 2024; 11:1272757. [PMID: 38500604 PMCID: PMC10944935 DOI: 10.3389/fvets.2024.1272757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Laboratory mice (Mus musculus) are preferred animals for biomedical research due to the close relationship with humans in several aspects. Therefore, mice with diverse genetic traits have been generated to mimic human characteristics of interest. Some genetically altered mouse strains, on purpose or by accident, have reproductive phenotypes and/or fertility deviating from wild-type mice. The distinct reproductive phenotypes of genetically altered male mice mentioned in this paper are grouped based on reproductive organs, beginning with the brain (i.e., the hypothalamus and anterior pituitary) that regulates sexual maturity and development, the testis where male gametes and sex steroid hormones are produced, the epididymis, the accessory sex glands, and the penis which involve in sperm maturation, storage, and ejaculation. Also, distinct characteristics of mature sperm from genetically altered mice are described here. This repository will hopefully be a valuable resource for both humans, in terms of future biomedical research, and mice, in the aspect of the establishment of optimal sperm preservation protocols for individual mouse strains.
Collapse
Affiliation(s)
- Kakanang Buranaamnuay
- Molecular Agricultural Biosciences Cluster, Institute of Molecular Biosciences (MB), Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
18
|
Ferrer P, Upadhyay S, Cai JJ, Clement TM. Novel Nuclear Roles for Testis-Specific ACTL7A and ACTL7B Supported by In Vivo Characterizations and AI Facilitated In Silico Mechanistic Modeling with Implications for Epigenetic Regulation in Spermiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582797. [PMID: 38464253 PMCID: PMC10925299 DOI: 10.1101/2024.02.29.582797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A mechanistic role for nuclear function of testis-specific actin related proteins (ARPs) is proposed here through contributions of ARP subunit swapping in canonical chromatin regulatory complexes. This is significant to our understanding of both mechanisms controlling regulation of spermiogenesis, and the expanding functional roles of the ARPs in cell biology. Among these roles, actins and ARPs are pivotal not only in cytoskeletal regulation, but also in intranuclear chromatin organization, influencing gene regulation and nucleosome remodeling. This study focuses on two testis-specific ARPs, ACTL7A and ACTL7B, exploring their intranuclear activities and broader implications utilizing combined in vivo, in vitro, and in silico approaches. ACTL7A and ACTL7B, previously associated with structural roles, are hypothesized here to serve in chromatin regulation during germline development. This study confirms the intranuclear presence of ACTL7B in spermatocytes and round spermatids, revealing a potential role in intranuclear processes, and identifies a putative nuclear localization sequence conserved across mammalian ACTL7B, indicating a potentially unique mode of nuclear transport which differs from conventional actin. Ablation of ACTL7B leads to varied transcriptional changes reported here. Additionally, in the absence of ACTL7A or ACTL7B there is a loss of intranuclear localization of HDAC1 and HDAC3, which are known regulators of epigenetic associated acetylation changes that in turn regulate gene expression. Thus, these HDACs are implicated as contributors to the aberrant gene expression observed in the KO mouse testis transcriptomic analysis. Furthermore, this study employed and confirmed the accuracy of in silico models to predict ARP interactions with Helicase-SANT-associated (HSA) domains, uncovering putative roles for testis-specific ARPs in nucleosome remodeling complexes. In these models, ACTL7A and ACTL7B were found capable of binding to INO80 and SWI/SNF nucleosome remodeler family members in a manner akin to nuclear actin and ACTL6A. These models thus implicate germline-specific ARP subunit swapping within chromatin regulatory complexes as a potential regulatory mechanism for chromatin and associated molecular machinery adaptations in nuclear reorganizations required during spermiogenesis. These results hold implications for male fertility and epigenetic programing in the male-germline that warrant significant future investigation. In summary, this study reveals that ACTL7A and ACTL7B play intranuclear gene regulation roles in male gametogenesis, adding to the multifaceted roles identified also spanning structural, acrosomal, and flagellar stability. ACTL7A and ACTL7B unique nuclear transport, impact on HDAC nuclear associations, impact on transcriptional processes, and proposed mechanism for involvement in nucleosome remodeling complexes supported by AI facilitated in silico modeling contribute to a more comprehensive understanding of the indispensable functions of ARPs broadly in cell biology, and specifically in male fertility.
Collapse
Affiliation(s)
- Pierre Ferrer
- Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - James J Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Tracy M Clement
- Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
19
|
Barazandeh M, Kriti D, Fickel J, Nislow C. The Addis Ababa Lions: Whole-Genome Sequencing of a Rare and Precious Population. Genome Biol Evol 2024; 16:evae021. [PMID: 38302110 PMCID: PMC10871700 DOI: 10.1093/gbe/evae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Lions are widely known as charismatic predators that once roamed across the globe, but their populations have been greatly affected by environmental factors and human activities over the last 150 yr. Of particular interest is the Addis Ababa lion population, which has been maintained in captivity at around 20 individuals for over 75 yr, while many wild African lion populations have become extinct. In order to understand the molecular features of this unique population, we conducted a whole-genome sequencing study on 15 Addis Ababa lions and detected 4.5 million distinct genomic variants compared with the reference African lion genome. Using functional annotation, we identified several genes with mutations that potentially impact various traits such as mane color, body size, reproduction, gastrointestinal functions, cardiovascular processes, and sensory perception. These findings offer valuable insights into the genetics of this threatened lion population.
Collapse
Affiliation(s)
- Marjan Barazandeh
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jörns Fickel
- Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Ma S, Tan J, Xiong Y, Peng Y, Gong F, Hu L, Wang X, Tan L, Liu R, Hocher B, Sun X, Lin G. Cohort Profile: CITIC-Xiangya Assisted Reproductive Technology Cohort (CXART Cohort). Int J Epidemiol 2024; 53:dyad188. [PMID: 38205885 DOI: 10.1093/ije/dyad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Shujuan Ma
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jing Tan
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiquan Xiong
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiaojuan Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ruwei Liu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Berthold Hocher
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xin Sun
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
21
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Shkrigunov T, Zgoda V, Klimenko P, Kozlova A, Klimenko M, Lisitsa A, Kurtser M, Petushkova N. The Application of Ejaculate-Based Shotgun Proteomics for Male Infertility Screening. Biomedicines 2023; 12:49. [PMID: 38255156 PMCID: PMC10813512 DOI: 10.3390/biomedicines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Problems with the male reproductive system are of both medical and social significance. As a rule, spermatozoa and seminal plasma proteomes are investigated separately to assess sperm quality. The current study aimed to compare ejaculate proteomes with spermatozoa and seminal plasma protein profiles regarding the identification of proteins related to fertility scores. A total of 1779, 715, and 2163 proteins were identified in the ejaculate, seminal plasma, and spermatozoa, respectively. Among these datasets, 472 proteins were shared. GO enrichment analysis of the common proteins enabled us to distinguish biological processes such as single fertilization (GO:0007338), spermatid development (GO:0007286), and cell motility (GO:0048870). Among the abundant terms for GO cellular components, zona pellucida receptor complex, sperm fibrous sheath, and outer dense fiber were revealed. Overall, we identified 139 testis-specific proteins. For these proteins, PPI networks that are common in ejaculate, spermatozoa, and seminal plasma were related to the following GO biological processes: cilium movement (GO:0003341), microtubule-based movement (GO:0007018), and sperm motility (GO:0097722). For ejaculate and spermatozoa, they shared 15 common testis-specific proteins with spermatogenesis (GO:0007283) and male gamete generation (GO:0048232). Therefore, we speculated that ejaculate-based proteomics could yield new insights into the peculiar reproductive physiology and spermatozoa function of men and potentially serve as an explanation for male infertility screening.
Collapse
Affiliation(s)
- Timur Shkrigunov
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Peter Klimenko
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Anna Kozlova
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Maria Klimenko
- Center for Family Planning and Reproduction, Moscow Department of Health, 117209 Moscow, Russia;
| | - Andrey Lisitsa
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Mark Kurtser
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Natalia Petushkova
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| |
Collapse
|
23
|
Wu H, Che J, Zheng W, Cheng D, Gong F, Lu G, Lin G, Dai C. Novel biallelic ASTL variants are associated with polyspermy and female infertility: A successful live birth following ICSI treatment. Gene 2023; 887:147745. [PMID: 37640117 DOI: 10.1016/j.gene.2023.147745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Fertilization of the egg by the sperm is the first vital stage of embryogenesis. In mammals, only one sperm is incorporated into the oocyte. Polyspermy is a key anomaly of fertilization that is generally lethal to the embryo. To date, only a few causative genes for polyspermy have been reported. In a recent study, a homozygous variant in astacin-like metalloendopeptidase (ASTL), which encodes the ovastacin enzyme that cleaves ZP2 to prevent polyspermy, was found to be associated with female infertility characterized by polyspermy in vitro. Herein, we identified two ASTL variants in a Chinese woman likely responsible for her primary infertility and polyspermy in in vitro fertilization. Both variants were located within the key catalytic domain and predicted to alter hydrogen bonds, potentially impairing protein stability. Moreover, expression and immunoblot analyses in CHO-K1 cells indicated abnormal ovastacin zymogen activation or decreased enzyme stability. Intracytoplasmic sperm injection treatment successfully bypassed the defect in polyspermy blocking and resulted in a live birth. Our study associates ASTL variants with human infertility and further supports the contribution of this gene to blocking polyspermy in humans. Our findings expand the spectrum of ASTL mutations and should facilitate the diagnosis of oocyte-borne polyspermy.
Collapse
Affiliation(s)
- Huixia Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jianfang Che
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Dehua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Guangxiu Lu
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China.
| | - Can Dai
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China.
| |
Collapse
|
24
|
Guo H, Wu H, Yan Z, Yin M, Wu L, Li B. Novel WEE2 homozygous mutations c.1346C>T and c.949A>T identified in primary infertile women due to unexplained fertilization failure. Clin Genet 2023; 104:700-704. [PMID: 37772619 DOI: 10.1111/cge.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
The occurrence of unexplained fertilization failure can have profound psychological and financial consequences for couples struggling with infertility, and its pathogenesis remains unclear. Increasing evidence highlights genetic basis of unexplained fertilization failure occurrence. Here, we identified one novel homozygous nonsense mutation (c.949A>T), one novel homozygous missense mutation (c.1346C>T), and three reported homozygous mutations (c.585G>C, c.1006_1007insTA, c.1221G>A) in six unrelated probands, showing similar manifestations of unexplained fertilization failure. This finding expands the spectrum of WEE2 mutations, highlighting the critical role of WEE2 in fertilization process, and provides a basis for the prognostic value of testing for WEE2 mutations in primary infertile couples with unexplained fertilization failure.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Kast DJ, Jansen S. Purification of modified mammalian actin isoforms for in vitro reconstitution assays. Eur J Cell Biol 2023; 102:151363. [PMID: 37778219 PMCID: PMC10872616 DOI: 10.1016/j.ejcb.2023.151363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
In vitro reconstitution assays using purified actin have greatly improved our understanding of cytoskeletal dynamics and their regulation by actin-binding proteins. However, early purification methods consisted of harsh conditions to obtain pure actin and often did not include correct maturation and obligate modification of the isolated actin monomers. Novel insights into the folding requirements and N-terminal processing of actin as well as a better understanding of the interaction of actin with monomer sequestering proteins such as DNaseI, profilin and gelsolin, led to the development of more gentle approaches to obtain pure recombinant actin isoforms with known obligate modifications. This review summarizes the approaches that can be employed to isolate natively folded endogenous and recombinant actin from tissues and cells. We further emphasize the use and limitations of each method and describe how these methods can be implemented to study actin PTMs, disease-related actin mutations and novel actin-like proteins.
Collapse
Affiliation(s)
- David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States.
| |
Collapse
|
26
|
Gacem S, Castello-Ruiz M, Hidalgo CO, Tamargo C, Santolaria P, Soler C, Yániz JL, Silvestre MA. Bull Sperm SWATH-MS-Based Proteomics Reveals Link between High Fertility and Energy Production, Motility Structures, and Sperm-Oocyte Interaction. J Proteome Res 2023; 22:3607-3624. [PMID: 37782577 PMCID: PMC10629479 DOI: 10.1021/acs.jproteome.3c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/04/2023]
Abstract
The prediction of male or semen fertility potential remains a persistent challenge that has yet to be fully resolved. This work analyzed several in vitro parameters and proteome of spermatozoa in bulls cataloged as high- (HF; n = 5) and low-field (LF; n = 5) fertility after more than a thousand artificial inseminations. Sperm motility was evaluated by computer-assisted sperm analysis. Sperm viability, mitochondrial membrane potential (MMP) and reactive oxygen species (mROS) of spermatozoa were assessed by flow cytometry. Proteome was evaluated by the SWATH-MS procedure. Spermatozoa of HF bulls showed significantly higher total motility than the LF group (41.4% vs 29.7%). Rates of healthy sperm (live, high MMP, and low mROS) for HF and LF bull groups were 49% and 43%, respectively (p > 0.05). Spermatozoa of HF bulls showed a higher presence of differentially abundant proteins (DAPs) related to both energy production (COX7C), mainly the OXPHOS pathway, and the development of structures linked with the motility process (TPPP2, SSMEM1, and SPAG16). Furthermore, we observed that equatorin (EQTN), together with other DAPs related to the interaction with the oocyte, was overrepresented in HF bull spermatozoa. The biological processes related to protein processing, catabolism, and protein folding were found to be overrepresented in LF bull sperm in which the HSP90AA1 chaperone was identified as the most DAP. Data are available via ProteomeXchange with identifier PXD042286.
Collapse
Affiliation(s)
- Sabrina Gacem
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Departamento
de Medicina y Cirugía Animal, Universitat
Autònoma de Barcelona, 08193 Barcelona, Spain
| | - María Castello-Ruiz
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Unidad
Mixta de Investigación Cerebrovascular, Instituto de Investigación
Sanitaria La Fe, Hospital Universitario
y Politécnico La Fe, 46026 Valencia, Spain
| | - Carlos O. Hidalgo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Carolina Tamargo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Pilar Santolaria
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Carles Soler
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| | - Jesús L. Yániz
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Miguel A. Silvestre
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| |
Collapse
|
27
|
Zhou J, Zhang B, Zeb A, Ma A, Chen J, Zhao D, Rahim F, Khan R, Zhang H, Zhang Y, Khan I, Kakakhel MBS, Khan A, Shah W, Jiang X, Zhang F, Yang X, Xiao J, Xu B, Ma H, Shi Q. A recessive ACTL7A founder variant leads to male infertility due to acrosome detachment in Pakistani Pashtuns. Clin Genet 2023; 104:564-570. [PMID: 37286336 DOI: 10.1111/cge.14383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Male infertility affects more than 20 million men worldwide and is a major public health concern. Male infertility has a strong genetic basis, particularly for those unexplained cases. Here, through genetic analysis of three Pakistani families having eight infertile men with normal parameters in routine semen analysis, we identified a novel ACTL7A variant (c.149_150del, p.E50Afs*6), recessively co-segregating with infertility in these three families. This variant leads to the loss of ACTL7A proteins in spermatozoa from patients. Transmission EM analyses revealed acrosome detachment from nuclei in 98.9% spermatozoa of patients. Interestingly, this ACTL7A variant was frequently detected in our sequenced Pakistani Pashtuns with a minor allele frequency of ~0.021 and all the carriers shared a common haplotype of about 240 kb flanking ACTL7A, indicating that it is likely originated from a single founder. Our findings reveal that a founder ACTL7A pathogenic variant confers a high genetic susceptibility for male infertility with normal routine semen parameters but acrosomal ultrastructural defects in Pakistani Pashtun descendants, and highlight that variants not rare should also be considered when trying to identify disease-causing variants in ethnic groups with the tradition of intra-ethnic marriages.
Collapse
Affiliation(s)
- Jianteng Zhou
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Beibei Zhang
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Aurang Zeb
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ao Ma
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Jing Chen
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Daren Zhao
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Fazal Rahim
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ranjha Khan
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Yuanwei Zhang
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ihsan Khan
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Mian Basit Shah Kakakhel
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Asad Khan
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Wasim Shah
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Yang
- The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Xu
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Hui Ma
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Merges GE, Arévalo L, Kovacevic A, Lohanadan K, de Rooij DG, Simon C, Jokwitz M, Witke W, Schorle H. Actl7b deficiency leads to mislocalization of LC8 type dynein light chains and disruption of murine spermatogenesis. Development 2023; 150:dev201593. [PMID: 37800308 PMCID: PMC10652042 DOI: 10.1242/dev.201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.
Collapse
Affiliation(s)
- Gina E. Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andjela Kovacevic
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dirk G. de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Carla Simon
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Melanie Jokwitz
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Walter Witke
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
29
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Xia D, Wang J, Zhao X, Shen T, Ling L, Liang Y. Association between gut microbiota and benign prostatic hyperplasia: a two-sample mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1248381. [PMID: 37799337 PMCID: PMC10548216 DOI: 10.3389/fcimb.2023.1248381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Background Recent researches have shown a correlation between the gut microbiota (GM) and various diseases. However, it remains uncertain whether the relationship between GM and benign prostatic hyperplasia (BPH) is causal. Methods We carried out a two-sample Mendelian randomization (MR) analysis, utilizing data from the most extensive GM-focused genome-wide association study by the MiBioGen consortium, with a sample size of 13,266. Data for BPH, encompassing 26,358 cases and 110,070 controls, were obtained from the R8 release of the FinnGen consortium. We employed multiple techniques, such as inverse variance weighted (IVW), constrained maximum likelihood and model averaging methods, maximum likelihood, MR-Pleiotropy RESidual Sum and Outlier (MRPRESSO),MR-Egger, and weighted median methods, to investigate the causal relationship between GM and BPH. To evaluate the heterogeneity among the instrumental variables, Cochran's Q statistics were employed. Additionally, the presence of horizontal pleiotropy was assessed through the application of both MR-Egger and MR-PRESSO tests. The direction of causality was scrutinized for robustness using the MR-Steiger directionality test. A reverse MR analysis examined the GM previously linked to BPH through a causal relationship in the forward MR assessment. Results According to the analysis conducted using IVW,Eisenbergiella (odds ratio [OR]=0.92, 95% confidence interval [CI]: 0.85-0.99,P=0.022) and Ruminococcaceae (UCG009) (OR=0.88, 95% CI: 0.79-0.99, P=0.027) were found to reduce the risk of BPH, while Escherichia shigella (OR=1.19, 95% CI: 1.05-1.36, P=0.0082) appeared to increase it. The subsequent reverse MR analysis revealed that the three GM were not significantly influenced by BPH, and there was no noticeable heterogeneity or horizontal pleiotropy among the instrumental variables.Conclusion: These results indicated a causal relationship between Eisenbergiella, Ruminococcaceae (UCG009), and Escherichia shigella and BPH. Further randomized controlled trials are needed to explore more comprehensively the roles and operational mechanisms of these GM in relation to BPH.
Collapse
Affiliation(s)
- Di Xia
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Jiahui Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xia Zhao
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Tao Shen
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Li Ling
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuanjiao Liang
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Zhang X, Hu C, Wu L. Advances in the study of genetic factors and clinical interventions for fertilization failure. J Assist Reprod Genet 2023; 40:1787-1805. [PMID: 37289376 PMCID: PMC10371943 DOI: 10.1007/s10815-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
Fertilization failure refers to the failure in the pronucleus formation, evaluating 16-18 h post in vitro fertilization or intracytoplasmic sperm injection. It can be caused by sperm, oocytes, and sperm-oocyte interaction and lead to great financial and physical stress to the patients. Recent advancements in genetics, molecular biology, and clinical-assisted reproductive technology have greatly enhanced research into the causes and treatment of fertilization failure. Here, we review the causes that have been reported to lead to fertilization failure in fertilization processes, including the sperm acrosome reaction, penetration of the cumulus and zona pellucida, recognition and fusion of the sperm and oocyte membranes, oocyte activation, and pronucleus formation. Additionally, we summarize the progress of corresponding treatment methods of fertilization failure. This review will provide the latest research advances in the genetic aspects of fertilization failure and will benefit both researchers and clinical practitioners in reproduction and genetics.
Collapse
Affiliation(s)
- Xiangjun Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Congyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
32
|
Nozawa K, Garcia TX, Kent K, Leng M, Jain A, Malovannaya A, Yuan F, Yu Z, Ikawa M, Matzuk MM. Testis-specific serine kinase 3 is required for sperm morphogenesis and male fertility. Andrology 2023; 11:826-839. [PMID: 36306217 PMCID: PMC10267670 DOI: 10.1111/andr.13314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The importance of phosphorylation in sperm during spermatogenesis has not been pursued extensively. Testis-specific serine kinase 3 (Tssk3) is a conserved gene, but TSSK3 kinase functions and phosphorylation substrates of TSSK3 are not known. OBJECTIVE The goals of our studies were to understand the mechanism of action of TSSK3. MATERIALS AND METHODS We analyzed the localization of TSSK3 in sperm, used CRISPR/Cas9 to generate Tssk3 knockout (KO) mice in which nearly all of the Tssk3 open reading frame was deleted (ensuring it is a null mutation), analyzed the fertility of Tssk3 KO mice by breeding mice for 4 months, and conducted phosphoproteomics analysis of male testicular germ cells. RESULTS TSSK3 is expressed in elongating sperm and localizes to the sperm tail. To define the essential roles of TSSK3 in vivo, heterozygous (HET) or homozygous KO male mice were mated with wild-type females, and fertility was assessed over 4 months; Tssk3 KO males are sterile, whereas HET males produced normal litter sizes. The absence of TSSK3 results in disorganization of all stages of testicular seminiferous epithelium and significantly increased vacuolization of germ cells, leading to dramatically reduced sperm counts and abnormal sperm morphology; despite these histologic changes, Tssk3 null mice have normal testis size. To elucidate the mechanisms causing the KO phenotype, we conducted phosphoproteomics using purified germ cells from Tssk3 HET and KO testes. We found that proteins implicated in male infertility, such as GAPDHS, ACTL7A, ACTL9, and REEP6, showed significantly reduced phosphorylation in KO testes compared to HET testes, despite unaltered total protein levels. CONCLUSIONS We demonstrated that TSSK3 is essential for male fertility and crucial for phosphorylation of multiple infertility-related proteins. These studies and the pathways in which TSSK3 functions have implications for human male infertility and nonhormonal contraception.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Katarzyna Kent
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Mei Leng
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Fei Yuan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
33
|
Li Q, Wang Y, Zheng W, Guo J, Zhang S, Gong F, Lu GX, Lin G, Dai J. Biallelic variants in IQCN cause sperm flagellar assembly defects and male infertility. Hum Reprod 2023:7142890. [PMID: 37140151 DOI: 10.1093/humrep/dead079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
STUDY QUESTION What is the effect of defects in the manchette protein IQ motif-containing N (IQCN) on sperm flagellar assembly? SUMMARY ANSWER Deficiency in IQCN causes sperm flagellar assembly defects and male infertility. WHAT IS KNOWN ALREADY The manchette is a transient structure that is involved in the shaping of the human spermatid nucleus and protein transport within flagella. Our group recently reported that the manchette protein IQCN is essential for fertilization. Variants in IQCN lead to total fertilization failure and defective acrosome structure phenotypes. However, the function of IQCN in sperm flagellar assembly is still unknown. STUDY DESIGN, SIZE, DURATION Fifty men with infertility were recruited from a university-affiliated center from January 2014 to October 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from the peripheral blood samples of all 50 individuals for whole-exome sequencing. The ultrastructure of the spermatozoa was assessed by transmission electron microscopy. Computer-assisted sperm analysis (CASA) was used to test the parameters of curvilinear velocity (VCL), straight-line velocity (VSL), and average path velocity (VAP). An Iqcn knockout (Iqcn-/-) mouse model was generated by CRISPR-Cas9 technology to evaluate sperm motility and the ultrastructure of the flagellum. Hyperactivation and sperm fertilizing ability were assessed in a mouse model. Immunoprecipitation followed by liquid chromatography-mass spectrometry was used to detect IQCN-binding proteins. Immunofluorescence was used to validate the localization of IQCN-binding proteins. MAIN RESULTS AND THE ROLE OF CHANCE Biallelic variants in IQCN (c.3913A>T and c.3040A>G; c.2453_2454del) were identified in our cohort of infertile men. The sperm from the affected individuals showed an irregular '9 + 2' structure of the flagellum, which resulted in abnormal CASA parameters. Similar phenotypes were observed in Iqcn-/- male mice. VSL, VCL, and VAP in the sperm of Iqcn-/- male mice were significantly lower than those in Iqcn+/+ male mice. Partial peripheral doublet microtubules (DMTs) and outer dense fibers (ODFs) were absent, or a chaotic arrangement of DMTs was observed in the principal piece and end piece of the sperm flagellum. Hyperactivation and IVF ability were impaired in Iqcn-/- male mice. In addition, we investigated the causes of motility defects and identified IQCN-binding proteins including CDC42 and the intraflagellar transport protein families that regulate flagellar assembly during spermiogenesis. LIMITATIONS, REASONS FOR CAUTION More cases are needed to demonstrate the relation between IQCN variants and phenotypes. WIDER IMPLICATIONS OF THE FINDINGS Our findings expand the genetic and phenotypic spectrum of IQCN variants in causing male infertility, providing a genetic marker for sperm motility deficiency and male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (81974230 and 82202053), the Changsha Municipal Natural Science Foundation (kq2202072), the Hunan Provincial Natural Science Foundation (2022JJ40658), and the Scientific Research Foundation of Reproductive and Genetic Hospital of CITIC-Xiangya (YNXM-202114 and YNXM-202201). No conflicts of interest were declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Yize Wang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Zheng
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jing Guo
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Shunji Zhang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Guang-Xiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jing Dai
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| |
Collapse
|
34
|
Sha Y, Chen Y, Wang X, Meng R, Yang X, Li Y, Jin P, Li S, Chen J, Shao T, Xu D, Guo Y, Jiang Z, Li Y, Yu S, Li L, Wang F. Biallelic mutations in IQCN, encoding a novel acroplaxome protein, lead to fertilization failure and male infertility with defects in the acrosome and shaping of the spermatid head in humans and mice. LIFE MEDICINE 2023; 2:lnac050. [PMID: 39872118 PMCID: PMC11749140 DOI: 10.1093/lifemedi/lnac050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 01/29/2025]
Affiliation(s)
- Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xiong Wang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Ranran Meng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoyan Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Youzhu Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shanze Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jie Chen
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Tianyu Shao
- National Institute of Biological Sciences, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University—National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing 100871, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yibiao Guo
- Department of Reproductive Medicine, Quanzhou Women and Children’s Hospital, Quanzhou 362000, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yuhua Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shuntai Yu
- National Institute of Biological Sciences, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University—National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing 100871, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Zhou X, Xi Q, Jia W, Li Z, Liu Z, Luo G, Xing C, Zhang D, Hou M, Liu H, Yang X, Luo Y, Peng X, Wang G, Zou T, Zhu L, Jin L, Zhang X. A novel homozygous mutation in ACTL7A leads to male infertility. Mol Genet Genomics 2023; 298:353-360. [PMID: 36574082 DOI: 10.1007/s00438-022-01985-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Male infertility, a global public health problem, exhibits complex pathogenic causes and genetic factors deserve further discovery and study. We identified a novel homozygous missense mutation c.224A > C (p.D75A) in ACTL7A gene in two infertile brothers with teratozoospermia by whole-exome sequencing (WES). In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) showed fertilization failure of the two affected couples. The three-dimensional (3D) models showed that a small section of α-helix transformed into random coil in the mutant ACTL7A protein and mutant amino acid lacked a hydrogen bond with Ser170 amino acid. Immunofluorescence revealed that ACTL7A protein was degraded in sperms of patients. Transmission electron microscopy (TEM) analysis of sperms from the infertile patients showed that the irregular perinuclear theca (PT) and acrosomal ultrastructural defects. Furthermore, ACTL7A mutation caused abnormal localization and reduced the expression of PLCZ1 in sperms of the patients, which may be the key reasons for the fertilization failure after ICSI. Our findings expand the spectrum of ACTL7A mutations and provide novel theoretical basis for genetic counseling.
Collapse
Affiliation(s)
- Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Geng Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chenxi Xing
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Huihui Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xue Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Guihua Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
36
|
Peng Y, Lin Y, Deng K, Shen J, Cui Y, Liu J, Yang X, Diao F. Mutations in PLCZ1 induce male infertility associated with polyspermy and fertilization failure. J Assist Reprod Genet 2023; 40:53-64. [PMID: 36529831 PMCID: PMC9840742 DOI: 10.1007/s10815-022-02670-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To investigate the genetic causes of polyspermy and total fertilization failure (TFF) in two independent male patients suffering from male infertility. METHODS Immunofluorescence (IF) staining was used to detect the localization of the PLCζ protein in sperm and the maternal pronucleus in the zygote. Genomic DNA samples were extracted from the peripheral blood of patients and their families. The ExAC database was used to identify the frequency of corresponding mutations. The PLCZ1 mutations were validated by Sanger sequencing. The pathogenicity of the identified mutations and their possible effects on the protein were assessed using in silico tools and molecular modeling. RESULTS We identified a reported homozygous mutation c.588C > A (p.Cys196Ter) and a compound heterozygous mutation c.2 T > C(p.Met1Thr)/c.590G > A (p.Arg197His) with one novel mutation in PLCZ1. The IF results showed that these multipronuclear zygotes formed as a result of polyspermy. In silico analysis predicted that the mutations result in disease-causing proteins. IF staining revealed that PLCζ is abnormally localized in the sperm samples from the two affected patients. Assisted oocyte activation (AOA) successfully rescued polyspermy and TFF and achieved pregnancy in two patients with the PLCZ1 mutation. CONCLUSION We identified a homozygous mutation in PLCZ1 (c.588C > A [p.Cys196Ter]) in a male patient with polyspermy after in vitro fertilization (IVF) as well as a compound heterozygous mutation c.2 T > C(p.Met1Thr)/c.590G > A (p.Arg197His) with one novel mutation in a male patient with fertilization failure after intracytoplasmic sperm injection (ICSI), and we provide evidence that the homozygous mutation can cause polyspermy and the compound heterozygous mutation can cause fertilization failure.
Collapse
Affiliation(s)
- Yawen Peng
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Yuting Lin
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Kai Deng
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Jiandong Shen
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| |
Collapse
|
37
|
Dai J, Li Q, Zhou Q, Zhang S, Chen J, Wang Y, Guo J, Gu Y, Gong F, Tan Y, Lu G, Zheng W, Lin G. IQCN disruption causes fertilization failure and male infertility due to manchette assembly defect. EMBO Mol Med 2022; 14:e16501. [PMID: 36321563 PMCID: PMC9728048 DOI: 10.15252/emmm.202216501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Total fertilization failure (TFF) is an important cause of infertility; however, the genetic basis of TFF caused by male factors remains to be clarified. In this study, whole-exome sequencing was firstly used to screen for genetic causes of TFF after intracytoplasmic sperm injection (ICSI), and homozygous variants in the novel gene IQ motif-containing N (IQCN) were identified in two affected individuals with abnormal acrosome structures. Then, Iqcn-knockout mice were generated by CRISPR-Cas9 technology and showed that the knockout male mice resembled the human phenotypes. Additionally, we found that IQCN regulates microtubule nucleation during manchette assembly via calmodulin and related calmodulin-binding proteins, which resulted in head deformity with aberrant oocyte activation factor PLCζ. Fortunately, ICSI with assisted oocyte activation can overcome IQCN-associate TFF and male infertility. Thus, our study firstly identified the function of IQCN, highlights the relationship between the manchette assembly and fertilization, and provides a genetic marker and a therapeutic option for male-source TFF.
Collapse
Affiliation(s)
- Jing Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Qi Li
- Reproductive Medicine Center, Xiangya HospitalCentral South UniversityChangShaChina
| | - Qinwei Zhou
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Shen Zhang
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Junru Chen
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Yize Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina
| | - Jing Guo
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Yifan Gu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| |
Collapse
|
38
|
Actl7a deficiency in mice leads to male infertility and fertilization failure. Biochem Biophys Res Commun 2022; 623:154-161. [DOI: 10.1016/j.bbrc.2022.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
|
39
|
Zhao Y, Chen MS, Wang JX, Cui JG, Zhang H, Li XN, Li JL. Connexin-43 is a promising target for lycopene preventing phthalate-induced spermatogenic disorders. J Adv Res 2022:S2090-1232(22)00203-X. [PMID: 36087924 DOI: 10.1016/j.jare.2022.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Male infertility is a multifactorial pathological condition and may be a harbinger of future health. Phthalates are ubiquitous environmental contaminants that have been implicated in the global decline in male fertility. Among them, di-(2-ethylhexyl) phthalate (DEHP) is the most prevalently used. Lycopene (LYC) is a possible preventive and therapeutic agent for male infertility owing to its antioxidant properties. The blood-testis barrier (BTB) is formed between Sertoli cells where it creates a unique microenvironment for spermatogenesis. OBJECTIVES We hypothesize that phthalate caused male infertility and LYC plays an important role in phthalate-induced male fertility disorders. METHODS Hematoxylin-eosin (H&E) staining, ultrastructure observation, and fluorescence microscopy were used to examine the morphological changes. RNA-Seq, and western blotting were conducted to detect gene and protein levels. Routine testing for sperm morphology and sperm-egg binding assay were conducted to examine the morphological structure and function of sperm. Cell scratch assay and transepithelial electrical resistance (TER) were used to detect cell migration capacity and barrier integrity. RESULTS In vivo experiments, we showed that LYC prevented DEHP-induced impairment of BTB integrity, which provided a guarantee for the smooth progress of spermatogenesis. LYC improved DEHP-induced change in sperm parameters and fertilization ability. Subsequent in vitro experiments, LYC alleviated MEHP-induced disruption of intercellular junctions in mouse Spermatogonia cells (GC-1 cells) and mouse Sertoli cells (TM4 cells). In MEHP-induced BTB impairment models of Sertoli cells, treatment with LYC or overexpressing connexin-43 (Cx43) promoted cell migration capacity and normalized BTB integrity. Cx43 knockdown inhibited cell migration capacity and perturbed BTB reassembly in LYC preventing DEHP-induced BTB impairment. CONCLUSION Our study provides evidence for the role of LYC in phthalates-induced spermatogenic disorders and points to Cx43 as a potential target for male fertility.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China.
| |
Collapse
|
40
|
Weiner HS, Ulrich ND, Hipp L, Hammoud A, Xu M, Schon SB. Total fertilization failure with in vitro fertilization-intracytoplasmic sperm injection related to WEE2 mutation highlights emerging importance of genetic causes of in vitro fertilization failure. F S Rep 2022; 3:355-360. [PMID: 36568932 PMCID: PMC9783144 DOI: 10.1016/j.xfre.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Objective To report a unique case of total fertilization failure (TFF) after in vitro fertilization with intracytoplasmic sperm injection related to homozygous WEE2 gene mutation and summarize the current literature and management of TFF. Design Case report. Setting Academic fertility center. Patients A 25-year-old woman and her 35-year-old partner with a history of near-complete fertilization failure after 2 cycles of in vitro fertilization/intracytoplasmic sperm injection. Interventions Consultation with medical and commercial genetic testing for WEE2, PLCZ1, and TLE6. Main Outcome Measures Oocyte fertilization. Results The patient was homozygous for WEE2 pathogenic variant impacting oocyte activation and resulting in infertility. Conclusions In the setting of TFF, early consideration should be given to genetic testing to assist couples in clinical decision-making and help limit the financial and emotional burden associated with unsuccessful fertility intervention.
Collapse
Affiliation(s)
| | - Nicole D. Ulrich
- University of Michigan Medical School, Ann Arbor, Michigan,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine
| | - Lauren Hipp
- Department of Genetic Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Ahmad Hammoud
- Department of Obstetrics and Gynecology, Oakland William Beaumont School of Medicine, Rochester, Michigan,IVF Michigan Fertility Centers, Bloomfield Hills, Michigan
| | - Min Xu
- University of Michigan Medical School, Ann Arbor, Michigan,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine
| | - Samantha B. Schon
- University of Michigan Medical School, Ann Arbor, Michigan,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine,Reprint requests: Samantha B. Schon, M.D., Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine University of Michigan Medical School, Michigan Medicine, 1500 E Medical Center Drive, Ann Arbor, Michigan 4109.
| |
Collapse
|
41
|
Dai J, Chen Y, Li Q, Zhang T, Zhou Q, Gong F, Lu G, Zheng W, Lin G. Pathogenic variant in ACTL7A causes severe teratozoospermia characterized by bubble-shaped acrosomes and male infertility. Mol Hum Reprod 2022; 28:6648105. [PMID: 35863052 DOI: 10.1093/molehr/gaac028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Teratozoospermia is a common factor associated with male infertility. However, teratozoospermia characterized by bubble-shaped acrosomes (BSAs) has not yet been identified in men and the causative genes are unknown. The present study is of a patient with severe teratozoospermia characterized by BSA and carrying a variant (c.1204G>A, p. Gly402Ser) of actin-like 7A (ACTL7A). For further verification, we generated an Actl7a-mutated mouse model (p.Gly407Ser) carrying an equivalent variant to that in the patient. We found that homozygous Actl7a-mutated (Actl7aMut/Mut) male mice were sterile, and all their sperm showed acrosomal abnormalities. We detected, by transmission electron microscopy, that during acrosomal biogenesis the acrosome detaches from the nuclear membrane in Actl7aMut/Mut mice. Furthermore, mutant ACTL7A failed to attach to the acroplaxome and was discharged by cytoplasmic droplets, which led to the absence of ACTL7A in epididymal spermatozoa in mice. The mutant sperm failed to activate the oocyte, and sperm-borne oocyte activation factor PLCζ discharge accompanied by ACTL7A was observed, leading to total fertilization failure (TFF). Immunoprecipitation followed by liquid chromatography-mass spectrometry showed that several differentially expressed proteins participate in acrosome assembly and actin filament organization. Furthermore, assisted oocyte activation by calcium ionophore exposure successfully overcame TFF in the couple with an ACTL7A pathogenic variant. Our study defined a novel phenotype of an acrosomal abnormality characterized by BSA, revealed the underlying mechanism of a pathogenic variant in ACTL7A, and provided a genetic marker and potential therapeutic option for male infertility.
Collapse
Affiliation(s)
- Jing Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Yongzhe Chen
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China
| | - Qi Li
- Xiangya Hospital Central South University, ChangSha, 410008, China
| | - Tianlei Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Qinwei Zhou
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| |
Collapse
|
42
|
The perinuclear theca protein Calicin helps shape the sperm head and maintain the nuclear structure in mice. Cell Rep 2022; 40:111049. [PMID: 35793634 DOI: 10.1016/j.celrep.2022.111049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, our understanding of the physiological roles of PT in sperm is very limited. We show that Calicin interacts with itself and many other PT components, indicating it may serve as an organizing center of the PT assembly. Calicin is detectable first when surrounding the acrosome, then detected around the entire nucleus, and finally translocated to the postacrosomal region of spermatid heads. Intriguingly, loss of Calicin specifically causes surface subsidence of sperm heads in the nuclear condensation stage. Calicin interacts with inner acrosomal membrane (IAM) protein Spaca1 and nuclear envelope (NE) components to form an "IAM-PT-NE" structure. Intriguingly, Ccin-knockout sperm also exhibit DNA damage and failure of fertilization. Our study provides solid animal evidence to suggest that the PT encapsulating sperm nucleus helps shape the sperm head and maintain the nuclear structure.
Collapse
|
43
|
Zhang XZ, Wei LL, Zhang XH, Jin HJ, Chen SR. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice. Development 2022; 149:275523. [DOI: 10.1242/dev.200489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, the physiological roles of the PT in sperm are largely uncertain. Here, we reveal that ACTRT1, ACTRT2, ACTL7A and ACTL9 proteins interact to form a multimeric complex and localize to the subacrosomal region of spermatids. Furthermore, we engineered Actrt1-knockout (KO) mice to define the functions of ACTRT1. Despite normal sperm count and motility, Actrt1-KO males were severely subfertile owing to a deficiency in fertilization. Loss of ACTRT1 caused a high incidence of malformed heads and detachment of acrosomes from sperm nuclei, caused by loosened acroplaxome structure during spermiogenesis. Furthermore, Actrt1-KO sperm showed reduced ACTL7A and PLCζ protein content as a potential cause of fertilization defects. Moreover, we reveal that ACTRT1 anchors developing acrosomes to the nucleus, likely by interacting with the inner acrosomal membrane protein SPACA1 and the nuclear envelope proteins PARP11 and SPATA46. Loss of ACTRT1 weakened the interaction between ACTL7A and SPACA1. Our study and recent findings of ACTL7A/ACTL9-deficient sperm together reveal that the sperm PT-specific ARP complex mediates the acrosome-nucleus connection.
Collapse
Affiliation(s)
- Xiao-Zhen Zhang
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Lin-Lin Wei
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Xiao-Hui Zhang
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Hui-Juan Jin
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| | - Su-Ren Chen
- Ministry of Education, Department of Biology, College of Life Sciences Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
- Beijing Normal University Key Laboratory of Cell Proliferation and Regulation Biology , , , 100875 Beijing , China
| |
Collapse
|
44
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
45
|
Attia A, Nicholson C, Martins da Silva SJ. Artificial Egg Activation Using Calcium Ionophore. Semin Reprod Med 2022; 39:e5-e11. [PMID: 35272388 DOI: 10.1055/s-0041-1742171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Artificial oocyte activation, most commonly using calcium ionophore, is a treatment add-on utilized to avoid recurrence of abnormally low or total failed fertilization following in vitro fertilization/intracytoplasmic sperm injection. It aims to modify defective physiological processes, specifically calcium-mediated cell signaling that are critical to events required for fertilization. Routine application of artificial oocyte activation is neither required nor recommended; however, it represents an invaluable intervention for a subgroup of patients affected by sperm-related oocyte activation deficiency.
Collapse
Affiliation(s)
- Ahmed Attia
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Cara Nicholson
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Sarah J Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
46
|
Xue Y, Cheng X, Xiong Y, Li K. Gene mutations associated with fertilization failure after in vitro fertilization/intracytoplasmic sperm injection. Front Endocrinol (Lausanne) 2022; 13:1086883. [PMID: 36589837 PMCID: PMC9800785 DOI: 10.3389/fendo.2022.1086883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Fertilization failure during assisted reproductive technologies (ART) is often unpredictable, as this failure is encountered only after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) have been performed. The etiology of fertilization failure remains elusive. More and more mutations of genes are found to be involved in human fertilization failure in infertile patients as high throughput sequencing techniques are becoming widely applied. In this review, the mutations of nine important genes expressed in sperm or oocytes, PLCZ1, ACTL7A, ACTL9, DNAH17, WEE2, TUBB8, NLRP5, ZP2, and TLE6, were summarized and discussed. These abnormalities mainly have shown Mendelian patterns of inheritance, including dominant and recessive inheritance, although de novo mutations were present in some cases. The review revealed the crucial roles of each reported gene in the fertilization process and summarized all known mutations and their corresponding phenotypes. The review suggested the mutations might become promising targets for precision treatments in reproductive medicine. Moreover, our work will provide some helpful clues for genetic counseling, risk prediction, and optimizing clinical treatments for human infertility by supplying the useful and timely information on the genetic causes leading to fertilization failure.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Kun Li,
| |
Collapse
|
47
|
Wang J, Zhang J, Sun X, Lin Y, Cai L, Cui Y, Liu J, Liu M, Yang X. Novel bi-allelic variants in ACTL7A are associated with male infertility and total fertilization failure. Hum Reprod 2021; 36:3161-3169. [PMID: 34727571 DOI: 10.1093/humrep/deab228] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION What are the genetic causes of total fertilization failure (TFF) in a proband suffering from male infertility? SUMMARY ANSWER Novel compound heterozygous variants (c.[463C>T];[1084G>A], p.[(Arg155Ter)];[(Gly362Arg)]) in actin-like protein 7A (ACTL7A) were identified as a causative genetic factor for human TFF. WHAT IS KNOWN ALREADY ACTL7A, an actin-related protein, is essential for spermatogenesis. ACTL7A variants have been reported to cause early embryonic arrest in humans but have not been studied in human TFF. STUDY DESIGN, SIZE, DURATION We recruited a non-consanguineous family whose son was affected by infertility characterized by TFF after ICSI. Whole-exome sequencing was used to identify the potential pathogenic variants. Artificial oocyte activation (AOA) after ICSI was performed to overcome TFF and any resulting pregnancy was followed up. PARTICIPANTS/MATERIALS, SETTING, METHODS Sanger sequencing was performed to validate the variants. Pathogenicity of the identified variants was predicted by in silico tools. The ultrastructure of spermatozoa was studied by transmission electron microscopy (TEM). Immunofluorescence staining and western blotting were used to investigate the mechanism of the variants on the affected spermatozoa. MAIN RESULTS AND THE ROLE OF CHANCE Novel compound heterozygous variants in ACTL7A (c.[463C>T];[1084G>A], p.[(Arg155Ter)];[(Gly362Arg)]) were identified in a family with TFF after ICSI. In silico analysis predicted that the variants lead to a disease-causing protein. TEM showed that the ACTL7A variants caused ultrastructural defects in the acrosome and perinuclear theca. Protein expression of ACTL7A and phospholipase C zeta, a key sperm-borne oocyte activation factor, was significantly reduced in the affected sperm compared to healthy controls, suggesting that the ACLT7A variants lead to an oocyte activation deficiency and TFF. AOA by calcium ionophore (A23187) after ICSI successfully rescued the TFF and achieved a live birth for the patient with ACTL7A variants. LIMITATIONS, REASONS FOR CAUTION Given the rarity of sperm-associated TFF, only one family with an only child carrying the ACTL7A variants was found. In addition, the TFF phenotype was not assessed in two or more ICSI cycles, due to the intervention in ICSI with AOA after one failed ICSI cycle. Further studies should validate the ACTL7A variants and its effect on male infertility in larger independent cohorts. WIDER IMPLICATIONS OF THE FINDINGS : Our findings revealed a critical role of ACTL7A in male fertility and identified bi-allelic variants in ACTL7A associated with human TFF, which expands the genetic spectrum of TFF and supports the genetic diagnosis of TFF patients. We also rescued TFF by AOA and obtained a healthy live birth, which provides a potentially effective intervention for patients with ACTL7A pathogenic variants. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (81971374 and 81401267). No conflicts of interest were declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xueping Sun
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Lin
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|