1
|
Fiorenzani C, Mossa A, De Rubeis S. DEAD/DEAH-box RNA helicases shape the risk of neurodevelopmental disorders. Trends Genet 2025; 41:437-449. [PMID: 39828505 PMCID: PMC12055483 DOI: 10.1016/j.tig.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The DEAD/DEAH-box family of RNA helicases (RHs) is among the most abundant and conserved in eukaryotes. These proteins catalyze the remodeling of RNAs to regulate their splicing, stability, localization, and translation. Rare genetic variants in DEAD/DEAH-box proteins have recently emerged as being associated with neurodevelopmental disorders (NDDs). Analyses in cellular and animal models have uncovered fundamental roles for these proteins during brain development. We discuss the genetic and functional evidence that implicates DEAD/DEAH-box proteins in brain development and NDDs, with a focus on how structural insights from paralogous genes can be leveraged to advance our understanding of the pathogenic mechanisms at play.
Collapse
Affiliation(s)
- Chiara Fiorenzani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adele Mossa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Weng J, Zhu X, Ouyang Y, Liu Y, Lu H, Yao J, Pan B. Identification of Immune-Related Biomarkers of Schizophrenia in the Central Nervous System Using Bioinformatic Methods and Machine Learning Algorithms. Mol Neurobiol 2025; 62:3226-3243. [PMID: 39243324 DOI: 10.1007/s12035-024-04461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Schizophrenia is a disastrous mental disorder. Identification of diagnostic biomarkers and therapeutic targets is of significant importance. In this study, five datasets of schizophrenia post-mortem prefrontal cortex samples were downloaded from the GEO database and then merged and de-batched for the analyses of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA). The WGCNA analysis showed the six schizophrenia-related modules containing 12,888 genes. The functional enrichment analyses indicated that the DEGs were highly involved in immune-related processes and functions. The immune cell infiltration analysis with the CIBERSORT algorithm revealed 12 types of immune cells that were significantly different between schizophrenia subjects and controls. Additionally, by intersecting DEGs, WGCNA module genes, and an immune gene set obtained from online databases, 151 schizophrenia-associated immune-related genes were obtained. Moreover, machine learning algorithms including LASSO and Random Forest were employed to further screen out 17 signature genes, including GRIN1, P2RX7, CYBB, PTPN4, UBR4, LTF, THBS1, PLXNB3, PLXNB1, PI15, RNF213, CXCL11, IL7, ARHGAP10, TTR, TYROBP, and EIF4A2. Then, SVM-RFE was added, and together with LASSO and Random Forest, a hub gene (EIF4A2) out of the 17 signature genes was revealed. Lastly, in a schizophrenia rat model, the EIF4A2 expression levels were reduced in the model rat brains in a brain-regional dependent manner, but can be reversed by risperidone. In conclusion, by using various bioinformatic and biological methods, this study found 17 immune-related signature genes and a hub gene of schizophrenia that might be potential diagnostic biomarkers and therapeutic targets of schizophrenia.
Collapse
Affiliation(s)
- Jianjun Weng
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Yu Ouyang
- Department of Clinical Laboratory, The Second People's Hospital of Taizhou Affiliated to Yangzhou University, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Hongmei Lu
- Department of Pathology, Affiliated Maternity and Child Care Service Centre of Yangzhou University, Yangzhou, Jiangsu, 225002, People's Republic of China.
| | - Jiakui Yao
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, People's Republic of China.
| | - Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China.
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China.
| |
Collapse
|
3
|
Yue X, Zhu L, Zhang Z. Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain. Microorganisms 2025; 13:165. [PMID: 39858933 PMCID: PMC11767420 DOI: 10.3390/microorganisms13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil® on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data. The Lacidofil® altogether altered 2941 differential splicing events, predominantly, skipped exon (SE) and mutually exclusive exon (MXE) events. Protein-protein interactions and a KEGG analysis of differentially spliced genes (DSGs) revealed consistent enrichment in the spliceosome and vesicle transport complexes, as well as in pathways related to neurodegenerative diseases, synaptic function and plasticity, and substance addiction across brain regions. Using the PsyGeNET platform, we found that DSGs from the locus coeruleus (LConly), medial preoptic area (mPOA), and ventral dentate gyrus (venDG) were enriched in depression-associated or schizophrenia-associated genes. Notably, we highlight the App gene, where Lacidofil® precisely regulated the splicing of two exons causally involved in amyloid β protein-based neurodegenerative diseases. Although the splicing factors exhibited both splicing plasticity and expression plasticity in response to Lacidofil®, the overlap between DSGs and differentially expressed genes (DEGs) in most brain regions was rather low. Our study provides novel mechanistic insight into how gut probiotics might influence brain function through the modulation of RNA splicing.
Collapse
Affiliation(s)
| | | | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (X.Y.); (L.Z.)
| |
Collapse
|
4
|
Kolesnikova VV, Nikonov OS, Phat TD, Nikonova EY. The Proteins Diversity of the eIF4E Family in the eIF4F Complex. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S60-S85. [PMID: 40164153 DOI: 10.1134/s0006297924603721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 04/02/2025]
Abstract
In eukaryotes, translation initiation occurs by the cap-dependent mechanism. Each translated mRNA must be pre-bound by the translation initiation factor eIF4E. All isoforms of this factor are combined into one family. The review considers natural diversity of the eIF4E isoforms in different organisms, provides structural information about them, and describes their functional role in the processes, such as oncogenesis, participation in the translation of certain mRNAs under stress, and selective use of the individual isoforms by viruses. In addition, this review briefly describes the mechanism of cap-dependent translation initiation and possible ways to regulate the eIF4E function.
Collapse
Affiliation(s)
- Viktoriya V Kolesnikova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tien Do Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ekaterina Yu Nikonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Tamura T, Shimojima Yamamoto K, Tohyama J, Morioka I, Kanno H, Yamamoto T. Reciprocal chromosome translocation t(3;4)(q27;q31.2) with deletion of 3q27 and reduced FBXW7 expression in a patient with developmental delay, hypotonia, and seizures. J Hum Genet 2024; 69:639-644. [PMID: 39123068 DOI: 10.1038/s10038-024-01286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Reciprocal chromosomal translocation is one of genomic variations. When cytogenetically de novo reciprocal translocations are identified in patients with some clinical manifestations, the genes in the breakpoints are considered to be related to the clinical features. In this study, we encountered a patient with severe developmental delay, intractable epilepsy, growth failure, distinctive features, and skeletal manifestations. Conventional karyotyping revealed a de novo translocation described as 46,XY,t(3;4)(q27;q31.2). Chromosomal microarray testing detected a 1.25-Mb microdeletion at 3q27.3q28. Although the skeletal manifestations may have been affected by this deletion, the neurological features of this patient were severe and could not be fully explained by this deletion. Since no genomic copy number aberration was detected on chromosome 4, long-read whole-genome sequencing analysis was performed and a precise breakpoint was confirmed. A 460-bp deletion was detected between the two breakpoints; however, no gene was disrupted. FBXW7, the gene responsible for developmental delay, hypotonia, and impaired language, is in the 0.5-Mb telomeric region. Most of the patient's clinical features were considered consistent with symptoms of FBXW7-related disorders, but were more severe. FBXW7 expression in the immortalized lymphoblasts of the patient was reduced compared to that in controls. Based on these findings, we suspect that FBXW7 is affected by downstream position effects of chromosomal translocations. The severe neurological features of the patient may have been affected not only by the 3q27-q28 deletion but also by impaired expression of FBXW7 derived from the breakage of chromosome 4.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
6
|
Lederbauer J, Das S, Piton A, Lessel D, Kreienkamp HJ. The role of DEAD- and DExH-box RNA helicases in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1414949. [PMID: 39149612 PMCID: PMC11324592 DOI: 10.3389/fnmol.2024.1414949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a large group of disorders with an onset in the neonatal or early childhood period; NDDs include intellectual disability (ID), autism spectrum disorders (ASD), attention deficit hyperactivity disorders (ADHD), seizures, various motor disabilities and abnormal muscle tone. Among the many underlying Mendelian genetic causes for these conditions, genes coding for proteins involved in all aspects of the gene expression pathway, ranging from transcription, splicing, translation to the eventual RNA decay, feature rather prominently. Here we focus on two large families of RNA helicases (DEAD- and DExH-box helicases). Genetic variants in the coding genes for several helicases have recently been shown to be associated with NDD. We address genetic constraints for helicases, types of pathological variants which have been discovered and discuss the biological pathways in which the affected helicase proteins are involved.
Collapse
Affiliation(s)
- Johannes Lederbauer
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amelie Piton
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Davor Lessel
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Chen X, Cao Z, Wang Y. Amyotrophic Lateral Sclerosis-Associated Mutants of SOD1 Perturb mRNA Splicing through Aberrant Interactions with SRSF2. Anal Chem 2024; 96:9713-9720. [PMID: 38795036 PMCID: PMC11412154 DOI: 10.1021/acs.analchem.4c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results in the degeneration of neurons in the brain and spinal cord. Although a substantial number of studies have been conducted, much remains to be learned about the cellular mechanisms underlying ALS. In this study, we employed an engineered ascorbate peroxidase (APEX)-based proximity biotinylation, together with affinity pull-down of the ensuing biotinylated peptides, to investigate the proximity proteomes of human SOD1 and its two ALS-linked mutants, G85R and G93A. We were able to identify 25 common biotinylated peptides with preferential enrichment in the proximity proteomes of SOD1G85R and SOD1G93A over wild-type SOD1. Our coimmunoprecipitation followed by Western blot analyses revealed that one of these proteins, SRSF2, binds more strongly with the two SOD1 mutants than its wild-type counterpart. We also observed aberrant splicing of mRNAs in cells with ectopic expression of the two SOD1 mutants relative to cells expressing the wild-type protein. In addition, the aberrations in splicing elicited by the SOD1 variants were markedly attenuated upon knockdown of SRSF2. Collectively, we uncovered that ALS-liked SOD1G85R and SOD1G93A mutants interact more strongly with SRSF2, where the aberrant interactions perturbed mRNA splicing. Thus, our work offered novel mechanistic insights into the contributions of the ALS-linked SOD1 mutants to disease etiology.
Collapse
Affiliation(s)
- Xingyuan Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92502, United States
| | - Zhongwen Cao
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92502, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92502, United States
- Department of Chemistry, University of California, Riverside, California 92502, United States
| |
Collapse
|
8
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 PMCID: PMC11896630 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
9
|
Harrer P, Škorvánek M, Kittke V, Dzinovic I, Borngräber F, Thomsen M, Mandel V, Svorenova T, Ostrozovicova M, Kulcsarova K, Berutti R, Busch H, Ott F, Kopajtich R, Prokisch H, Kumar KR, Mencacci NE, Kurian MA, Di Fonzo A, Boesch S, Kühn AA, Blümlein U, Lohmann K, Haslinger B, Weise D, Jech R, Winkelmann J, Zech M. Dystonia Linked to EIF4A2 Haploinsufficiency: A Disorder of Protein Translation Dysfunction. Mov Disord 2023; 38:1914-1924. [PMID: 37485550 DOI: 10.1002/mds.29562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Volker Kittke
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vanessa Mandel
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Tatiana Svorenova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Miriam Ostrozovicova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Kristina Kulcsarova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kishore R Kumar
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Niccolo E Mencacci
- Ken and Ruth Davee Department of Neurology, Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manju A Kurian
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Blümlein
- Department of Pediatrics, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - David Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Guo R, Rippert A, Cook EB, Alves CAP, Bird LM, Izumi K. Expansion of clinical and variant spectrum of EEF2-related neurodevelopmental disorder: Report of two additional cases. Am J Med Genet A 2023; 191:2602-2609. [PMID: 37159414 PMCID: PMC10527330 DOI: 10.1002/ajmg.a.63230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Eukaryotic translation elongation factor 2 (eEF2), encoded by the gene EEF2, is an essential factor involved in the elongation phase of protein translation. A specific heterozygous missense variant (p.P596H) in EEF2 was originally identified in association with autosomal dominant adult-onset spinocerebellar ataxia-26 (SCA26). More recently, additional heterozygous missense variants in this gene have been described to cause a novel, childhood-onset neurodevelopmental disorder with benign external hydrocephalus. Herein, we report two unrelated individuals with a similar gene-disease correlation to support this latter observation. Patient 1 is a 7-year-old male with a previously reported, de novo missense variant (p.V28M) who has motor and speech delay, autism spectrum disorder, failure to thrive with relative macrocephaly, unilateral microphthalmia with coloboma and eczema. Patient 2 is a 4-year-old female with a novel de novo nonsense variant (p.Q145X) with motor and speech delay, hypotonia, macrocephaly with benign ventricular enlargement, and keratosis pilaris. These additional cases help to further expand the genotypic and phenotypic spectrum of this newly described EEF2-related neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Rose Guo
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
| | - Alyssa Rippert
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
| | - Edward B Cook
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
| | - Cesar Augusto P Alves
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego; Division of Dysmorphology/Genetics, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current affiliation: Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Trieschmann G, Wilhelm C, Berweck S, Zech M. De novo retinoic acid receptor beta (RARB) variant associated with microphthalmia and dystonia. Eur J Med Genet 2023; 66:104802. [PMID: 37321544 DOI: 10.1016/j.ejmg.2023.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Definition of the individual genotypes that cause a Mendelian phenotype is of great importance both to clinical diagnostics and disease characterization. Heterozygous de novo gain-of-function missense variants in RARB are associated with syndromic microphthalmia 12 (MCOPS12), a developmental disorder characterized by eye malformations and variable involvement of other organs. A subset of patients were described with poorly delineated movement disorders. Additionally, RARB bi-allelic loss-of-function variants, inherited from asymptomatic heterozygous carrier parents, have been found in a recessive family with four MCOPS12-affected members. PATIENT/METHODS We used trio whole-exome sequencing to explore the molecular basis of disease in an individual with congenital eye abnormality and movement disorder. All patients with reported RARB variants were reviewed. RESULTS We report on identification of a heterozygous de novo RARB nonsense variant in a girl with microphthalmia and progressive generalized dystonia. Public database entries indicate that the de novo variant is recurrently present in clinically affected subjects but a literature report has not yet been available. CONCLUSIONS We provide the first detailed evidence for a role of dominant RARB truncating alterations in congenital eye-brain disease, expanding the spectrum of MCOPS12-associated mutations. Considered together with the published family with bi-allelic variants, the data suggest manifestation and non-manifestation of disease in relation to almost identical RARB loss-of-function variations, an apparent paradox that is seen in a growing number of human genetic conditions associated with both recessive and dominant inheritance patterns.
Collapse
Affiliation(s)
- Gesa Trieschmann
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | | | - Steffen Berweck
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany; LMU Hospital, Department of Pediatrics-Dr. von Hauner Childrens's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Naineni SK, Cencic R, Robert F, Brown LE, Haque M, Scott-Talib J, Sénéchal P, Schmeing TM, Porco JA, Pelletier J. Exploring the targeting spectrum of rocaglates among eIF4A homologs. RNA (NEW YORK, N.Y.) 2023; 29:826-835. [PMID: 36882295 PMCID: PMC10187672 DOI: 10.1261/rna.079318.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Inhibition of eukaryotic translation initiation through unscheduled RNA clamping of the DEAD-box (DDX) RNA helicases eIF4A1 and eIF4A2 has been documented for pateamine A (PatA) and rocaglates-two structurally different classes of compounds that share overlapping binding sites on eIF4A. Clamping of eIF4A to RNA causes steric blocks that interfere with ribosome binding and scanning, rationalizing the potency of these molecules since not all eIF4A molecules need to be engaged to elicit a biological effect. In addition to targeting translation, PatA and analogs have also been shown to target the eIF4A homolog, eIF4A3-a helicase necessary for exon junction complex (EJC) formation. EJCs are deposited on mRNAs upstream of exon-exon junctions and, when present downstream from premature termination codons (PTCs), participate in nonsense-mediated decay (NMD), a quality control mechanism aimed at preventing the production of dominant-negative or gain-of-function polypeptides from faulty mRNA transcripts. We find that rocaglates can also interact with eIF4A3 to induce RNA clamping. Rocaglates also inhibit EJC-dependent NMD in mammalian cells, but this does not appear to be due to induced eIF4A3-RNA clamping, but rather a secondary consequence of translation inhibition incurred by clamping eIF4A1 and eIF4A2 to mRNA.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Massachusetts 02215, USA
| | - Minza Haque
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | | | - Patrick Sénéchal
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Quebec, H3G 0B1 Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Massachusetts 02215, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Quebec, H3G 1Y6 Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Quebec, H3G 0B1 Canada
- McGill Research Center on Complex Traits, McGill University, Quebec, H3G 0B1 Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Quebec, H3A 1A3 Canada
- Department of Oncology, McGill University, Quebec, H4A 3T2 Canada
| |
Collapse
|