1
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
2
|
de Souza Leite F, Lambert MR, Zhang TY, Conner JR, Paulo JA, Oliveira SF, Thakurta S, Bowles J, Gussoni E, Gygi SP, Widrick JJ, Kunkel LM. Muscle-specific increased expression of JAG1 improves skeletal muscle phenotype in dystrophin-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642857. [PMID: 40161820 PMCID: PMC11952387 DOI: 10.1101/2025.03.12.642857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Therapeutic strategies for Duchenne Muscular Dystrophy (DMD) will likely require complementary approaches. One possibility is to explore genetic modifiers that improve muscle regeneration and function. The beneficial effects of the overexpression of Jagged-1 were described in escaper golden retriever muscular dystrophy (GRMD) dogs that had a near-normal life and validated in dystrophin-deficient zebrafish (1). To clarify the underlying biology of JAG1 overexpression in dystrophic muscles, we generated a transgenic mouse (mdx5cv-JAG1) model that lacks dystrophin and overexpresses human JAG1 in striated muscles. Skeletal muscles from mdx5cv-JAG1 and mdx5cv mice were studied at one, four, and twelve-month time points. JAG1 expression in mdx5cv-JAG1 increased by three to five times compared to mdx5cv. Consequently, mdx5cv-JAG1 muscles were significantly bigger and stronger than dystrophic controls, along with an increased number of myofibers. Proteomics data show increased dysferlin in mdx5cv-JAG1 muscles and an association of Nsd1 with the phenotype. Our data supports the positive effect of JAG1 overexpression in dystrophic muscles.
Collapse
Affiliation(s)
- Felipe de Souza Leite
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - James R. Conner
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sheldon Furtado Oliveira
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Thakurta
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Bowles
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Donaka R, Zheng H, Ackert-Bicknell CL, Karasik D. Early life lipid overload in Native American Myopathy is phenocopied by stac3 knockout in zebrafish. Gene 2025; 936:149123. [PMID: 39592070 DOI: 10.1016/j.gene.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Understanding the early stages of human congenital myopathies is critical for proposing strategies for improving musculoskeletal muscle performance, such as restoring the functional integrity of the cytoskeleton. SH3 and cysteine-rich domain 3 (STAC3) are proteins involved in nutrient regulation and are an essential component of the excitation-contraction (EC) coupling machinery for Ca2+ releasing. A mutation in STAC3 causes debilitating Native American Myopathy (NAM) in humans, while loss of this gene in mice and zebrafish (ZF) results in premature death. Clinically, NAM patients demonstrated increased lipids in skeletal muscle, but it is unclear if neutral lipids are associated with altered muscle function in NAM. Using a CRISPR/Cas9 induced stac3-/- knockout (KO) zebrafish model, we determined that loss of stac3 leads to delayed larval hatching which corresponds with muscle weakness and decreased whole-body Ca2+ level during early skeletal development. Specifically, we observed defects in the cytoskeleton in F-actin and slow muscle fibers at 5 and 7 days post-fertilizations (dpf). Myogenesis regulators such as myoD and myf5, mstnb were significantly altered in stac3-/- larvae. These muscle alterations were associated with elevated neutral lipid levels starting at 5 dpf and persisting beyond 7 dpf. Larva lacking stac3 had reduced viability with no larva knockouts surviving past 11 dpf. This data suggests that our stac3-/- zebrafish serve as an alternative model to study the diminished muscle function seen in NAM patients. The data gathered from this new model over time supports a mechanistic view of lipotoxicity as a critical part of the pathology of NAM and the associated loss of function in muscle.
Collapse
Affiliation(s)
- Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Houfeng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Cloud Town, Xihu District, 310024 Hangzhou, Zhejiang, China
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA.
| |
Collapse
|
4
|
Nikitin S, Melnik E, Sharkova I, Murtazina A, Shchagina O, Zabnenkova V, Tsargush V, Dadali E, Kutsev S. Case Report: Exploring the clinical spectrum of LGMD R27: insights from a case study with homozygous pathogenic variant in the JAG2 gene. Front Pediatr 2024; 12:1414465. [PMID: 39649397 PMCID: PMC11620864 DOI: 10.3389/fped.2024.1414465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) constitute a heterogeneous group of genetic disorders characterized by progressive muscle weakness and atrophy, predominantly affecting the muscles of the pelvic and shoulder girdles. LGMD R27, linked to biallelic pathogenic variants in the JAG2 gene, was recently described, and to date, only 27 cases has been published in three reports. Here, we present two siblings exhibiting a severe clinical phenotype of LGMD R27, associated with a novel JAG2 homozygous frameshift variant [c.3467_3470dup, p.(Pro1158AlafsTer22)] results in truncated protein with 21 amino acid substitution within the cytoplasmic domain of the Jagged2 protein.
Collapse
Affiliation(s)
| | | | - Inna Sharkova
- Research Center for Medical Genetics, Moscow, Russia
| | | | | | | | | | - Elena Dadali
- Research Center for Medical Genetics, Moscow, Russia
| | - Sergey Kutsev
- Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
5
|
Duan W, Huang G, Sui Y, Wang K, Yu Y, Chu X, Cao X, Chen L, Liu J, Eichler EE, Xiong B. Deficiency of DDX3X results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling. Proc Natl Acad Sci U S A 2024; 121:e2404173121. [PMID: 39471229 PMCID: PMC11551356 DOI: 10.1073/pnas.2404173121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by DDX3X variants remain poorly understood. In this study, we validated that de novo DDX3X variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a ddx3x deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, ddx3x deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the ddx3x deficiency attenuates the stability of the crebbp mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with DDX3X mutations, as well as providing potential therapeutic targets for the precision treatment.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xu Cao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Liangpei Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiahui Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
6
|
Dofash L, Lyengar K, Pereira N, Parmar J, Folland C, Laing N, Kang PB, Cairns A, Lynch M, Davis M, Ravenscroft G. Three novel missense variants in two families with JAG2-associated limb-girdle muscular dystrophy. Neuromuscul Disord 2024; 42:36-42. [PMID: 39121631 DOI: 10.1016/j.nmd.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.
Collapse
Affiliation(s)
- Lein Dofash
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Krishnan Lyengar
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Nolette Pereira
- Department of Medical Imaging and Nuclear Medicine, Queensland Childrens Hospital, Brisbane, Queensland, Australia
| | - Jevin Parmar
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Matthew Lynch
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Mark Davis
- Diagnostic Genomics, PathWest, Nedlands, WA, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia.
| |
Collapse
|
7
|
Mohan S, McNulty S, Thaxton C, Elnagheeb M, Owens E, Flowers M, Nunnery T, Self A, Palus B, Gorokhova S, Kennedy A, Niu Z, Johari M, Maiga AB, Macalalad K, Clause AR, Beckmann JS, Bronicki L, Cooper ST, Ganesh VS, Kang PB, Kesari A, Lek M, Levy J, Rufibach L, Savarese M, Spencer MJ, Straub V, Tasca G, Weihl CC. Expert Panel Curation of 31 Genes in Relation to Limb Girdle Muscular Dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592369. [PMID: 38765987 PMCID: PMC11100593 DOI: 10.1101/2024.05.03.592369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Introduction Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon McNulty
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marwa Elnagheeb
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emma Owens
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - May Flowers
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Teagan Nunnery
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Autumn Self
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Brooke Palus
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | | | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland
| | | | | | | | | | - Lucas Bronicki
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Sandra T Cooper
- Kids Neuroscience Centre, Children's Hospital at Westmead; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney; Functional Neuromics, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Vijay S Ganesh
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Marco Savarese
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland
| | | | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | | |
Collapse
|
8
|
Yamada S, Ou T, Nachadalingam S, Yang S, Johnson AN. An in vivo platform to identify pathogenic loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565153. [PMID: 37961172 PMCID: PMC10635058 DOI: 10.1101/2023.11.01.565153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Rare genetic disease discovery efforts typically lead to the identification of new disease genes. PreMIER ( Pre cision M edicine Integrated E xperimental R esources) is a collaborative platform designed to facilitate functional evaluation of human genetic variants in model systems, and to date the PreMIER Consortium has evaluated over 50 variants in patients with genetic disorders. To understand if Drosophila could be used to identify pathogenic disease loci as part of the PreMIER Consortium, we used tissue-specific gene knockdown in the fly as a proof of principle experiment. Tissue-specific knockdown of seven conserved disease genes caused significant changes in viability, longevity, behavior, motor function, and neuronal survival arguing a set of defined assays can be used to determine if a gene of uncertain significance (GUS) regulates specific physiological processes. This study highlights the utility of a tissue-specific knockdown platform in Drosophila to characterize GUS, which may provide the first genephenotype correlations for patients with idiopathic genetic disorders.
Collapse
|
9
|
Guilhot C, Catenacci M, Lofaro S, Rudnicki MA. The satellite cell in skeletal muscle: A story of heterogeneity. Curr Top Dev Biol 2024; 158:15-51. [PMID: 38670703 DOI: 10.1016/bs.ctdb.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a highly represented tissue in mammals and is composed of fibers that are extremely adaptable and capable of regeneration. This characteristic of muscle fibers is made possible by a cell type called satellite cells. Adjacent to the fibers, satellite cells are found in a quiescent state and located between the muscle fibers membrane and the basal lamina. These cells are required for the growth and regeneration of skeletal muscle through myogenesis. This process is known to be tightly sequenced from the activation to the differentiation/fusion of myofibers. However, for the past fifteen years, researchers have been interested in examining satellite cell heterogeneity and have identified different subpopulations displaying distinct characteristics based on localization, quiescence state, stemness capacity, cell-cycle progression or gene expression. A small subset of satellite cells appears to represent multipotent long-term self-renewing muscle stem cells (MuSC). All these distinctions led us to the hypothesis that the characteristics of myogenesis might not be linear and therefore may be more permissive based on the evidence that satellite cells are a heterogeneous population. In this review, we discuss the different subpopulations that exist within the satellite cell pool to highlight the heterogeneity and to gain further understanding of the myogenesis progress. Finally, we discuss the long term self-renewing MuSC subpopulation that is capable of dividing asymmetrically and discuss the molecular mechanisms regulating MuSC polarization during health and disease.
Collapse
Affiliation(s)
- Corentin Guilhot
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marie Catenacci
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Lofaro
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Mavillard F, Servian-Morilla E, Dofash L, Rojas-Marcos I, Folland C, Monahan G, Gutierrez-Gutierrez G, Rivas E, Hernández-Lain A, Valladares A, Cantero G, Morales JM, Laing NG, Paradas C, Ravenscroft G, Cabrera-Serrano M. Ablation of the carboxy-terminal end of MAMDC2 causes a distinct muscular dystrophy. Brain 2023; 146:5235-5248. [PMID: 37503746 DOI: 10.1093/brain/awad256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
The extracellular matrix (ECM) has an important role in the development and maintenance of skeletal muscle, and several muscle diseases are associated with the dysfunction of ECM elements. MAMDC2 is a putative ECM protein and its role in cell proliferation has been investigated in certain cancer types. However, its participation in skeletal muscle physiology has not been previously studied. We describe 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease. The radiological aspect of muscle involvement resembles that of COL6 myopathies with fat replacement at the peripheral rim of vastii muscles. In this cohort, a subfascial and peri-tendinous pattern is observed in upper and lower limb muscles. Here we show that MAMDC2 is expressed in adult skeletal muscle and differentiating muscle cells, where it appears to localize to the sarcoplasm and myonuclei. In addition, we show it is secreted by myoblasts and differentiating myotubes into to the extracellular compartment. The last exon encodes a disordered region with a polar residue compositional bias loss of which likely induces a toxic effect of the mutant protein. The precise mechanisms by which the altered MAMDC2 proteins cause disease remains to be determined. MAMDC2 is a skeletal muscle disease-associated protein. Its role in muscle development and ECM-muscle communication remains to be fully elucidated. Screening of the last exon of MAMDC2 should be considered in patients presenting with autosomal dominant muscular dystrophy, particularly in those with a subfascial radiological pattern of muscle involvement.
Collapse
Affiliation(s)
- Fabiola Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Emilia Servian-Morilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Lein Dofash
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Iñigo Rojas-Marcos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Chiara Folland
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gavin Monahan
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gerardo Gutierrez-Gutierrez
- Department of Neurology, Hospital Universitario Infanta Sofia, Universidad Europea de Madrid, Madrid 28702, Spain
| | - Eloy Rivas
- Department of Neuropathology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | | | - Amador Valladares
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Jose M Morales
- Department of Neuroradiology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Nigel G Laing
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Gianina Ravenscroft
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Macarena Cabrera-Serrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| |
Collapse
|
11
|
Rahman NIA, Lam CL, Sulaiman N, Abdullah NAH, Nordin F, Ariffin SHZ, Yazid MD. PAX7, a Key for Myogenesis Modulation in Muscular Dystrophies through Multiple Signaling Pathways: A Systematic Review. Int J Mol Sci 2023; 24:13051. [PMID: 37685856 PMCID: PMC10487808 DOI: 10.3390/ijms241713051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Muscular dystrophy is a heterogenous group of hereditary muscle disorders caused by mutations in the genes responsible for muscle development, and is generally defined by a disastrous progression of muscle wasting and massive loss in muscle regeneration. Pax7 is closely associated with myogenesis, which is governed by various signaling pathways throughout a lifetime and is frequently used as an indicator in muscle research. In this review, an extensive literature search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was performed to identify research that examined signaling pathways in living models, while quantifying Pax7 expression in myogenesis. A total of 247 articles were retrieved from the Web of Science (WoS), PubMed and Scopus databases and were thoroughly examined and evaluated, resulting in 19 articles which met the inclusion criteria. Admittedly, we were only able to discuss the quantification of Pax7 carried out in research affecting various type of genes and signaling pathways, rather than the expression of Pax7 itself, due to the massive differences in approach, factor molecules and signaling pathways analyzed across the research. However, we highlighted the thorough evidence for the alteration of the muscle stem cell precursor Pax7 in multiple signaling pathways described in different living models, with an emphasis on the novel approach that could be taken in manipulating Pax7 expression itself in dystrophic muscle, towards the discovery of an effective treatment for muscular dystrophy. Therefore, we believe that this could be applied to the potential gap in muscle research that could be filled by tuning the well-established marker expression to improve dystrophic muscle.
Collapse
Affiliation(s)
- Nor Idayu A. Rahman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Chung Liang Lam
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Nur Atiqah Haizum Abdullah
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Fazlina Nordin
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| | - Shahrul Hisham Zainal Ariffin
- Centre of Biotechnology & Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.A.R.)
| |
Collapse
|
12
|
Orchard KJA, Akbar M, Crowe LAN, Cole J, Millar NL, Raleigh SM. Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes (Basel) 2023; 14:496. [PMID: 36833423 PMCID: PMC9956879 DOI: 10.3390/genes14020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The development and progression of rotator cuff tendinopathy (RCT) is multifactorial and likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in RCT, including the role of histone modification, is not well established. Using chromatin immunoprecipitation sequencing, differences in the trimethylation status of H3K4 and H3K27 histones in late-stage RCT compared to control were investigated in this study. For H3K4, 24 genomic loci were found to be significantly more trimethylated in RCT compared to control (p < 0.05), implicating genes such as DKK2, JAG2, and SMOC2 in RCT. For H3K27, 31 loci were shown to be more trimethylated (p < 0.05) in RCT compared to control, inferring a role for EPHA3, ROCK1, and DEFβ115. Furthermore, 14 loci were significantly less trimethylated (p < 0.05) in control compared to RCT, implicating EFNA5, GDF6, and GDF7. Finally, the TGFβ signaling, axon guidance, and regulation of focal adhesion assembly pathways were found to be enriched in RCT. These findings suggest that the development and progression of RCT is, at least in part, under epigenetic control, highlighting the influence of histone modifications in this disorder and paving the way to further understand the role of epigenome in RCT.
Collapse
Affiliation(s)
- Kayleigh J. A. Orchard
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Moeed Akbar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Lindsay A. N. Crowe
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - John Cole
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Neal L. Millar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Stuart M. Raleigh
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
13
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
15
|
Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022; 12:9. [PMID: 35459219 PMCID: PMC9027478 DOI: 10.1186/s13395-022-00293-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
Collapse
Affiliation(s)
- Stamatia Gioftsidi
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
| | - Frederic Relaix
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
- EnvA, IMRB, F-94700, Maisons-Alfort, France
- Etablissement Français du Sang (EFS), IMRB, F-94010, Creteil, France
- Assistance Publique-Hôpitaux de Paris, Hopital Mondor, Service d'Histologie, F-94010, Creteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France.
| |
Collapse
|
16
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
17
|
Nur Villar-Quiles R, Romero NB, Tanya S. [JAG2-related muscular dystrophy: When differential diagnosis matters]. Med Sci (Paris) 2021; 37 Hors série n° 1:40-43. [PMID: 34878394 DOI: 10.1051/medsci/2021191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
JAG2 has recently been involved in autosomal recessive forms of muscular dystrophy as illustrated in this clinical vignette. In many ways, this disease can mimick a COL6-related retractile myopathy including at the imaging level.
Collapse
Affiliation(s)
- Rocio Nur Villar-Quiles
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, service de neuromyologie, APHP, Institut de Myologie, Paris, France - Sorbonne Université - Inserm, Centre de Recherche en Myologie, Paris, France
| | - Norma B Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, APHP, Sorbonne Université, Paris, France
| | - Stojkovic Tanya
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, service de neuromyologie, APHP, Institut de Myologie, Paris, France - Sorbonne Université - Inserm, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|