1
|
Shan Y, Hu H, Yang A, Zhao W, Chu Y. An integrative approach to identifying NPC1 as a susceptibility gene for gestational diabetes mellitus. J Matern Fetal Neonatal Med 2025; 38:2445665. [PMID: 39746811 DOI: 10.1080/14767058.2024.2445665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE The objective of this study was to identify a novel gene and its potential mechanisms associated with susceptibility to gestational diabetes mellitus (GDM) through an integrative approach. METHODS We analyzed data from genome-wide association studies (GWAS) of GDM in the FinnGen R11 dataset (16,802 GDM cases and 237,816 controls) and Genotype Tissue Expression v8 expression quantitative trait locus data. We used summary-data-based Mendelian randomization to determine associations between transcript levels and phenotypes, transcriptome-wide association studies to provide insights into gene-trait associations, multi-marker analysis of genomic annotation to perform gene-based analysis, genome-wide complex trait analysis-multivariate set-based association test-combo to determine gene prioritization, and polygenic priority scores to prioritize the causal genes to screen candidate genes. Subsequent Mendelian randomization analysis was performed to infer causality between the candidate genes and GDM and phenome-wide association study (PheWAS) analysis was used to explore the associations between selected genes and other characteristics. Furthermore, to gain a deeper understanding of the functional implications of these susceptibility genes, GeneMANIA analysis was used to determine the fundamental biological functions of the therapeutic targets and protein-protein interaction network analysis was performed to identify intracellular protein interactions. RESULTS We identified two novel susceptibility genes associated with GDM: NPC1 and KIAA1191. Magnetic resonance imaging revealed a strong correlation between NPC1 expression levels and a lower incidence of GDM (odds ratio: 0.922, 95% confidence interval: 0.866-0.981, p = 0.011). PheWAS at the gene level indicated that NPC1 was not associated with any other trait. The biological significance of this gene was evidenced by its strong association with sterol metabolism. CONCLUSION Our study identified NPC1 as a novel gene whose predicted expression level is linked to a reduced risk of GDM, providing new insights into the genetic framework of this disease.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Hu
- Clinical medicine, Nantong University, Nantong, China
| | - Anning Yang
- Department of Obstetrics and Gynecology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Wendi Zhao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LG, Smit J, Artigas MS, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Hellard SL, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück C, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive-compulsive disorder. Nat Genet 2025:10.1038/s41588-025-02189-z. [PMID: 40360802 DOI: 10.1038/s41588-025-02189-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of children and adults and is partly caused by genetic factors. We conducted a genome-wide association study (GWAS) meta-analysis combining 53,660 OCD cases and 2,044,417 controls and identified 30 independent genome-wide significant loci. Gene-based approaches identified 249 potential effector genes for OCD, with 25 of these classified as the most likely causal candidates, including WDR6, DALRD3 and CTNND1 and multiple genes in the major histocompatibility complex (MHC) region. We estimated that ~11,500 genetic variants explained 90% of OCD genetic heritability. OCD genetic risk was associated with excitatory neurons in the hippocampus and the cortex, along with D1 and D2 type dopamine receptor-containing medium spiny neurons. OCD genetic risk was shared with 65 of 112 additional phenotypes, including all the psychiatric disorders we examined. In particular, OCD shared genetic risk with anxiety, depression, anorexia nervosa and Tourette syndrome and was negatively associated with inflammatory bowel diseases, educational attainment and body mass index.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Zachary F Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Cristina Rodriguez-Fontenla
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Genetics, Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Julia M Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain University Medical Center Utrecht, Utrecht, the Netherlands
- Second Opinion Outpatient Clinic, GGNet, Warnsveld, the Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D Askland
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Angel Carracedo
- CiMUS, Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psychiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Spain
| | - Martha J Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A Grados
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research and Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S O'Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental Disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion VUmc, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Trondheim, Norway
- BioCore, Bioinformatics Core Facility, NTNU, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ying Wang
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, the Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South-West Sydney, South-West Sydney Clinical School, SWSLHD and Ingham Institute, Sydney, New South Wales, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - J M Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B Hickie
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Université Paris-Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B Mortensen
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A Richter
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F Samuels
- Department of Psychiatry and Behavioral Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K Hansen
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nicholas G Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Research Unit, Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gerd Kvale
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
- Partner Site Berlin, DZPG, Berlin, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- DZNE, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paul D Arnold
- Department of Psychiatry, the Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A Mathews
- Psychiatry and Genetics Institute, Evelyn F. and William L. Mc Knight Brain Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
3
|
Shan Y, Hu H, Chu Y. Cross-ancestry genome-wide association study identifies new susceptibility genes for preeclampsia. BMC Pregnancy Childbirth 2025; 25:379. [PMID: 40170147 PMCID: PMC11959822 DOI: 10.1186/s12884-025-07534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Preeclampsia (PE) is a heterogeneous, multi-organ pregnancy disorder that poses a significant health burden globally, with its pathogenesis remaining unclear. This study aimed to identify novel susceptibility genes for PE through a cross-ancestry genome-wide association study (GWAS). METHODS We performed meta-analysis to summarize the PE GWAS data from the United Kingdom, Finland, and Japan. Subsequently, the multi-ancestry sum of the single-effects model was used to perform cross-ancestry fine-mapping. The functional mapping and annotation (FUMA)-expression quantitative trait loci (eQTL) mapping method, transcriptome-wide association study (TWAS)- functional summary-based imputation (FUSION) method, genome-wide complex trait analysis (GCTA)-multivariate set-based association test (mBAT)-combo method, and polygenic priority score (PoPS) method were employed to screen for candidate genes. We utilized biomarker expression level imputation using summary-level statistics (BLISS), based on summary-level protein quantitative trait loci (pQTL) data, to conduct a multi-ancestry proteome-wide association study (PWAS) analysis, followed by candidate drug prediction. RESULTS Six novel susceptibility genes associated with PE risk were identified: NPPA, SWAP70, NPR3, FGF5, REPIN1, and ACAA1. High expression of the NPPA and SWAP70 and low expression of the remaining genes were associated with a reduced risk of PE. Furthermore, we identified drugs that target NPPA, NPR3, and REPIN1. CONCLUSIONS Our study identified NPPA, SWAP70, NPR3, FGF5, REPIN1, and ACAA1 as novel genes whose predicted expression was linked to the risk of PE, offering new insights into the genetic framework of this condition.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Hu
- Clinical Medicine, Nantong University, Nantong, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Bast L, Yao S, Martínez-López JA, Memic F, French H, Valiukonyte M, Karlsson R, Wen J, Song J, Zhang R, Abrantes A, Koopmans F, Österholm AM, Rosoklija G, Mann JJ, Stankov A, Trencevska I, Dwork A, Stockmeier CA, Love MI, Giusti-Rodriguez P, Smit AB, Sullivan PF, Hjerling-Leffler J. Transcriptomic and genetic analysis suggests a role for mitochondrial dysregulation in schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.14.25323827. [PMID: 40162239 PMCID: PMC11952597 DOI: 10.1101/2025.03.14.25323827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schizophrenia is an often devastating disorder characterized by persistent and idiopathic cognitive deficits, delusions and hallucinations. Schizophrenia has been associated with impaired nervous system development and an excitation/inhibition imbalance in the prefrontal cortex. On a molecular level, schizophrenia is moderately heritable and genetically complex. Hundreds of risk genes have been identified, spanning a heterogeneous landscape dominated by loci that confer relatively small risk. Bioinformatic analyses of genetic associations point to a limited set of neurons, mainly excitatory cortical neurons, but other analyses suggest the importance of astrocytes and microglia. To understand different cell type roles in schizophrenia and reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia, our study integrated genetic analysis with single nucleus RNA-seq of 536,618 nuclei from postmortem samples of dorsal prefrontal cortex (Brodmann Area 8/9) of 43 cases with schizophrenia and 42 neurotypical controls. We found no significant difference in cell type abundance. Gene expression in excitatory layer 2-3 intra-telencephalic neurons had the greatest number of differentially expressed transcripts and, together with excitatory deep layer intra-telencephalic neurons, conferred most of the genetic risk for schizophrenia. Most differential expression of genes was found in specific cell types and was dominated by down-regulated transcripts. Down-regulated transcripts were enriched in gene sets including transmembrane transport, mitochondrial function, protein folding, and cell-cell signaling whereas up-regulated transcripts were enriched in gene sets related to RNA processing, including RNA splicing in neurons. Co-regulation network analysis identified 40 schizophrenia-relevant programs across 13 cell types. A gene program largely shared between neuronal subtypes, astrocytes, and oligodendrocytes was significantly enriched for schizophrenia risk, supporting an aetiological role for perturbed protein modification, ion transport, and mitochondrial function. These results were largely consistent with cell-type expression quantitative trait locus and transcriptome-wide association analyses. Moreover, single-cell RNA sequencing results, most prominently mitochondrial dysfunction, had multiple points of convergence with proteomic and long-read RNA sequencing results from samples from the same donors. Our study integrates genetic analysis with transcriptomics to reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia.
Collapse
Affiliation(s)
- Lisa Bast
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - José A. Martínez-López
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Present address: Department of Engineering, Universidad Loyola Andalucía, Seville, Spain
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hayley French
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Milda Valiukonyte
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyue Zhang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Anthony Abrantes
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Present address: Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin, US
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne-May Österholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gorazd Rosoklija
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
| | - J. John Mann
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Aleksandar Stankov
- Institute for Forensic Medicine and Criminalistics, School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Iskra Trencevska
- School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Andrew Dwork
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig A. Stockmeier
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
5
|
Adewuyi EO, Laws SM. Genomic Characterisation of the Relationship and Causal Links Between Vascular Calcification, Alzheimer's Disease, and Cognitive Traits. Biomedicines 2025; 13:618. [PMID: 40149595 PMCID: PMC11940612 DOI: 10.3390/biomedicines13030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Observational studies suggest a link between vascular calcification and dementia or cognitive decline, but the evidence is conflicting, and the underlying mechanisms are unclear. Here, we investigate the shared genetic and causal relationships of vascular calcification-coronary artery calcification (CAC) and abdominal aortic calcification (AAC)-with Alzheimer's disease (AD), and five cognitive traits. Methods: We analyse large-scale genome-wide association studies (GWAS) summary statistics, using well-regarded methods, including linkage disequilibrium score regression (LDSC), Mendelian randomisation (MR), pairwise GWAS (GWAS-PW), and gene-based association analysis. Results: Our findings reveal a nominally significant positive genome-wide genetic correlation between CAC and AD, which becomes non-significant after excluding the APOE region. CAC and AAC demonstrate significant negative correlations with cognitive performance and educational attainment. MR found no causal association between CAC or AAC and AD or cognitive traits, except for a bidirectional borderline-significant association between AAC and fluid intelligence scores. Pairwise-GWAS analysis identifies no shared causal SNPs (posterior probability of association [PPA]3 < 0.5). However, we find pleiotropic loci (PPA4 > 0.9), particularly on chromosome 19, with gene association analyses revealing significant genes in shared regions, including APOE, TOMM40, NECTIN2, and APOC1. Moreover, we identify suggestively significant loci (PPA4 > 0.5) on chromosomes 1, 6, 7, 9 and 19, implicating pleiotropic genes, including NAV1, IPO9, PHACTR1, UFL1, FHL5, and FOCAD. Conclusions: Current findings reveal limited genetic correlation and no significant causal associations of CAC and AAC with AD or cognitive traits. However, significant pleiotropic loci, particularly at the APOE region, highlight the complex interplay between vascular calcification and neurodegenerative processes. Given APOE's roles in lipid metabolism, neuroinflammation, and vascular integrity, its involvement may link vascular and neurodegenerative disorders, pointing to potential targets for further investigation.
Collapse
Affiliation(s)
- Emmanuel O. Adewuyi
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - Simon M. Laws
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
6
|
Nishino J, Miya F, Kato M. Gene-based Hardy-Weinberg equilibrium test using genotype count data: application to six types of cancers. BMC Genomics 2025; 26:124. [PMID: 39930364 PMCID: PMC11809088 DOI: 10.1186/s12864-025-11321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND An alternative approach to investigate associations between genetic variants and disease is to examine deviations from the Hardy-Weinberg equilibrium (HWE) in genotype frequencies within a case population, instead of case-control association analysis. The HWE analysis requires disease cases and demonstrates a notable ability in mapping recessive variants. Allelic heterogeneity is a common phenomenon in diseases. While gene-based case-control association analysis successfully incorporates this heterogeneity, there are no such approaches for HWE analysis. Therefore, we proposed a gene-based HWE test (gene-HWT) by aggregating single-nucleotide polymorphism (SNP)-level HWE test statistics in a gene to address allelic heterogeneity. RESULTS This method used only genotype count data and publicly available linkage disequilibrium information and has a very low computational cost. Extensive simulations demonstrated that gene-HWT effectively controls the type I error at a low significance level and outperforms SNP-level HWE test in power when there are multiple causal variants within a gene. Using gene-HWT, we analyzed genotype count data from a genome-wide association study of six cancer types in Japanese individuals and suggest DGKE and ANO3 as potential germline factors in colorectal cancer. Furthermore, FSTL4 was suggested through a combined analysis across the six cancer types, with particularly notable associations observed in colorectal and prostate cancers. CONCLUSIONS These findings indicate the potential of gene-HWT to elucidate the genetic basis of complex diseases, including cancer.
Collapse
Affiliation(s)
- Jo Nishino
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan.
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
7
|
Guo X, Feng Y, Ji X, Jia N, Maimaiti A, Lai J, Wang Z, Yang S, Hu S. Shared genetic architecture and bidirectional clinical risks within the psycho-metabolic nexus. EBioMedicine 2025; 111:105530. [PMID: 39731856 PMCID: PMC11743124 DOI: 10.1016/j.ebiom.2024.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a complex interplay between psychiatric disorders and metabolic dysregulations. However, most research has been limited to specific disorder pairs, leaving a significant gap in our understanding of the broader psycho-metabolic nexus. METHODS This study leveraged large-scale cohort data and genome-wide association study (GWAS) summary statistics, covering 8 common psychiatric disorders and 43 metabolic traits. We introduced a comprehensive analytical strategy to identify shared genetic bases sequentially, from key genetic correlation regions to local pleiotropy and pleiotropic genes. Finally, we developed polygenic risk score (PRS) models to translate these findings into clinical applications. FINDINGS We identified significant bidirectional clinical risks between psychiatric disorders and metabolic dysregulations among 310,848 participants from the UK Biobank. Genetic correlation analysis confirmed 104 robust trait pairs, revealing 1088 key genomic regions, including critical hotspots such as chr3: 47588462-50387742. Cross-trait meta-analysis uncovered 388 pleiotropic single nucleotide variants (SNVs) and 126 shared causal variants. Among variants, 45 novel SNVs were associated with psychiatric disorders and 75 novel SNVs were associated with metabolic traits, shedding light on new targets to unravel the mechanism of comorbidity. Notably, RBM6, a gene involved in alternative splicing and cellular stress response regulation, emerged as a key pleiotropic gene. When psychiatric and metabolic genetic information were integrated, PRS models demonstrated enhanced predictive power. INTERPRETATION The study highlights the intertwined genetic and clinical relationships between psychiatric disorders and metabolic dysregulations, emphasising the need for integrated approaches in diagnosis and treatment. FUNDING The National Key Research and Development Program of China (2023YFC2506200, SHH). The National Natural Science Foundation of China (82273741, SY).
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Feng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, Carlton South, VIC, Australia
| | - Xiaolong Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China; Brain Research Institute of Zhejiang University, Hangzhou, 310058, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Diaz-Torres S, He W, Yu R, Khawaja AP, Hammond CJ, Hysi PG, Pasquale LR, Wu Y, Kubo M, Akiyama M, Aung T, Cheng CY, Khor CC, Kraft P, Kang JH, Hewitt AW, Mackey DA, Craig JE, Wiggs JL, Ong JS, MacGregor S, Gharahkhani P. Genome-wide meta-analysis identifies 22 loci for normal tension glaucoma with significant overlap with high tension glaucoma. Nat Commun 2024; 15:9959. [PMID: 39551815 PMCID: PMC11570636 DOI: 10.1038/s41467-024-54301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Primary open-angle glaucoma typically presents as two subtypes. This study aimed to elucidate the shared and distinct genetic architectures of normal-tension (NTG) and high-tension glaucoma (HTG), motivated by the need to develop intraocular pressure (IOP)-independent drug targets for the disease. We conducted a comprehensive multi-ethnic meta-analysis, prioritized variants based on functional annotation, and explored drug-gene interactions. We further assessed the genetic overlap between NTG and HTG using pairwise GWAS analysis. We identified 22 risk loci associated with NTG, 17 of which have not previously been reported for NTG. Two loci, BMP4 and TBKBP1, have not previously been associated with glaucoma at the genome-wide significance level. Our results indicate that while there is a significant overlap in risk loci between tension subtypes, the magnitude of the effect tends to be lower in NTG compared to HTG, particularly for IOP-related loci. Additionally, we identified a potential role for biologic immunomodulatory treatments as neuroprotective agents.
Collapse
Affiliation(s)
- Santiago Diaz-Torres
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia.
| | - Weixiong He
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia
| | - Regina Yu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Christopher J Hammond
- Department of Ophthalmology, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yeda Wu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tin Aung
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ching-Yu Cheng
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Peter Kraft
- Harvard School of Public Health, Boston, MA, 02114, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland (UQ), Brisbane, QLD, Australia.
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
9
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Toivonen J, Arvas M, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. DINGO: increasing the power of locus discovery in maternal and fetal genome-wide association studies of perinatal traits. Nat Commun 2024; 15:9255. [PMID: 39461952 PMCID: PMC11513127 DOI: 10.1038/s41467-024-53495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Perinatal traits are influenced by fetal and maternal genomes. We investigate the performance of three strategies to detect loci in maternal and fetal genome-wide association studies (GWASs) of the same quantitative trait: (i) the traditional strategy of analysing maternal and fetal GWASs separately; (ii) a two-degree-of-freedom test which combines information from maternal and fetal GWASs; and (iii) a one-degree-of-freedom test where signals from maternal and fetal GWASs are meta-analysed together conditional on estimated sample overlap. We demonstrate that the optimal strategy depends on the extent of sample overlap, correlation between phenotypes, whether loci exhibit fetal and/or maternal effects, and whether these effects are directionally concordant. We apply our methods to summary statistics from a recent GWAS meta-analysis of birth weight. Both the two-degree-of-freedom and meta-analytic approaches increase the number of genetic loci for birth weight relative to separately analysing the scans. Our best strategy identifies an additional 62 loci compared to the most recently published meta-analysis of birth weight. We conclude that whilst the two-degree-of-freedom test may be useful for the analysis of certain perinatal phenotypes, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWASs only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | | | - Mikko Arvas
- Finnish Red Cross Blood Service, Vantaa, Finland
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
10
|
Yang Y, Sheng YH, Carreira P, Wang T, Zhao H, Wang R. Genome-wide assessment of shared genetic landscape of idiopathic pulmonary fibrosis and its comorbidities. Hum Genet 2024; 143:1223-1239. [PMID: 39103522 PMCID: PMC11485074 DOI: 10.1007/s00439-024-02696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease accompanied by both local and systemic comorbidities. Genetic factors play a role in the development of IPF and certain associated comorbidities. Nevertheless, it is uncertain whether there are shared genetic factors underlying IPF and these comorbidities. To bridge this knowledge gap, we conducted a systematic investigation into the shared genetic architecture between IPF and ten prevalent heritable comorbidities (i.e., body mass index [BMI], coronary artery disease [CAD], chronic obstructive pulmonary disease [COPD], gastroesophageal reflux disease, lung cancer, major depressive disorder [MDD], obstructive sleep apnoea, pulmonary hypertension [PH], stroke, and type 2 diabetes), by utilizing large-scale summary data from their respective genome-wide association studies and multi-omics studies. We revealed significant (false discovery rate [FDR] < 0.05) and moderate genetic correlations between IPF and seven comorbidities, excluding lung cancer, MDD and PH. Evidence suggested a partially putative causal effect of IPF on CAD. Notably, we observed FDR-significant genetic enrichments in lung for the cross-trait between IPF and CAD and in liver for the cross-trait between IPF and COPD. Additionally, we identified 65 FDR-significant genes over-represented in 20 biological pathways related to the etiology of IPF, BMI, and COPD, including inflammation-related mucin gene clusters. Several of these genes were associated with clinically relevant drugs for the treatment of IPF, CAD, and/or COPD. Our results underscore the pervasive shared genetic basis between IPF and its common comorbidities and hold future implications for early diagnosis of IPF-related comorbidities, drug repurposing, and the development of novel therapies for IPF.
Collapse
Affiliation(s)
- Yuanhao Yang
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Yong H Sheng
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Patricia Carreira
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ran Wang
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
11
|
Ge Y, Chen S, Wu B, Zhang Y, Wang J, He X, Liu W, Chen Y, Ou Y, Shen X, Huang Y, Gan Y, Yang L, Ma L, Ma Y, Chen K, Chen S, Cui M, Tan L, Dong Q, Zhao Q, Wang Y, Jia J, Yu J. Genome-wide meta-analysis identifies ancestry-specific loci for Alzheimer's disease. Alzheimers Dement 2024; 20:6243-6256. [PMID: 39023044 PMCID: PMC11497642 DOI: 10.1002/alz.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.
Collapse
Affiliation(s)
- Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Jun Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Xiao‐Yu He
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Wei‐Shi Liu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Lin Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Nan Ou
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Han Gan
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Liu Yang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Ya‐Hui Ma
- Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ke‐Liang Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shu‐Fen Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Mei Cui
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Qian‐Hua Zhao
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Jian‐Ping Jia
- Innovation Center for Neurological Disorders and Department of NeurologyNational Clinical Research Center for Geriatric DiseasesXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Diaz-Torres S, Lee SSY, Ogonowski NS, Mackey DA, MacGregor S, Gharahkhani P, Renteria ME. Macular structural integrity estimates are associated with Parkinson's disease genetic risk. Acta Neuropathol Commun 2024; 12:130. [PMID: 39135092 PMCID: PMC11320880 DOI: 10.1186/s40478-024-01841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) is a non-invasive technique to measure retinal layer thickness, providing insights into retinal ganglion cell integrity. Studies have shown reduced retinal nerve fibre layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) thickness in Parkinson's disease (PD) patients. However, it is unclear if there is a common genetic overlap between the macula and peripapillary estimates with PD and if the genetic risk of PD is associated with changes in ganglion cell integrity estimates in young adults. METHOD Western Australian young adults underwent OCT imaging. Their pRNFL, GCIPL, and overall retinal thicknesses were recorded, as well as their longitudinal changes between ages 20 and 28. Polygenic risk scores (PRS) were estimated for each participant based on genome-wide summary data from the largest PD genome-wide association study conducted to date. We further evaluated whether PD PRS was associated with changes in thickness at a younger age. To evaluate the overlap between retinal integrity estimates and PD, we annotated and prioritised genes using mBAT-combo and performed colocalisation through the GWAS pairwise method and HyPrColoc. We used a multi-omic approach and single-cell expression data of the retina and brain through a Mendelian randomisation framework to evaluate the most likely causal genes. Genes prioritised were analysed for missense variants that could have a pathogenic effect using AlphaMissense. RESULTS We found a significant association between the Parkinson's disease polygenic risk score (PD PRS) and changes in retinal thickness in the macula of young adults assessed at 20 and 28 years of age. Gene-based analysis identified 27 genes common to PD and retinal integrity, with a notable region on chromosome 17. Expression analyses highlighted NSF, CRHR1, and KANSL1 as potential causal genes shared between PD and ganglion cell integrity measures. CRHR1 showed consistent results across multiple omics levels. INTERPRETATION Our findings suggest that retinal measurements, particularly in young adults, could be a potential marker for PD risk, indicating a genetic overlap between retinal structural integrity and PD. The study highlights specific genes and loci, mainly on chromosome 17, as potential shared etiological factors for PD and retinal changes. Our results highlight the importance of further longitudinal studies to validate retinal structural metrics as early indicators of PD predisposition.
Collapse
Affiliation(s)
- Santiago Diaz-Torres
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Samantha Sze-Yee Lee
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
| | - Natalia S Ogonowski
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| | - Miguel E Renteria
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
13
|
Wu Y, Zheng Z, Thibaut2 L, Goddard ME, Wray NR, Visscher PM, Zeng J. Genome-wide fine-mapping improves identification of causal variants. RESEARCH SQUARE 2024:rs.3.rs-4759390. [PMID: 39149449 PMCID: PMC11326397 DOI: 10.21203/rs.3.rs-4759390/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn's disease. Overall, we analyse 600 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | - Michael E. Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Wu Y, Zheng Z, Thibaut L, Goddard ME, Wray NR, Visscher PM, Zeng J. Genome-wide fine-mapping improves identification of causal variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310667. [PMID: 39072021 PMCID: PMC11275676 DOI: 10.1101/2024.07.18.24310667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine-mapping refines genotype-phenotype association signals to identify causal variants underlying complex traits. However, current methods typically focus on individual genomic segments without considering the global genetic architecture. Here, we demonstrate the advantages of performing genome-wide fine-mapping (GWFM) and develop methods to facilitate GWFM. In simulations and real data analyses, GWFM outperforms current methods in error control, mapping power and precision, replication rate, and trans-ancestry phenotype prediction. For 48 well-powered traits in the UK Biobank, we identify causal variants that collectively explain 17% of the SNP-based heritability, and predict that fine-mapping 50% of that would require 2 million samples on average. We pinpoint a known causal variant, as proof-of-principle, at FTO for body mass index, unveil a hidden secondary variant with evolutionary conservation, and identify new missense causal variants for schizophrenia and Crohn's disease. Overall, we analyse 599 complex traits with 13 million SNPs, highlighting the efficacy of GWFM with functional annotations.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Loic Thibaut
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael E. Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Qi T, Song L, Guo Y, Chen C, Yang J. From genetic associations to genes: methods, applications, and challenges. Trends Genet 2024; 40:642-667. [PMID: 38734482 DOI: 10.1016/j.tig.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Ting Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Liyang Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yazhou Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chang Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
16
|
Veller C, Coop GM. Interpreting population- and family-based genome-wide association studies in the presence of confounding. PLoS Biol 2024; 22:e3002511. [PMID: 38603516 PMCID: PMC11008796 DOI: 10.1371/journal.pbio.3002511] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/19/2024] [Indexed: 04/13/2024] Open
Abstract
A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the causal effects on an individual's phenotype of the alleles that they carry. However, estimates of direct effects can be subject to genetic and environmental confounding and can also absorb the "indirect" genetic effects of relatives' genotypes. Recently, an important development in controlling for these confounds has been the use of within-family GWASs, which, because of the randomness of mendelian segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects. Here, we present a general theoretical analysis of the influence of confounding in standard population-based and within-family GWASs. We show that, contrary to common interpretation, family-based estimates of direct effects can be biased by genetic confounding. In humans, such biases will often be small per-locus, but can be compounded when effect-size estimates are used in polygenic scores (PGSs). We illustrate the influence of genetic confounding on population- and family-based estimates of direct effects using models of assortative mating, population stratification, and stabilizing selection on GWAS traits. We further show how family-based estimates of indirect genetic effects, based on comparisons of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. We conclude that, while family-based studies have placed GWAS estimation on a more rigorous footing, they carry subtle issues of interpretation that arise from confounding.
Collapse
Affiliation(s)
- Carl Veller
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Graham M. Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, California, United States of America
| |
Collapse
|
17
|
He XY, Wu BS, Yang L, Guo Y, Deng YT, Li ZY, Fei CJ, Liu WS, Ge YJ, Kang J, Feng J, Cheng W, Dong Q, Yu JT. Genetic associations of protein-coding variants in venous thromboembolism. Nat Commun 2024; 15:2819. [PMID: 38561338 PMCID: PMC10984941 DOI: 10.1038/s41467-024-47178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.
Collapse
Affiliation(s)
- Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Boberg J, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, German C, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O’Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Boberg J, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, German C, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O’Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LGSG, Smit J, Soler AM, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Le Hellard S, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück CP, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304161. [PMID: 38712091 PMCID: PMC11071577 DOI: 10.1101/2024.03.13.24304161] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of the population and exhibits a high SNP-heritability, yet previous genome-wide association studies (GWAS) have provided limited information on the genetic etiology and underlying biological mechanisms of the disorder. We conducted a GWAS meta-analysis combining 53,660 OCD cases and 2,044,417 controls from 28 European-ancestry cohorts revealing 30 independent genome-wide significant SNPs and a SNP-based heritability of 6.7%. Separate GWAS for clinical, biobank, comorbid, and self-report sub-groups found no evidence of sample ascertainment impacting our results. Functional and positional QTL gene-based approaches identified 249 significant candidate risk genes for OCD, of which 25 were identified as putatively causal, highlighting WDR6, DALRD3, CTNND1 and genes in the MHC region. Tissue and single-cell enrichment analyses highlighted hippocampal and cortical excitatory neurons, along with D1- and D2-type dopamine receptor-containing medium spiny neurons, as playing a role in OCD risk. OCD displayed significant genetic correlations with 65 out of 112 examined phenotypes. Notably, it showed positive genetic correlations with all included psychiatric phenotypes, in particular anxiety, depression, anorexia nervosa, and Tourette syndrome, and negative correlations with a subset of the included autoimmune disorders, educational attainment, and body mass index.. This study marks a significant step toward unraveling its genetic landscape and advances understanding of OCD genetics, providing a foundation for future interventions to address this debilitating disorder.
Collapse
Affiliation(s)
- Nora I. Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zachary F. Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Matthew W. Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cristina Rodriguez-Fontenla
- CIMUS (Center for Research in Molecular Medicine and Chronic Diseases), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
- Grupo de Medicina Xenómica, Genetics, FIDIS (Instituto de Investigación Sanitaria de Santiago de Compostela), Santiago de Compostela, A Coruña, Spain
| | - Julia M. Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R. Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G. Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L. Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jurjen J. Luykx
- Department of Psychiatry, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
- Second opinion outpatient clinic, GGNet, Warnsveld, The Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health,, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D. Askland
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O. Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H. Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Brian P. Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade De São Paulo, São Paulo, Brazil
| | - Joseph D. Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M. Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Angel Carracedo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galiician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago -IDIS-, Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu , Esplugues de Llobregat, Barcelona, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H. Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A. Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore , MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J. De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psycchiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A. Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Barcelona, Spain
| | - Martha J. Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T. Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | | | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S. Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A. Grados
- Department of Psychiatry and Behavioral Sciences, Child & Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D. Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G. Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K. Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E. Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research & Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Vertebrate Genomics, Broad Institute, Cambridge, MA, USA
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine (UCI), Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C. McLaughlin
- Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Euripedes C. Miguel
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S. Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S. O’Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, microbiology and statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de investigación biomédica en red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A. Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C. Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S. Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | | | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion Vumc, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Artigas María Soler
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laurent F. Thomas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N. Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ying Wang
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R. Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S. Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K. Bucholz
- Department of Psychiatry, Washington U. School of Medicine, St Louis, MO, USA
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groninge, Groningen, The Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of The Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, NSW, Australia
- Academic Unit of Child Psychiatry South-West Sydney (AUCS), South-West Sydney Clinical School, SWSLHD & Ingham Institute, Sydney, NSW, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V. Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J. Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, , Columbia University Medical Center, New York, NY, USA
| | - J M. Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A. Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J. Grabe
- Department of Psychiatry & Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D. Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L. Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B. Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - David M. Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for brain plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Univ Paris Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E. Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B. Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M. Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, , Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L. Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A. Rasmussen
- Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A. Richter
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F. Samuels
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J. Stein
- Dept of Psychiatry & Neuroscience Institute, SAMRC Unit on Risk & Reslience in Mental Disorders, University of Cape Town, Cape Town, Western Cape, South Africa
| | - S. Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute (BCMHSUS), Vancouver, BC, Canada
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E. Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A. Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, , Norway
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zuric, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K. Hansen
- Bergen Center for Brain Plasticity (BCBP), Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian P. Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Nicholas G. Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Reasearch Unit, Aarhus University Hospital - Psychiatry, 8200 Aarhus N, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron , Barcelona, Spain
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Vestland
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry, University of Freiburg - Medical Faculty, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Edna Grünblatt
- Neuroscience Center Zurich, University of Zurich and the ETH Zuric, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Schweiz
| | - Michael Wagner
- Departments of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic, and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Paul D. Arnold
- Department of Psychiatry, The Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy E. Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A. Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J. Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K. Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J. Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - James J. Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M. Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A. Mathews
- Psychiatry and Genetics Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M. Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
19
|
Zhang S, Jiang Z, Zeng P. Incorporating genetic similarity of auxiliary samples into eGene identification under the transfer learning framework. J Transl Med 2024; 22:258. [PMID: 38461317 PMCID: PMC10924384 DOI: 10.1186/s12967-024-05053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The term eGene has been applied to define a gene whose expression level is affected by at least one independent expression quantitative trait locus (eQTL). It is both theoretically and empirically important to identify eQTLs and eGenes in genomic studies. However, standard eGene detection methods generally focus on individual cis-variants and cannot efficiently leverage useful knowledge acquired from auxiliary samples into target studies. METHODS We propose a multilocus-based eGene identification method called TLegene by integrating shared genetic similarity information available from auxiliary studies under the statistical framework of transfer learning. We apply TLegene to eGene identification in ten TCGA cancers which have an explicit relevant tissue in the GTEx project, and learn genetic effect of variant in TCGA from GTEx. We also adopt TLegene to the Geuvadis project to evaluate its usefulness in non-cancer studies. RESULTS We observed substantial genetic effect correlation of cis-variants between TCGA and GTEx for a larger number of genes. Furthermore, consistent with the results of our simulations, we found that TLegene was more powerful than existing methods and thus identified 169 distinct candidate eGenes, which was much larger than the approach that did not consider knowledge transfer across target and auxiliary studies. Previous studies and functional enrichment analyses provided empirical evidence supporting the associations of discovered eGenes, and it also showed evidence of allelic heterogeneity of gene expression. Furthermore, TLegene identified more eGenes in Geuvadis and revealed that these eGenes were mainly enriched in cells EBV transformed lymphocytes tissue. CONCLUSION Overall, TLegene represents a flexible and powerful statistical method for eGene identification through transfer learning of genetic similarity shared across auxiliary and target studies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhou Jiang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
20
|
Zhang MJ, Durvasula A, Chiang C, Koch EM, Strober BJ, Shi H, Barton AR, Kim SS, Weissbrod O, Loh PR, Gazal S, Sunyaev S, Price AL. Pervasive correlations between causal disease effects of proximal SNPs vary with functional annotations and implicate stabilizing selection. RESEARCH SQUARE 2023:rs.3.rs-3707248. [PMID: 38168385 PMCID: PMC10760228 DOI: 10.21203/rs.3.rs-3707248/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.
Collapse
Affiliation(s)
- Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arun Durvasula
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Colby Chiang
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Evan M. Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alison R. Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel S. Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Quantitative and Computational Biology, University of Southern California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Zhang MJ, Durvasula A, Chiang C, Koch EM, Strober BJ, Shi H, Barton AR, Kim SS, Weissbrod O, Loh PR, Gazal S, Sunyaev S, Price AL. Pervasive correlations between causal disease effects of proximal SNPs vary with functional annotations and implicate stabilizing selection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299391. [PMID: 38106023 PMCID: PMC10723494 DOI: 10.1101/2023.12.04.23299391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.
Collapse
Affiliation(s)
- Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arun Durvasula
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Colby Chiang
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin J Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel S Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Quantitative and Computational Biology, University of Southern California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
Veller C, Coop G. Interpreting population and family-based genome-wide association studies in the presence of confounding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530052. [PMID: 36909521 PMCID: PMC10002712 DOI: 10.1101/2023.02.26.530052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the causal effects on an individual's phenotype of the alleles that they carry. However, estimates of direct effects can be subject to genetic and environmental confounding, and can also absorb the 'indirect' genetic effects of relatives' genotypes. Recently, an important development in controlling for these confounds has been the use of within-family GWASs, which, because of the randomness of Mendelian segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects. Here, we present a general theoretical analysis of the influence of confounding in standard population-based and within-family GWASs. We show that, contrary to common interpretation, family-based estimates of direct effects can be biased by genetic confounding. In humans, such biases will often be small per-locus, but can be compounded when effect size estimates are used in polygenic scores. We illustrate the influence of genetic confounding on population- and family-based estimates of direct effects using models of assortative mating, population stratification, and stabilizing selection on GWAS traits. We further show how family-based estimates of indirect genetic effects, based on comparisons of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. In addition to known biases that can arise in family-based GWASs when interactions between family members are ignored, we show that biases can also arise from gene-by-environment (G×E) interactions when parental genotypes are not distributed identically across interacting environmental and genetic backgrounds. We conclude that, while family-based studies have placed GWAS estimation on a more rigorous footing, they carry subtle issues of interpretation that arise from confounding and interactions.
Collapse
Affiliation(s)
- Carl Veller
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| | - Graham Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| |
Collapse
|