1
|
Langhammer F, Gregor A, Ntamati NR, Ekici AB, Winner B, Nevian T, Zweier C. Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy. Hum Mol Genet 2025; 34:639-650. [PMID: 39849855 PMCID: PMC11924187 DOI: 10.1093/hmg/ddae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB. Subsequent genetic interaction experiments confirmed a functional link between RhoBTB and paralytic, the orthologue of human sodium channels, including epilepsy associated SCN1A, in vivo. We then performed patch-clamp recordings on mature neurons differentiated from human induced pluripotent stem cells with either homozygous frameshifts or patient-specific heterozygous missense variants in the GTPase or the BTB domains. This revealed significantly altered neuronal activity and excitability resulting from BTB domain variants but not from GTPase domain variants or upon complete loss of RHOBTB2. Our study indicates a role of deregulated ion channels in the pathogenesis of RHOBTB2-related developmental and epileptic encephalopathy and points to specific pathomechanisms underlying the observed genotype-phenotype correlations regarding variant zygosity, location and nature.
Collapse
Affiliation(s)
- Franziska Langhammer
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| |
Collapse
|
2
|
Baudouin SJ, Giles AR, Pearson N, Deforges S, He C, Boileau C, Partouche N, Borta A, Gautron J, Wartel M, Bočkaj I, Scavarda D, Bartolomei F, Penchet G, Aupy J, Sims J, Smith J, Mercer A, Danos O, Mulle C, Crépel V, Porter R. A novel AAV9-dual microRNA-vector targeting GRIK2 in the hippocampus as a treatment for mesial temporal lobe epilepsy. Mol Ther Methods Clin Dev 2024; 32:101342. [PMID: 39429724 PMCID: PMC11489344 DOI: 10.1016/j.omtm.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the most prevalent type of epilepsy in adults. First and subsequent generations of anti-epileptic therapy regimens fail to decrease seizures in a large number of patients suffering from mTLE, leaving surgical ablation of part of the hippocampus as the only therapeutic option to potentially reach seizure freedom. GluK2 has recently been identified as a promising target for the treatment of mTLE using gene therapy. Here, we engineered an adeno-associated virus serotype 9 vector expressing a cluster of two synthetic microRNAs (miRNAs), expressed from the human synapsin promoter, that target GRIK2 mRNA. Intra-hippocampal delivery of this vector in a mouse model of mTLE significantly reduced GRIK2 expression and daily seizure frequency. This treatment also improved the animals' health, reduced their anxiety, and restored working memory. Focal administration of the vector to the hippocampus of cynomolgus monkeys in GLP toxicology studies led to the selective transduction of hippocampal neurons with little exposure elsewhere in the brain and no transduction outside the central nervous system. Expression of miRNAs in hippocampal neurons resulted in substantially decreased GRIK2 mRNA expression. These data suggest that the intra-hippocampal delivery of a GMP-grade AAV9 encoding a synthetic miRNAs targeting GRIK2 is a promising treatment strategy for mTLE.
Collapse
Affiliation(s)
| | | | - Nick Pearson
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | | | - Chenxia He
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | - Céline Boileau
- INSERM, INMED, Aix-Marseille University, 13009 Marseille, France
| | | | - Andreas Borta
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | | | - Morgane Wartel
- uniQure biopharma B.V., 1105BP Amsterdam, the Netherlands
| | - Irena Bočkaj
- uniQure biopharma B.V., 1105BP Amsterdam, the Netherlands
| | - Didier Scavarda
- APHM, INSERM, Aix-Marseille University, Timone Hospital, Pediatric Neurosurgery, 13005 Marseille, France
| | - Fabrice Bartolomei
- APHM, INSERM, Aix-Marseille University, INS, Timone Hospital, Epileptology Department, 13005 Marseille, France
| | - Guillaume Penchet
- Pellegrin Hospital, Neurosurgery Department, CHU, 33000 Bordeaux, France
| | - Jérôme Aupy
- Pellegrin Hospital, Neurosurgery Department, CHU, 33000 Bordeaux, France
| | | | | | | | | | | | - Valérie Crépel
- INSERM, INMED, Aix-Marseille University, 13009 Marseille, France
| | - Richard Porter
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| |
Collapse
|
3
|
Bialer M, Johannessen SI, Koepp MJ, Perucca E, Perucca P, Tomson T, White HS. Progress report on new medications for seizures and epilepsy: A summary of the 17th Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVII). I. Drugs in preclinical and early clinical development. Epilepsia 2024; 65:2831-2857. [PMID: 39008349 DOI: 10.1111/epi.18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
For >30 years, the Eilat Conference on New Antiepileptic Drugs and Devices has provided a forum for the discussion of advances in the development of new therapies for seizures and epilepsy. The EILAT XVII conference took place in Madrid, Spain, on May 5-8, 2024. Participants included basic scientists and clinical investigators from industry and academia, other health care professionals, and representatives from lay organizations. We summarize in this article information on treatments in preclinical and in early clinical development discussed at the conference. These include AMT-260, a gene therapy designed to downregulate the expression of Glu2K subunits of kainate receptors, in development for the treatment of drug-resistant seizures associated with mesial temporal sclerosis; BHV-7000, a selective activator of heteromeric Kv7.2/7.3 potassium channels, in development for the treatment of focal epilepsy; ETX101, a recombinant adeno-associated virus serotype 9 designed to increase NaV1.1 channel density in inhibitory γ-aminobutyric acidergic (GABAergic) neurons, in development for the treatment of SCN1A-positive Dravet syndrome; GAO-3-02, a compound structurally related to synaptamide, which exerts antiseizure activity at least in part through an action on cannabinoid type 2 receptors; LRP-661, a structural analogue of cannabidiol, in development for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex; OV329, a selective inactivator of GABA aminotransferase, in development for the treatment of drug-resistant seizures; PRAX-628, a functionally selective potent sodium channel modulator with preference for the hyperexcitable state of sodium channels, in development for the treatment of focal seizures; RAP-219, a selective negative allosteric modulator of transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory protein γ-8, in development for the treatment of focal seizures; and rozanolixizumab, a humanized anti-neonatal Fc receptor monoclonal antibody, in development for the treatment of LGI1 autoimmune encephalitis. Treatments in more advanced development are summarized in Part II of this report.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway
- Member of European Reference Network EpiCARE, Oslo University Hospital, Oslo, Norway
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London (UCL), Queen Square Institute of Neurology, London, UK
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Center for Epilepsy Drug Discovery, Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
5
|
Li L, Comi TJ, Bierman RF, Akey JM. Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years. Science 2024; 385:eadi1768. [PMID: 38991054 DOI: 10.1126/science.adi1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Although it is well known that the ancestors of modern humans and Neanderthals admixed, the effects of gene flow on the Neanderthal genome are not well understood. We develop methods to estimate the amount of human-introgressed sequences in Neanderthals and apply it to whole-genome sequence data from 2000 modern humans and three Neanderthals. We estimate that Neanderthals have 2.5 to 3.7% human ancestry, and we leverage human-introgressed sequences in Neanderthals to revise estimates of Neanderthal ancestry in modern humans, show that Neanderthal population sizes were significantly smaller than previously estimated, and identify two distinct waves of modern human gene flow into Neanderthals. Our data provide insights into the genetic legacy of recurrent gene flow between modern humans and Neanderthals.
Collapse
Affiliation(s)
- Liming Li
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Troy J Comi
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Rob F Bierman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Joshua M Akey
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
6
|
Stenton SL, O'Leary MC, Lemire G, VanNoy GE, DiTroia S, Ganesh VS, Groopman E, O'Heir E, Mangilog B, Osei-Owusu I, Pais LS, Serrano J, Singer-Berk M, Weisburd B, Wilson MW, Austin-Tse C, Abdelhakim M, Althagafi A, Babbi G, Bellazzi R, Bovo S, Carta MG, Casadio R, Coenen PJ, De Paoli F, Floris M, Gajapathy M, Hoehndorf R, Jacobsen JOB, Joseph T, Kamandula A, Katsonis P, Kint C, Lichtarge O, Limongelli I, Lu Y, Magni P, Mamidi TKK, Martelli PL, Mulargia M, Nicora G, Nykamp K, Pejaver V, Peng Y, Pham THC, Podda MS, Rao A, Rizzo E, Saipradeep VG, Savojardo C, Schols P, Shen Y, Sivadasan N, Smedley D, Soru D, Srinivasan R, Sun Y, Sunderam U, Tan W, Tiwari N, Wang X, Wang Y, Williams A, Worthey EA, Yin R, You Y, Zeiberg D, Zucca S, Bakolitsa C, Brenner SE, Fullerton SM, Radivojac P, Rehm HL, O'Donnell-Luria A. Critical assessment of variant prioritization methods for rare disease diagnosis within the rare genomes project. Hum Genomics 2024; 18:44. [PMID: 38685113 PMCID: PMC11057178 DOI: 10.1186/s40246-024-00604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. METHODS We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. RESULTS Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. CONCLUSIONS Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.
Collapse
Affiliation(s)
- Sarah L Stenton
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Melanie C O'Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle Lemire
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace E VanNoy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie DiTroia
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay S Ganesh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Groopman
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O'Heir
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Mangilog
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lynn S Pais
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jillian Serrano
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael W Wilson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marwa Abdelhakim
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Azza Althagafi
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Computer Science Department, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Giulia Babbi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Riccardo Bellazzi
- enGenome Srl, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maria Giulia Carta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Manavalan Gajapathy
- Center for Computational Genomics and Data Science, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Julius O B Jacobsen
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Thomas Joseph
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Akash Kamandula
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Yulan Lu
- Center for Molecular Medicine, Pediatric Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Tarun Karthik Kumar Mamidi
- Center for Computational Genomics and Data Science, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Mulargia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanna Nicora
- enGenome Srl, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | | | - Vikas Pejaver
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yisu Peng
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | | | - Maurizio S Podda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute of Clinical Physiology (IFC), CNR, Via Moruzzi 1, 56124, Pisa, Italy
- University of Siena, Siena, Italy
- CTGLab, Institute of Informatics and Telematics (IIT), CNR, ViaMoruzzi 1, 56124, Pisa, Italy
| | - Aditya Rao
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | | | - Vangala G Saipradeep
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Peter Schols
- Invitae, San Francisco, CA, USA
- Codon One, Louvain, EU, Belgium
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA
| | - Naveen Sivadasan
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Damian Smedley
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | - Rajgopal Srinivasan
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Uma Sunderam
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Naina Tiwari
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Xiao Wang
- Center for Molecular Medicine, Pediatric Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Pediatric Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth A Worthey
- Center for Computational Genomics and Data Science, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Yuning You
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Daniel Zeiberg
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | | | - Constantina Bakolitsa
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Stephanie M Fullerton
- Department of Bioethics and Humanities, University of Washington School of Medicine, Seattle, WA, USA
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
He YY, Luo S, Jin L, Wang PY, Xu J, Jiao HL, Yan HJ, Wang Y, Zhai QX, Ji JJ, Zhang WJ, Zhou P, Li H, Liao WP, Lan S, Xu L. DLG3 variants caused X-linked epilepsy with/without neurodevelopmental disorders and the genotype-phenotype correlation. Front Mol Neurosci 2024; 16:1290919. [PMID: 38249294 PMCID: PMC10796462 DOI: 10.3389/fnmol.2023.1290919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background The DLG3 gene encodes disks large membrane-associated guanylate kinase scaffold protein 3, which plays essential roles in the clustering of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously, DLG3 has been identified as the causative gene of X-linked intellectual developmental disorder-90 (XLID-90; OMIM# 300850). This study aims to explore the phenotypic spectrum of DLG3 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy of unknown causes. To analyze the genotype-phenotype correlations, previously reported DLG3 variants were systematically reviewed. Results DLG3 variants were identified in seven unrelated cases with epilepsy. These variants had no hemizygous frequencies in controls. All variants were predicted to be damaging by silico tools and alter the hydrogen bonds with surrounding residues and/or protein stability. Four cases mainly presented with generalized seizures, including generalized tonic-clonic and myoclonic seizures, and the other three cases exhibited secondary generalized tonic-clonic seizures and focal seizures. Multifocal discharges were recorded in all cases during electroencephalography monitoring, including the four cases with generalized discharges initially but multifocal discharges after drug treating. Protein-protein interaction network analysis revealed that DLG3 interacts with 52 genes with high confidence, in which the majority of disease-causing genes were associated with a wide spectrum of neurodevelopmental disorder (NDD) and epilepsy. Three patients with variants locating outside functional domains all achieved seizure-free, while the four patients with variants locating in functional domains presented poor control of seizures. Analysis of previously reported cases revealed that patients with non-null variants presented higher percentages of epilepsy than those with null variants, suggesting a genotype-phenotype correlation. Significance This study suggested that DLG3 variants were associated with epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3. The observed genotype-phenotype correlation potentially contributes to the understanding of the underlying mechanisms driving phenotypic variation.
Collapse
Affiliation(s)
- Yun-Yan He
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Liang Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yao Wang
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing-Jing Ji
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weng-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Li
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People’s Hospital, Maoming, China
| | - Lin Xu
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Liu C, Huang R, Su G, Hou L, Zhou W, Liu Q, Qiu Z, Zhao Q, Li P. Introgression of pigs in Taihu Lake region possibly contributed to the improvement of fertility in Danish Large White pigs. BMC Genomics 2023; 24:733. [PMID: 38049711 PMCID: PMC10694980 DOI: 10.1186/s12864-023-09860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Eurasian pigs have undergone lineage admixture throughout history. It has been confirmed that the genes of indigenous pig breeds in China have been introduced into Western commercial pigs, providing genetic materials for breeding Western pigs. Pigs in Taihu Lake region (TL), such as the Meishan pig and Erhualian pig, serve as typical representatives of indigenous pig breeds in China due to their high reproductive performances. These pigs have also been imported into European countries in 1970 and 1980 s. They have played a positive role in improving the reproductive performances in European commercial pigs such as French Large White pigs (FLW). However, it is currently unclear if the lineage of TL pigs have been introgressed into the Danish Large White pigs (DLW), which are also known for their high reproductive performances in European pigs. To systematically identify genomic regions in which TL pigs have introgressed into DLW pigs and their physiological functions, we collected the re-sequencing data from 304 Eurasian pigs, to identify shared haplotypes between DLW and TL pigs. RESULTS The findings revealed the presence of introgressed genomic regions from TL pigs in the genome of DLW pigs indeed. The genes annotated within these regions were found to be mainly enriched in neurodevelopmental pathways. Furthermore, we found that the 115 kb region located in SSC16 exhibited highly shared haplotypes between TL and DLW pigs. The major haplotype of TL pigs in this region could significantly improve reproductive performances in various pig populations. Around this genomic region, NDUFS4 gene was highly expressed and showed differential expression in multiple reproductive tissues between extremely high and low farrowing Erhualian pigs. This suggested that NDUFS4 gene could be an important candidate causal gene responsible for affecting the reproductive performances of DLW pigs. CONCLUSIONS Our study has furthered our knowledge of the pattern of introgression from TL into DLW pigs and the potential effects on the fertility of DLW pigs.
Collapse
Affiliation(s)
- Chenxi Liu
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, DK-8000, Denmark
| | - Liming Hou
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wuduo Zhou
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Liu
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zijian Qiu
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingbo Zhao
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Pinghua Li
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing, 210095, China.
- Huaian Academy, Nanjing Agricultural University, Huaian, 223001, China.
| |
Collapse
|
9
|
Nomura T, Taniguchi S, Wang YZ, Yeh NH, Wilen AP, Castillon CCM, Foote KM, Xu J, Armstrong JN, Savas JN, Swanson GT, Contractor A. A Pathogenic Missense Mutation in Kainate Receptors Elevates Dendritic Excitability and Synaptic Integration through Dysregulation of SK Channels. J Neurosci 2023; 43:7913-7928. [PMID: 37802657 PMCID: PMC10669804 DOI: 10.1523/jneurosci.1259-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/08/2023] Open
Abstract
Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sakiko Taniguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nai-Hsing Yeh
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Anika P Wilen
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Charlotte C M Castillon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John N Armstrong
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
10
|
Boileau C, Deforges S, Peret A, Scavarda D, Bartolomei F, Giles A, Partouche N, Gautron J, Viotti J, Janowitz H, Penchet G, Marchal C, Lagarde S, Trebuchon A, Villeneuve N, Rumi J, Marissal T, Khazipov R, Khalilov I, Martineau F, Maréchal M, Lepine A, Milh M, Figarella-Branger D, Dougy E, Tong S, Appay R, Baudouin S, Mercer A, Smith JB, Danos O, Porter R, Mulle C, Crépel V. GluK2 Is a Target for Gene Therapy in Drug-Resistant Temporal Lobe Epilepsy. Ann Neurol 2023; 94:745-761. [PMID: 37341588 DOI: 10.1002/ana.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.
Collapse
Affiliation(s)
| | - Severine Deforges
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | - Didier Scavarda
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Pediatric Neurosurgery, Marseille, France
| | - Fabrice Bartolomei
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | | | - Nicolas Partouche
- Aix-Marseille Univ. INSERM, Marseille, France
- Corlieve Therapeutics SAS, uniQure NV, Paris, France
| | - Justine Gautron
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
- Corlieve Therapeutics SAS, uniQure NV, Paris, France
| | - Julio Viotti
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | | | - Cécile Marchal
- Pellegrin Hospital, Neurosurgery Department, Bordeaux, France
| | - Stanislas Lagarde
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Agnès Trebuchon
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Nathalie Villeneuve
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Julie Rumi
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | | | | | | | - Marine Maréchal
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | - Anne Lepine
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Mathieu Milh
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Dominique Figarella-Branger
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Etienne Dougy
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Soutsakhone Tong
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Romain Appay
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | | | | | | | | | | | - Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | |
Collapse
|
11
|
Stenton SL, O’Leary M, Lemire G, VanNoy GE, DiTroia S, Ganesh VS, Groopman E, O’Heir E, Mangilog B, Osei-Owusu I, Pais LS, Serrano J, Singer-Berk M, Weisburd B, Wilson M, Austin-Tse C, Abdelhakim M, Althagafi A, Babbi G, Bellazzi R, Bovo S, Carta MG, Casadio R, Coenen PJ, De Paoli F, Floris M, Gajapathy M, Hoehndorf R, Jacobsen JO, Joseph T, Kamandula A, Katsonis P, Kint C, Lichtarge O, Limongelli I, Lu Y, Magni P, Mamidi TKK, Martelli PL, Mulargia M, Nicora G, Nykamp K, Pejaver V, Peng Y, Pham THC, Podda MS, Rao A, Rizzo E, Saipradeep VG, Savojardo C, Schols P, Shen Y, Sivadasan N, Smedley D, Soru D, Srinivasan R, Sun Y, Sunderam U, Tan W, Tiwari N, Wang X, Wang Y, Williams A, Worthey EA, Yin R, You Y, Zeiberg D, Zucca S, Bakolitsa C, Brenner SE, Fullerton SM, Radivojac P, Rehm HL, O’Donnell-Luria A. Critical assessment of variant prioritization methods for rare disease diagnosis within the Rare Genomes Project. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.02.23293212. [PMID: 37577678 PMCID: PMC10418577 DOI: 10.1101/2023.08.02.23293212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery. Families are consented for sharing of sequence and phenotype data with researchers, allowing development of a Critical Assessment of Genome Interpretation (CAGI) community challenge, placing variant prioritization models head-to-head in a real-life clinical diagnostic setting. Methods Predictors were provided a dataset of phenotype terms and variant calls from GS of 175 RGP individuals (65 families), including 35 solved training set families, with causal variants specified, and 30 test set families (14 solved, 16 unsolved). The challenge tasked teams with identifying the causal variants in as many test set families as possible. Ranked variant predictions were submitted with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on rank position of true positive causal variants and maximum F-measure, based on precision and recall of causal variants across EPCR thresholds. Results Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performing teams recalled the causal variants in up to 13 of 14 solved families by prioritizing high quality variant calls that were rare, predicted deleterious, segregating correctly, and consistent with reported phenotype. In unsolved families, newly discovered diagnostic variants were returned to two families following confirmatory RNA sequencing, and two prioritized novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant, in an unsolved proband with phenotype overlap with asparagine synthetase deficiency. Conclusions By objective assessment of variant predictions, we provide insights into current state-of-the-art algorithms and platforms for genome sequencing analysis for rare disease diagnosis and explore areas for future optimization. Identification of diagnostic variants in unsolved families promotes synergy between researchers with clinical and computational expertise as a means of advancing the field of clinical genome interpretation.
Collapse
Affiliation(s)
- Sarah L. Stenton
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Melanie O’Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle Lemire
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace E. VanNoy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie DiTroia
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay S. Ganesh
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Groopman
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O’Heir
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Mangilog
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lynn S. Pais
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jillian Serrano
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Wilson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marwa Abdelhakim
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Azza Althagafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Department, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Giulia Babbi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Riccardo Bellazzi
- enGenome Srl, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maria Giulia Carta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Manavalan Gajapathy
- Center for Computational Genomics and Data Science, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Julius O.B. Jacobsen
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Thomas Joseph
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Akash Kamandula
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Panagiotis Katsonis
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Olivier Lichtarge
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Yulan Lu
- Center for molecular medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Paolo Magni
- enGenome Srl, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Tarun Karthik Kumar Mamidi
- Center for Computational Genomics and Data Science, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Mulargia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | - Vikas Pejaver
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yisu Peng
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Thi Hong Cam Pham
- Anatomy and Surgical Training Department, University of Medicine and Pharmacy, Hue University, Vietnam
| | - Maurizio S. Podda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Aditya Rao
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | | | - Vangala G Saipradeep
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Naveen Sivadasan
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Damian Smedley
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | - Rajgopal Srinivasan
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Uma Sunderam
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Naina Tiwari
- TCS Research, Tata Consultancy Services (TCS) Ltd, Deccan Park, Madhapur, Hyderabad, India
| | - Xiao Wang
- Center for molecular medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Yaqiong Wang
- Center for molecular medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Amanda Williams
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth A. Worthey
- Center for Computational Genomics and Data Science, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Yuning You
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Daniel Zeiberg
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | | | - Constantina Bakolitsa
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Steven E. Brenner
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Stephanie M Fullerton
- Department of Bioethics & Humanities, University of Washington School of Medicine, Seattle, WA, USA
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anne O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Lunke S, Bouffler SE, Patel CV, Sandaradura SA, Wilson M, Pinner J, Hunter MF, Barnett CP, Wallis M, Kamien B, Tan TY, Freckmann ML, Chong B, Phelan D, Francis D, Kassahn KS, Ha T, Gao S, Arts P, Jackson MR, Scott HS, Eggers S, Rowley S, Boggs K, Rakonjac A, Brett GR, de Silva MG, Springer A, Ward M, Stallard K, Simons C, Conway T, Halman A, Van Bergen NJ, Sikora T, Semcesen LN, Stroud DA, Compton AG, Thorburn DR, Bell KM, Sadedin S, North KN, Christodoulou J, Stark Z. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat Med 2023:10.1038/s41591-023-02401-9. [PMID: 37291213 PMCID: PMC10353936 DOI: 10.1038/s41591-023-02401-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.
Collapse
Affiliation(s)
- Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
| | | | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
- Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Tasmania, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karin S Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Song Gao
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Matilda R Jackson
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stefanie Eggers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simone Rowley
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kirsten Boggs
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Ana Rakonjac
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Gemma R Brett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle G de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amanda Springer
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Kirsty Stallard
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Thomas Conway
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andreas Halman
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Nicole J Van Bergen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tim Sikora
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liana N Semcesen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kathryn N North
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - John Christodoulou
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Cutillo G, Bonacchi R, Cecchetti G, Bellini A, Vabanesi M, Zambon A, Natali Sora MG, Baldoli C, Del Carro U, Minicucci F, Fanelli GF, Filippi M. Interstitial 6q deletion in a patient presenting with drug-resistant epilepsy and Prader-Willi like phenotype: An electroclinical description with literature review. Seizure 2023; 109:45-49. [PMID: 37210930 DOI: 10.1016/j.seizure.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023] Open
Abstract
PURPOSE Interstitial 6q deletions are associated with rare genetic syndromes characterized by different signs, including developmental delay, dysmorphisms, and Prader-Willi (PWS)-like features. Drug-resistant epilepsy, a relatively rare finding in this condition, is often a challenge in terms of therapeutic approach. Our aim is to present a new case of interstitial 6q deletion and to conduct a systematic review of the literature with an emphasis on the neurophysiological and clinical traits of afflicted individuals. METHODS We report a patient with an interstitial 6q deletion. Standard electroencephalograms (EEG), video-EEG with polygraphy and MRI features are discussed. We also conducted a literature review of previously described cases. RESULTS We describe a relatively small interstitial 6q deletion (2 Mb circa), detected by CGH-Array, not encompassing the previously described 6q22 critical region for epilepsy occurrence. The patient, a 12-year-old girl, presented with multiple absence-like episodes and startle-induced epileptic spasms since the age of 11, with partial polytherapy control. Treatment with lamotrigine induced the resolution of startle-induced phenomena. From the literature review, we identified 28 patients with overlapping deletions, often larger than our patient's mutation. Seventeen patients presented with PWS-like features. Epilepsy was reported in 4 patients, and 8 patients presented abnormal EEG findings. In our patient, the deletion included genes MCHR2, SIM1, ASCC3, and GRIK2, but, interestingly, it did not encompass the 6q22 critical region for epilepsy occurrence. The involvement of GRIK2 in the deletion may play a role. CONCLUSION Literature data are limited, and specific EEG or epileptological phenotypes cannot yet be identified. Epilepsy, although uncommon in the syndrome, deserves a specific diagnostic workup. We speculate on the existence of an additional locus in the 6q16.1-q21 region, different from the already hypothesized q22, promoting the development of epilepsy in affected patients.
Collapse
Affiliation(s)
- Gianni Cutillo
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaello Bonacchi
- Vita-Salute San Raffaele University, Milan, Italy; Neuroradiology Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giordano Cecchetti
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Bellini
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Vabanesi
- Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alberto Zambon
- Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Grazia Natali Sora
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ubaldo Del Carro
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Minicucci
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanna F Fanelli
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Filippi
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy; Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
14
|
Gangwar SP, Yen LY, Yelshanskaya MV, Sobolevsky AI. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel. Cell Rep 2023; 42:112124. [PMID: 36857176 PMCID: PMC10440371 DOI: 10.1016/j.celrep.2023.112124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Kainate receptors (KARs) are a subtype of ionotropic glutamate receptors that control synaptic transmission in the central nervous system and are implicated in neurological, psychiatric, and neurodevelopmental disorders. Understanding the regulation of KAR function by small molecules is essential for exploring these receptors as drug targets. Here, we present cryoelectron microscopy (cryo-EM) structures of KAR GluK2 in complex with the positive allosteric modulator BPAM344, competitive antagonist DNQX, and negative allosteric modulator, antiepileptic drug perampanel. Our structures show that two BPAM344 molecules bind per ligand-binding domain dimer interface. In the absence of an agonist or in the presence of DNQX, BPAM344 stabilizes GluK2 in the closed state. The closed state is also stabilized by perampanel, which binds to the ion channel extracellular collar sites located in two out of four GluK2 subunits. The molecular mechanisms of positive and negative allosteric modulation of KAR provide a guide for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, 630 West 168(th) Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
15
|
Identification of a Novel Idiopathic Epilepsy Risk Locus and a Variant in the CCDC85A Gene in the Dutch Partridge Dog. Animals (Basel) 2023; 13:ani13050810. [PMID: 36899667 PMCID: PMC10000155 DOI: 10.3390/ani13050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Idiopathic epilepsy (IE) is thought to have a genetic cause in several dog breeds. However, only two causal variants have been identified to date, and few risk loci are known. No genetic studies have been conducted on IE in the Dutch partridge dog (DPD), and little has been reported on the epileptic phenotype in this breed. (2) Owner-filled questionnaires and diagnostic investigations were used to characterize IE in the DPD. A genome-wide association study (GWAS) involving 16 cases and 43 controls was performed, followed by sequencing of the coding sequence and splice site regions of a candidate gene within the associated region. Subsequent whole-exome sequencing (WES) of one family (including one IE-affected dog, both parents, and an IE-free sibling) was performed. (3) IE in the DPD has a broad range in terms of age at onset, frequency, and duration of epileptic seizures. Most dogs showed focal epileptic seizures evolving into generalized seizures. A new risk locus on chromosome 12 (BICF2G630119560; praw = 4.4 × 10-7; padj = 0.043) was identified through GWAS. Sequencing of the GRIK2 candidate gene revealed no variants of interest. No WES variants were located within the associated GWAS region. However, a variant in CCDC85A (chromosome 10; XM_038680630.1: c.689C > T) was discovered, and dogs homozygous for the variant (T/T) had an increased risk of developing IE (OR: 6.0; 95% CI: 1.6-22.6). This variant was identified as likely pathogenic according to ACMG guidelines. (4) Further research is necessary before the risk locus or CCDC85A variant can be used for breeding decisions.
Collapse
|
16
|
Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. Int J Mol Sci 2023; 24:ijms24021718. [PMID: 36675230 PMCID: PMC9865595 DOI: 10.3390/ijms24021718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Mammals have a dorsal cochlear nucleus (DCN), which is thought to be a cerebellum-like structure with similar features in terms of structure and microcircuitry to the cerebellum. Both the DCN and cerebellum perform their functions depending on synaptic and neuronal networks mediated by various glutamate receptors. Kainate receptors (KARs) are one class of the glutamate receptor family and are strongly expressed in the hippocampus, the cerebellum, and cerebellum-like structures. The cellular distribution and the potential role of KARs in the hippocampus have been extensively investigated. However, the cellular distribution and the potential role of KARs in cerebellum-like structures, including the DCN and cerebellum, are poorly understood. In this review, we summarize the similarity between the DCN and cerebellum at the levels of structure, circuitry, and cell type as well as the investigations referring to the expression patterns of KARs in the DCN and cerebellum according to previous studies. Recent studies on the role of KARs have shown that KARs mediate a bidirectional modulatory effect at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum, implying insights into their roles in cerebellum-like structures, including the DCN, that remain to be explored in the coming years.
Collapse
|
17
|
Kainate receptor subunit 1 (GRIK1) risk variants and GRIK1 deficiency were detected in the Indian ADHD probands. Sci Rep 2022; 12:18449. [PMID: 36323684 PMCID: PMC9630447 DOI: 10.1038/s41598-022-21948-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Executive dysfunctions caused by structural and functional abnormalities of the prefrontal cortex were reported in patients with Attention deficit hyperactivity disorder (ADHD). Owing to a higher expression of the glutamate ionotropic receptor kainate type subunit 1 (GluK1), encoded by the GRIK1 gene, in brain regions responsible for learning and memory, we hypothesized that GRIK1 might have a role in ADHD. GRIK1 variants rs363504 and rs363538, affecting the receptor function, were analyzed by case-control and family-based methods to identify the association with ADHD. The impact of these variants on ADHD-associated traits and pharmacological intervention were also analyzed. GRIK1 expression was quantified in the peripheral blood. The probands and their fathers had a higher frequency of rs363504 'CC' and rs363538 'CA' genotypes. Family-based investigation revealed maternal over transmission of rs363504 'C' and rs363538 'A' alleles to the probands. Quantitative trait analysis exhibited an association of rs363504 'TT' and rs363538 'AA' genotypes with higher hyperactivity scores of the probands. In the presence of rs363504 'TT' and rs363538 'CC' genotypes, MPH treatment improved hyperactivity and inattention, respectively. GRIK1 expression was significantly downregulated in the probands. We infer that GRIK1 affects ADHD etiology, warranting further in-depth investigation involving a larger cohort and more functional variants.
Collapse
|
18
|
Bell S, Tozer DJ, Markus HS. Genome-wide association study of the human brain functional connectome reveals strong vascular component underlying global network efficiency. Sci Rep 2022; 12:14938. [PMID: 36056064 PMCID: PMC9440133 DOI: 10.1038/s41598-022-19106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Complex brain networks play a central role in integrating activity across the human brain, and such networks can be identified in the absence of any external stimulus. We performed 10 genome-wide association studies of resting state network measures of intrinsic brain activity in up to 36,150 participants of European ancestry in the UK Biobank. We found that the heritability of global network efficiency was largely explained by blood oxygen level-dependent (BOLD) resting state fluctuation amplitudes (RSFA), which are thought to reflect the vascular component of the BOLD signal. RSFA itself had a significant genetic component and we identified 24 genomic loci associated with RSFA, 157 genes whose predicted expression correlated with it, and 3 proteins in the dorsolateral prefrontal cortex and 4 in plasma. We observed correlations with cardiovascular traits, and single-cell RNA specificity analyses revealed enrichment of vascular related cells. Our analyses also revealed a potential role of lipid transport, store-operated calcium channel activity, and inositol 1,4,5-trisphosphate binding in resting-state BOLD fluctuations. We conclude that that the heritability of global network efficiency is largely explained by the vascular component of the BOLD response as ascertained by RSFA, which itself has a significant genetic component.
Collapse
Affiliation(s)
- Steven Bell
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel J Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Lima LSD, Loyola V, Bicca JVML, Faro L, Vale CLC, Lotufo Denucci B, Mortari MR. Innovative treatments for epilepsy: Venom peptides, cannabinoids, and neurostimulation. J Neurosci Res 2022; 100:1969-1986. [PMID: 35934922 DOI: 10.1002/jnr.25114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment. Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life. In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets. Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy. Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vinícius Loyola
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - João Victor Montenegro Luzardo Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Lucas Faro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Camilla Lepesqueur Costa Vale
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Lotufo Denucci
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
20
|
Taniguchi S, Stolz JR, Swanson GT. The Antiseizure Drug Perampanel Is a Subunit-Selective Negative Allosteric Modulator of Kainate Receptors. J Neurosci 2022; 42:5499-5509. [PMID: 35654603 PMCID: PMC9295835 DOI: 10.1523/jneurosci.2397-21.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Perampanel (PMP) is a third-generation antiseizure drug reported to be a potent and selective noncompetitive negative allosteric modulator of one subfamily of ionotropic glutamate receptor (iGluR), the α-amino-3-hydroxy-S-methylisoxazole-4-propionic acid receptors (AMPARs). However, the recent structural resolution of AMPARs in complex with PMP revealed that its binding pocket is formed from residues that are largely conserved in two members of another family of iGluRs, the GluK4 and GluK5 kainate receptor (KAR) subunits. We show here that PMP inhibits both recombinant and neuronal KARs, contrary to the previous reports, and that the negative allosteric modulator (NAM) activity requires GluK5 subunits to be channel constituents. PMP inhibited heteromeric GluK1/GluK5 and GluK2/GluK5 KARs at IC50 values comparable to that for AMPA receptors but was much less potent on homomeric GluK1 or GluK2 KARs. The auxiliary subunits Neto1 or Neto2 also made GluK2-containing KARs more sensitive to inhibition. Finally, PMP inhibited mouse neuronal KARs containing GluK5 subunits and Neto proteins in nociceptive dorsal root ganglia neurons and hippocampal mossy fiber-CA3 pyramidal neuron synapses. These data suggest that clinical actions of PMP could arise from differential inhibition of AMPAR or KAR signaling and that more selective drugs might maintain antiseizure efficacy while reducing adverse effects.SIGNIFICANCE STATEMENT PMP is a regulatory approved antiseizure drug used for refractory partial-onset and generalized tonic-clonic seizures that acts as a selective negative allosteric modulator of AMPARs. Here, we demonstrate that PMP inhibits KARs, a second family of ionotropic glutamate receptors, in addition to AMPARs. NAM activity on KARs required GluK5 subunits or Neto auxiliary subunits as channel constituents. KAR inhibition, therefore, could contribute to PMP antiseizure action or the adverse effects that are significant with this drug. Drug discovery aimed at more selective allosteric modulators that discriminate between AMPARs and KARs could yield next-generation drugs with improved therapeutic profiles for treatment of epilepsy.
Collapse
Affiliation(s)
- Sakiko Taniguchi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Jacob R Stolz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|