1
|
Jacob BAC, Songsungthong W, Leartsakulpanich U, Boonyuen U. Rapid and reliable detection of G6PD mutations using recombinase polymerase amplification coupled with lateral flow strip. Clin Chim Acta 2025; 574:120345. [PMID: 40324610 DOI: 10.1016/j.cca.2025.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy, affecting approximately 500 million people worldwide. It results from inherited mutations in the G6PD gene, causing increased susceptibility to drug-induced hemolytic anemia and severe neonatal jaundice. While phenotypic tests are commonly used, genetic testing is increasingly recognized for its value in the accurate diagnosis of G6PD deficiency, especially in heterozygous females and newborns. This study aimed to develop and evaluate a rapid, field-deployable genetic test for the detection of four common G6PD variants in Thailand: G6PD Gaohe (c.95A > G), G6PD Mahidol (c.487G > A), G6PD Viangchan (c.871G > A), and G6PD Canton (c.1376G > T). The assays utilize recombinase polymerase amplification with allele-specific primers incorporating locked nucleic acids to enhance specificity, followed by lateral flow strip detection for visual readout. The assays deliver results within 45 min at 37 ˚C. Singleplex detection demonstrated 100 % diagnostic sensitivity (Confidence interval (CI): 95.01-100.0 %) and specificity (CI: 95.49-100.0 %). Duplex assays (Gaohe + Canton and Mahidol + Viangchan) also demonstrated 100 % diagnostic sensitivity (CI: 94.87-100.0 %) and specificity (CI: 91.19-100.0 %). Limits of detection (LOD) for singleplex assays were 0.25, 1.00, 0.50, and 0.50 ng/µL, for Gaohe, Mahidol, Viangchan, and Canton, respectively. Duplex assays showed LODs of 0.10 ng/μL for Mahidol + Viangchan and 10.00 ng/μL for Gaohe + Canton. Band intensity differences ranged from 5.25 to 19.61 pixels between mutant, wild-type, and nontarget alleles, enabling clear allele discrimination. This innovative diagnostic tool offers a rapid, reliable, and accessible solution for point-of-care genetic testing, with the potential to improve clinical management and healthcare outcomes in regions with a high burden of G6PD deficiency.
Collapse
Affiliation(s)
- Beatriz Aira C Jacob
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400 Thailand
| | - Warangkhana Songsungthong
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120 Thailand
| | - Ubolsree Leartsakulpanich
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120 Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400 Thailand.
| |
Collapse
|
2
|
Pengsuk N, Chamchoy K, Duangdee C, Satayarak J, Saralamba N, Nguitragool W, Boonyuen U. Integrated Phenotypic and Genotypic Approaches for Accurate Diagnosis of G6PD Deficiency: Implications for Drug Safety in Thailand. Pharmacol Res Perspect 2025; 13:e70117. [PMID: 40387615 PMCID: PMC12087303 DOI: 10.1002/prp2.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency holds critical health concerns, particularly due to its association with drug-induced hemolysis triggered by medications such as antimalarials. This condition poses significant risks in malaria-endemic regions where the prevalence and genetic diversity of G6PD deficiency further complicate management. Providing accurate and reliable G6PD status is vital to ensuring safe treatment, reducing complications, and improving healthcare outcomes in these populations. This study evaluated the integration of phenotypic and genotypic diagnostic methods for identifying G6PD deficiency in 2953 participants in Thailand. Using the water-soluble tetrazolium salts enzymatic assay and multiplex high-resolution melting analysis, the study revealed an overall prevalence of 3.93%, with 7.19% in males and 1.83% in females. A total of 38 distinct G6PD genotypes were identified, and zygosity was determined, highlighting significant genetic diversity, including previously unreported mutations as identified by sequencing. Hemizygous males, homozygous females, and approximately 50% of heterozygous females with missense mutations exhibited deficient or intermediate phenotypes. However, 40% of females carrying G6PD missense mutations showed a normal phenotype in quantitative phenotypic testing. The findings highlight the need for accurate G6PD diagnosis to improve drug safety and efficacy, particularly for vulnerable individuals such as heterozygous females, who are at risk of hemolysis. The cost-effective, high-throughput methods demonstrated here are suitable for large-scale screening, making them especially valuable in resource-limited settings. To maximize their impact, integrating both phenotypic and genotypic approaches into national healthcare policies and malaria programs is essential. By ensuring equitable access to reliable G6PD testing, these findings support malaria elimination efforts and address broader healthcare challenges, ultimately reducing preventable morbidity and mortality associated with G6PD deficiency.
Collapse
Affiliation(s)
- Natnicha Pengsuk
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Kamonwan Chamchoy
- Princess Srisavangavadhana Faculty of MedicineChulabhorn Royal AcademyBangkokThailand
| | - Chatnapa Duangdee
- Hospital for Tropical Diseases, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Jantawan Satayarak
- Hospital for Tropical Diseases, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| |
Collapse
|
3
|
Boonyuen U, Jacob BAC, Chamchoy K, Pengsuk N, Talukam S, Petcharat C, Adams ER, Edwards T, Boonnak K, Amran SI, Ab Latif N, Louis NE. Improved genetic screening with zygosity detection through multiplex high-resolution melting curve analysis and biochemical characterisation for G6PD deficiency. Trop Med Int Health 2025; 30:437-457. [PMID: 40078033 PMCID: PMC12050165 DOI: 10.1111/tmi.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Accurate diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency is crucial for relapse malaria treatment using 8-aminoquinolines (primaquine and tafenoquine), which can trigger haemolytic anaemia in G6PD-deficient individuals. This is particularly important in regions where the prevalence of G6PD deficiency exceeds 3%-5%, including Southeast Asia and Thailand. While quantitative phenotypic tests can identify women with intermediate activity who may be at risk, they cannot unambiguously identify heterozygous females who require appropriate counselling. This study aimed to develop a genetic test for G6PD deficiency using high-resolution melting curve analysis, which enables zygosity identification of 15 G6PD alleles. In 557 samples collected from four locations in Thailand, the prevalence of G6PD deficiency based on indirect enzyme assay was 6.10%, with 8.08% exhibiting intermediate deficiency. The developed high-resolution melting assays demonstrated excellent performance, achieving 100% sensitivity and specificity in detecting G6PD alleles compared with Sanger sequencing. Genotypic variations were observed across four geographic locations, with the combination of c.1311C>T and c.1365-13T>C being the most common genotype. Compound mutations, notably G6PD Viangchan (c.871G>A, c.1311C>T and c.1365-13T>C), accounted for 15.26% of detected mutations. The high-resolution melting assays also identified the double mutation G6PD Chinese-4 + Canton and G6PD Radlowo, a variant found for the first time in Thailand. Biochemical and structural characterisation revealed that these variants significantly reduced catalytic activity by destabilising protein structure, particularly in the case of the Radlowo mutation. The refinement of these high-resolution melting assays presents a highly accurate and high-throughput platform that can improve patient care by enabling precise diagnosis, supporting genetic counselling and guiding public health efforts to manage G6PD deficiency-especially crucial in malaria-endemic regions where 8-aminoquinoline therapies pose a risk to deficient individuals.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Beatriz Aira C. Jacob
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Kamonwan Chamchoy
- Princess Srisavangavadhana Faculty of MedicineChulabhorn Royal AcademyBangkokThailand
| | - Natnicha Pengsuk
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Sirinyatorn Talukam
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Chanya Petcharat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Emily R. Adams
- Centre for Drugs and Diagnostics ResearchLiverpool School of Tropical MedicineLiverpoolUK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics ResearchLiverpool School of Tropical MedicineLiverpoolUK
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
| | - Nurriza Ab Latif
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
| | - Naveen Eugene Louis
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
| |
Collapse
|
4
|
Choe D, Palsson BO. A live bacteria enzyme assay for identification of human disease mutations and drug screening. Nat Biomed Eng 2025:10.1038/s41551-025-01391-y. [PMID: 40307426 DOI: 10.1038/s41551-025-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
Advances in high-throughput sequencing have enabled the identification of genetic variations associated with human disease. However, deciphering the functional significance of these variations remains challenging. Here we propose an alternative approach that uses humanized Escherichia coli to study human genetic enzymopathies and to screen candidate drug effects on metabolic targets. By replacing selected E. coli metabolic enzymes with their human orthologues and their sequence variants, we demonstrate that the growth rate of E. coli reflects the in vivo activity of heterologously expressed human enzymes. This approach accurately reflected enzyme activities of known sequence variants, enabling rapid screening of causal sequence variations associated with human diseases. This approach bridges the gap between in vitro assays and cell-based assays. Our findings suggest that the proposed approach using a humanized E. coli strain holds promise for drug discovery, offering a high-throughput and cost-effective platform for identifying new compounds targeting human enzymes. Continued research and innovation in this field have the potential to impact the development and practice of precision medicine.
Collapse
Affiliation(s)
- Donghui Choe
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Zhang X, Duan Y, Zhang X, Li M, Li L, Zhang R, Liu S. Characteristics of glucose-6-phosphate dehydrogenase mutations in newborns with deficiency from 2021 to 2022 in the Heze area of China. Front Immunol 2025; 16:1472474. [PMID: 40313950 PMCID: PMC12043697 DOI: 10.3389/fimmu.2025.1472474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Glucose-6-phosphate dehydrogenase (G6PD) deficiency has a distinct regional and ethnic heterogeneity in distribution, and information on the molecular characteristics of G6PD deficiencies in the Heze area, Shandong Province, China, is limited. We aimed to explore the incidence and genetic mutations characteristic of G6PD enzyme deficiencies in newborns in the Heze area to investigate the pathogenicity of new G6PD mutations. Methods We measured G6PD activity in 114,285 neonates born in the Heze area and identified 80 patients with G6PD deficiencies. The genetic mutations in G6PD in these patients were analyzed using Sanger sequencing. Functional studies were conducted by constructing eukaryotic expression vectors, transfecting them into HEK-293T and HELA cells, and measuring the mRNA and protein levels and G6PD enzymatic activity. Results The incidence of G6PD deficiency in the study population was 0.07% (80/114,285). We identified 17 mutation types with a 100% G6PD mutation detection rate, with four of them being significant: c.479G>A, c.404A>T, and c.486-7C>G being globally novel mutations, while c.682G>A has never been reported in China before. Functional studies revealed that the heterozygous missense mutations c.479G>A/p.S160N and c.404A>T/p.N135I increased mRNA levels, decreased protein expression, and reduced G6PD activity. Discussion The incidence of neonatal G6PD deficiency in the Heze area is low, and the most commonly mutated loci were c.1388G>A, c.487G>A, and c.1376G>T. Among these mutations, c.479G>A/p.S160N, and c.404A>T/p.N135I are potentially pathogenic. These mutations may cause G6PD deficiency via different mechanisms, thereby requiring further experimental investigation.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medical Genetics, Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center of Qingdao University Affiliated Hospital, Qingdao, China
- Department of Biochemical Laboratory, Heze Medical College, Heze, China
| | - Yanan Duan
- Department of Medical Genetics, Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center of Qingdao University Affiliated Hospital, Qingdao, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Zhang
- Department of Medical Genetics, Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center of Qingdao University Affiliated Hospital, Qingdao, China
| | - Miaomiao Li
- Department of Medical Genetics, Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center of Qingdao University Affiliated Hospital, Qingdao, China
| | - Ling Li
- Laboratory Department, Heze Municipal Hospital, Heze, China
| | - Renwei Zhang
- Department of Medical Genetics, Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center of Qingdao University Affiliated Hospital, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center of Qingdao University Affiliated Hospital, Qingdao, China
| |
Collapse
|
6
|
Watchko JF, Bhutani VK. Revised World Health Organization (WHO) classification of G6PD gene variants: Relevance to neonatal hyperbilirubinemia. Semin Fetal Neonatal Med 2025; 30:101619. [PMID: 40023662 DOI: 10.1016/j.siny.2025.101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The WHO recently revised their classification schema for G6PD gene variants. Notably, the previously separate Class II (severe enzyme deficiency; <10 % normal) and Class III (moderate enzyme deficiency; 10-60 % normal) variant groups are now combined into a single new category designated as Class B. Class B variants exhibit G6PD enzymatic activity in the <45 % of normal range. This welcome and prudent reclassification far better aligns with the neonatal hyperbilirubinemia risk reported in neonates with i) former "less severe" Class III variants including G6PD A- and ii) female neonates heterozygous for deficient alleles.
Collapse
Affiliation(s)
- Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Vinod K Bhutani
- Stanford Children's Health, Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Mondal A, Mukherjee S, Upadhyay P, Saxena I, Pati S, Singh S. Enhancing NADPH to restore redox homeostasis and lysosomal function in G6PD-deficient microglia. Heliyon 2025; 11:e42735. [PMID: 40084013 PMCID: PMC11903804 DOI: 10.1016/j.heliyon.2025.e42735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Microglia, the immune cells of the central nervous system (CNS), play key roles in neurogenesis, myelination, synaptic transmission, immune surveillance, and neuroinflammation. Inflammatory responses in microglia can lead to oxidative stress and neurodegeneration, contributing to diseases like Parkinson's and Alzheimer's. The enzyme glucose-6-phosphate dehydrogenase (G6PD) is essential for producing nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which neutralizes oxidative stress. G6PD deficiency has been linked to several disorders, including neurological conditions. Our study shows that G6PD deficiency in microglia reduces NADPH levels, disrupting redox balance and lysosomal function. To address this, we explored alternative metabolic pathways by targeting enzymes like isocitrate dehydrogenase 1 (IDH1) and malic enzyme 1 (ME1), both crucial for NADPH production. Supplementing metabolites such as citric and malic acid improved NADPH levels, while small molecules like dieckol and resveratrol enhanced IDH1 and ME1 expression. The combination of these approaches restored redox homeostasis and lysosomal function, offering potential therapeutic strategies for G6PD deficiency.
Collapse
Affiliation(s)
- Abir Mondal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, India
| | - Prince Upadhyay
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, India
| | - Isha Saxena
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, India
| | - Soumya Pati
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP, 201313, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|
8
|
Kingsmore SF, Wright M, Smith LD, Liang Y, Mowrey WR, Protopsaltis L, Bainbridge M, Baker M, Batalov S, Blincow E, Cao B, Caylor S, Chambers C, Ellsworth K, Feigenbaum A, Frise E, Guidugli L, Hall KP, Hansen C, Kiel M, Van Der Kraan L, Krilow C, Kwon H, Madhavrao L, Lefebvre S, Leipzig J, Mardach R, Moore B, Oh D, Olsen L, Ontiveros E, Owen MJ, Reimers R, Scharer G, Schleit J, Shelnutt S, Mehtalia SS, Oriol A, Sanford E, Schwartz S, Wigby K, Willis MJ, Yandell M, Kunard CM, Defay T. Prequalification of genome-based newborn screening for severe childhood genetic diseases through federated training based on purifying hyperselection. Am J Hum Genet 2024; 111:2618-2642. [PMID: 39642867 PMCID: PMC11639087 DOI: 10.1016/j.ajhg.2024.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/09/2024] Open
Abstract
Genome-sequence-based newborn screening (gNBS) has substantial potential to improve outcomes in hundreds of severe childhood genetic disorders (SCGDs). However, a major impediment to gNBS is imprecision due to variants classified as pathogenic (P) or likely pathogenic (LP) that are not SCGD causal. gNBS with 53,855 P/LP variants, 342 genes, 412 SCGDs, and 1,603 therapies was positive in 74% of UK Biobank (UKB470K) adults, suggesting 97% false positives. We used the phenomenon of purifying hyperselection, which acts to decrease the frequency of SCGD causal diplotypes, to reduce false positives. Training of gene-disease-inheritance mode-diplotype tetrads in 618,290 control and affected subjects identified 293 variants or haplotypes and seven genes with variable inheritance contributing higher positive diplotype counts than consistent with purifying hyperselection and with little or no evidence of SCGD causality. With these changes, 2.0% of UKB470K adults were positive. In contrast, gNBS was positive in 7.2% of 3,118 critically ill children with suspected SCGDs and 7.9% of 705 infant deaths. When compared with rapid diagnostic genome sequencing (RDGS), gNBS had 99.1% recall. In eight true-positive children, gNBS was projected to decrease time to diagnosis by a median of 121 days and avoid life-threatening disease presentations in four children, organ damage in six children, ∼$1.25 million in healthcare cost, and ten (1.4%) infant deaths. Federated training predicated on purifying hyperselection provides a general framework to attain high precision in population screening. Federated training across many biobanks and clinical trials can provide a privacy-preserving mechanism for qualification of gNBS in diverse genetic ancestries.
Collapse
Affiliation(s)
- Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| | - Meredith Wright
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Laurie D Smith
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Yupu Liang
- Alexion, AstraZeneca Rare Disease, Boston, MA 02210, USA
| | | | - Liana Protopsaltis
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Matthew Bainbridge
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mei Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sergey Batalov
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Eric Blincow
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Bryant Cao
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sara Caylor
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Christina Chambers
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Katarzyna Ellsworth
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Annette Feigenbaum
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Erwin Frise
- Fabric Genomics, Inc., Oakland, CA 94612, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Christian Hansen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mark Kiel
- Genomenon Inc., Ann Arbor, MI 48108, USA
| | - Lucita Van Der Kraan
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Hugh Kwon
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lakshminarasimha Madhavrao
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | | | | | - Rebecca Mardach
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA; Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Danny Oh
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lauren Olsen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Eric Ontiveros
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mallory J Owen
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Rebecca Reimers
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Gunter Scharer
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jennifer Schleit
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | | | - Albert Oriol
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Erica Sanford
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | | | - Kristen Wigby
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Mary J Willis
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | | | - Thomas Defay
- Alexion, AstraZeneca Rare Disease, Boston, MA 02210, USA
| |
Collapse
|
9
|
Powell NR, Geck RC, Lai D, Shugg T, Skaar TC, Dunham MJ. Functional analysis of G6PD variants associated with low G6PD activity in the All of Us Research Program. Genetics 2024; 228:iyae170. [PMID: 39607789 PMCID: PMC11631396 DOI: 10.1093/genetics/iyae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024] Open
Abstract
The glucose-6-phosphate dehydrogenase (G6PD) enzyme protects red blood cells against oxidative damage. Individuals with G6PD-impairing polymorphisms are at risk of hemolytic anemia from oxidative stressors. Prevention of G6PD deficiency-related hemolytic anemia is achievable by identifying affected individuals through G6PD genetic testing. However, accurately predicting the clinical consequence of G6PD variants is limited by over 800 G6PD variants which remain of uncertain significance (VUS). There also remains inconsistency in which deficiency-causing variants are included in genetic testing arrays: many institutions only test c.202G > A, though dozens of other variants can cause G6PD deficiency. Here, we improve G6PD genotype interpretations using the All of Us Research Program data and a yeast functional assay. We confirm that G6PD coding variants are the main contributor to decreased G6PD activity and that 13% of individuals in the All of Us data with deficiency-causing variants would be missed by only genotyping for c.202G > A. We expand clinical interpretation for G6PD VUS, reporting that c.595A > G ("Dagua" or "Açores") and the novel variant c.430C > G reduce activity sufficiently to lead to G6PD deficiency. We also provide evidence that 5 missense VUS are unlikely to lead to G6PD deficiency, and we applied the new World Health Organization (WHO) guidelines to recommend classifying 2 synonymous variants as WHO Class C. In total, we provide new or updated clinical interpretations for 9 G6PD variants. We anticipate these results will improve the accuracy, and prompt increased use, of G6PD genetic tests through a more complete clinical interpretation of G6PD variants.
Collapse
Affiliation(s)
- Nicholas R Powell
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
- Biology Department, Gonzaga University, Spokane, WA 99258, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tyler Shugg
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| |
Collapse
|
10
|
Costa S, Minucci A, Kumawat A, De Bonis M, Prontera G, Gelsomino M, Tana M, Tiberi E, Romano A, Ruggiero A, Mastrangelo S, Palumbo G, Giorgio V, Onori ME, Bolognesi M, Camilloni C, Luzzatto L, Vento G. Pathogenic G6PD variants: Different clinical pictures arise from different missense mutations in the same codon. Br J Haematol 2024; 205:1985-1994. [PMID: 39295190 DOI: 10.1111/bjh.19775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
G6PD deficiency results from mutations in the X-linked G6PD gene. More than 200 variants are associated with enzyme deficiency: each one of them may either cause predisposition to haemolytic anaemia triggered by exogenous agents (class B variants), or may cause a chronic haemolytic disorder (class A variants). Genotype-phenotype correlations are subtle. We report a rare G6PD variant, discovered in a baby presenting with severe jaundice and haemolytic anaemia since birth: the mutation of this class A variant was found to be p.(Arg454Pro). Two variants affecting the same codon were already known: G6PD Union, p.(Arg454Cys), and G6PD Andalus, p.(Arg454His). Both these class B variants and our class A variant exhibit severe G6PD deficiency. By molecular dynamics simulations, we performed a comparative analysis of the three mutants and of the wild-type G6PD. We found that the tetrameric structure of the enzyme is not perturbed in any of the variants; instead, loss of the positively charged Arg residue causes marked variant-specific rearrangement of hydrogen bonds, and it influences interactions with the substrates G6P and NADP. These findings explain severe deficiency of enzyme activity and may account for p.(Arg454Pro) expressing a more severe clinical phenotype.
Collapse
Affiliation(s)
- Simonetta Costa
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amit Kumawat
- Department of Biosciences, University of Milano, Milan, Italy
| | - Maria De Bonis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgia Prontera
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mariannita Gelsomino
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Milena Tana
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eloisa Tiberi
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alberto Romano
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Ruggiero
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palumbo
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Giorgio
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Elisabetta Onori
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Milan, Italy
- Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Milan, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milano, Milan, Italy
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
- Department of Hematology, University of Florence, Firenze, Italy
| | - Giovanni Vento
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Saeidian AH, March ME, Youssefian L, Watson DJ, Bhandari E, Wang X, Zhao X, Owen NM, Strong A, Harr MH, Bhoj E, Zackai E, Vahidnezhad H, Gudjonsson JE, Cederbaum SD, Deignan JL, Glessner J, Grody WW, Hakonarson H. Secondary ACMG and non-ACMG genetic findings in a multiethnic cohort of 16,713 pediatric participants. Genet Med 2024; 26:101225. [PMID: 39096151 DOI: 10.1016/j.gim.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Clinical next-generation sequencing is an effective approach for identifying pathogenic sequence variants that are medically actionable for participants and families but are not associated with the participant's primary diagnosis. These variants are called secondary findings (SFs). According to the literature, there is no report of the types and frequencies of SFs in a large pediatric cohort that includes substantial African-American participants. We sought to investigate the types (including American College of Medical Genetics and Genomics [ACMG] and non-ACMG-recommended gene lists), frequencies, and rates of SFs, as well as the effects of SF disclosure on the participants and families of a large pediatric cohort at the Center for Applied Genomics at The Children's Hospital of Philadelphia. METHODS We systematically identified pathogenic (P) and likely pathogenic (LP) variants in established disease-causing genes, adhering to ACMG v3.2 secondary finding guidelines and beyond. For non-ACMG SFs, akin to incidental findings in clinical settings, we utilized a set of criteria focusing on pediatric onset, high penetrance, moderate to severe phenotypes, and the clinical actionability of the variants. This criteria-based approach was applied rather than using a fixed gene list to ensure that the variants identified are likely to affect participant health significantly. To identify and categorize these variants, we used a clinical-grade variant classification standard per ACMG/AMP recommendations; additionally, we conducted a detailed literature search to ensure a comprehensive exploration of potential SFs relevant to pediatric participants. RESULTS We report a distinctive distribution of 1464 P/LP SF variants in 16,713 participants. There were 427 unique variants in ACMG genes and 265 in non-ACMG genes. The most frequently mutated genes among the ACMG and non-ACMG gene lists were TTR(41.6%) and CHEK2 (7.16%), respectively. Overall, variants of possible medical importance were found in 8.76% of participants in both ACMG (5.81%) and non-ACMG (2.95%) genes. CONCLUSION Our study revealed that 8.76% of a large, multiethnic pediatric cohort carried actionable secondary genetic findings, with 5.81% in ACMG genes and 2.95% in non-ACMG genes. These findings emphasize the importance of including diverse populations in genetic research to ensure that all groups benefit from early identification of disease risks. Our results provide a foundation for expanding the ACMG gene list and improving clinical care through early interventions.
Collapse
Affiliation(s)
- Amir Hossein Saeidian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Michael E March
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Youssefian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA; Department of Pathology, Cytogenetics Laboratory, City of Hope National Medical Center, Irwindale, CA
| | - Deborah J Watson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Esha Bhandari
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Drexel University College of Medicine, Philadelphia, PA
| | - Xiang Wang
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Nichole Marie Owen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Alanna Strong
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Margaret H Harr
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hassan Vahidnezhad
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephen D Cederbaum
- Departments of Psychiatry, Pediatrics, and Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Joseph Glessner
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA; Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
12
|
Ricciardi Tenore C, Tulli E, Calò C, Bertozzi R, Evangelista J, Maneri G, Rinelli M, Brisighelli F, Perrucci A, De Paolis E, Urbani A, De Bonis M, Minucci A. G6PD Potenza: A Novel Pathogenic Variant Broadening the Mutational Landscape in the Italian Population. Genes (Basel) 2024; 15:1298. [PMID: 39457422 PMCID: PMC11507564 DOI: 10.3390/genes15101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Glucose 6 phosphate dehydrogenase (G6PD) is a rate-limiting enzyme of the pentose phosphate pathway. The loss of G6PD activity in red blood cells increases the risk of acute haemolytic anaemia under oxidative stress induced by infections, some medications, or fava beans. More than 200 single missense mutations are known in the G6PD gene. A 41-year-old woman with a family history of favism coming from the Basilicata region (Italy) was evaluated at our hospital for G6PD abnormalities. Methods: DNA was extracted from a peripheral blood sample and genotyped for the most common G6PD pathogenic variants (PVs). Positive results obtained by Restriction Fragment Length Polymorphism (RFLP), as per practice in our laboratory, were then reconfirmed in Sanger sequencing. Results:RFLP analysis highlighted a variant compatible with the G6PD Cassano variant. Confirmatory testing by Sanger unexpectedly identified a novel variant: c.1357G>A, p.(Val453Met) (NM_001360016.2); the same variant was found in the patient's mother. In silico models predicted a deleterious effect of this variant at the protein level. The novel G6PD variant was named "G6PD Potenza" on the basis of the patient's regional origin. Conclusions: This case describes a novel G6PD variant. It also highlights how the Sanger sequencing technique still represents an indispensable confirmatory standard method for variants that could be misinterpreted by only using a "first-level" approach, such as the RFLP. We stress that the evaluation of clinical manifestations in G6PD-deficient patients is of primary importance for the classification of each new G6PD mutation, in agreement with the new WHO guidelines.
Collapse
Affiliation(s)
- Claudio Ricciardi Tenore
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Eugenia Tulli
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Calò
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Roberto Bertozzi
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Jessica Evangelista
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Maneri
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Rinelli
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Brisighelli
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessia Perrucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa De Paolis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Departmental Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria De Bonis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.R.T.); (E.T.); (C.C.); (R.B.); (J.E.); (G.M.); (M.R.); (F.B.); (A.P.); (E.D.P.); (M.D.B.)
- Genomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
Luzzatto L, Bancone G, Dugué PA, Jiang W, Minucci A, Nannelli C, Pfeffer D, Prchal J, Sirdah M, Sodeinde O, Vulliamy T, Wanachiwanawin W, Cunningham J, Bosman A. New WHO classification of genetic variants causing G6PD deficiency. Bull World Health Organ 2024; 102:615-617. [PMID: 39070600 PMCID: PMC11276151 DOI: 10.2471/blt.23.291224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Lucio Luzzatto
- Department of Hematology, University of Florence, Piazza San Marco, 4 - 50121Firenze, Italy
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Pierre-Antoine Dugué
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Weiying Jiang
- Department of Medical Genetics and Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Caterina Nannelli
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Daniel Pfeffer
- Global and Tropical Health Division, Menzies School of Public Health, Darwin, Australia
| | - Josef Prchal
- Department of Medicine, University of Utah, Salt Lake City, United States of America
| | - Mahmoud Sirdah
- Biology Department, Al Azhar University-Gaza, Gaza, occupied Palestinian territory, including east Jerusalem
| | | | - Tom Vulliamy
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom of Great Britain and Northern Ireland
| | | | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Andrea Bosman
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
14
|
Zhou J, Zeng Y, Tang J, Chen S, Li G, Qiu X, Zhao P, Huang T, Luo J, Lin N, Xu L. Screening and the analysis of genotypic and phenotypic characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Fujian province, China. Front Genet 2024; 15:1422214. [PMID: 39076173 PMCID: PMC11284024 DOI: 10.3389/fgene.2024.1422214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked hereditary disorder in southern China. However, the incidence rate of G6PD deficiency and the frequency of the most common G6PD gene variants vary widely. The purpose of this study was to investigate the prevalence, genotype, and phenotypic features of G6PD deficiency in neonates in Fujian province, southeastern China. Methods This retrospective cohort study enrolled 2,789,002 newborns (1,521,431 males and 1,267,571 females) based on the newborn screening program for G6PD deficiency in Fujian Province between January 2010 and December 2021. Results Of the 2,789,002 newborns enrolled, 26,437 cases were diagnosed (22,939 males and 3,498 females), and the estimated prevalence of G6PD deficiency in Fujian province was 0.95%. The prevalence was significantly higher among males (1.51%) than in females (0.28%) (p < 0.00001). Among the 3,198 patients with G6PD deficiency, 3,092 cases (2,145 males and 947 females) were detected to have G6PD gene variants. The top six prevalent genotypes identified represented 90.84% (2095/3,198) of the total and included c.1376G > T (44.93%), c.1388G > A (18.42%), c.1024C > T (9.32%), c.95A > G (8.69%), c.392G > T (5.25%), and c.871G > A (4.22%). The frequency of genotypes with c.1388G > A, c.1024C > T, and c.871G > A was higher in males in the Fujian province than in females, while the frequency of genotypes with c.1376G > T was lower. Furthermore, when comparing the enzyme activities of the top six prevalent genotypes, there were significant differences in the enzyme activities among the genotypes of male hemizygotes and female heterozygotes. According to the new classification of G6PD variants proposed by the World Health Organization (WHO), the variants with c.1376G > T, c.95A > G, and c.871G > A were recognized as Class A, while the c.392G > T, c.1388G > A, and c.1024C > T were recognized as Class B. Discussion To the best of our knowledge, this study is the first to systematically describe the overview of epidemiological characteristics of newborn G6PD deficiency in Fujian province, China, including the screening rate, incidence rate, and variant spectrum. Additionally, we elucidated the relationship between the distribution of enzyme activity with specific mutations and their WHO classification patterns. Our results could provide strategies for screening, diagnosis, and genetic counseling of G6PD deficiency in this area.
Collapse
Affiliation(s)
- Jinfu Zhou
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yinglin Zeng
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jianping Tang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shihong Chen
- School of Medical Tcehnology and Engineering, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaolong Qiu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Peiran Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ting Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
15
|
Iyer NS, Mossayebi MH, Gao TJ, Haizler‐Cohen L, Di Mascio D, McLaren RA, Al‐Kouatly HB. Glucose-6-phosphate dehydrogenase deficiency as a cause for nonimmune hydrops fetalis and severe fetal anemia: A systematic review. Mol Genet Genomic Med 2024; 12:e2491. [PMID: 39041728 PMCID: PMC11264253 DOI: 10.1002/mgg3.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disorder that predisposes individuals to hemolysis due to an inborn error of metabolism. We performed a systematic literature review to evaluate G6PD deficiency as a possible etiology of nonimmune hydrops fetalis (NIHF) and severe fetal anemia. METHODS PubMed, OVID Medline, Scopus, and clinicaltrials.gov were queried from inception until 31 April 2023 for all published cases of NIHF and severe fetal anemia caused by G6PD deficiency. Keywords included "fetal edema," "hydrops fetalis," "glucose 6 phosphate dehydrogenase deficiency," and "fetal anemia." Cases with workup presuming G6PD deficiency as an etiology for NIHF and severe fetal anemia were included. PRISMA guidelines were followed. RESULTS Five cases of G6PD-related NIHF and one case of severe fetal anemia were identified. Four fetuses (4/6, 66.7%) were male and two fetuses (2/6, 33.3%) were female. Mean gestational age at diagnosis of NIHF/anemia and delivery was 32.2 ± 4.9 and 35.7 ± 2.4 weeks, respectively. Four cases (66.7%) required a cordocentesis for fetal transfusion, and two cases (33.3%) received blood transfusions immediately following delivery. Among the four multigravida cases, two (50%) noted previous pregnancies complicated by neonatal anemia. When reported, the maternal cases included two G6PD deficiency carrier patients and two G6PD-deficient patients. Exposures to substances known to cause G6PD deficiency-related hemolysis occurred in 3/6 (50%) cases. CONCLUSION Six cases of NIHF/severe fetal anemia were associated with G6PD deficiency. While G6PD deficiency is an X-linked recessive condition, female fetuses can be affected. Fetal G6PD deficiency testing can be considered if parental history indicates, particularly if the standard workup for NIHF is negative.
Collapse
Affiliation(s)
- Neel S. Iyer
- Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Matthew H. Mossayebi
- Department of Obstetrics and GynecologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tracy J. Gao
- Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Lylach Haizler‐Cohen
- Department of Obstetrics and GynecologyMedStar Washington Hospital CenterWashingtonDCUSA
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological SciencesSapienza University of RomeRomeItaly
| | - Rodney A. McLaren
- Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Huda B. Al‐Kouatly
- Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
16
|
Powell NR, Geck RC, Lai D, Shugg T, Skaar TC, Dunham M. Functional Analysis of G6PD Variants Associated With Low G6PD Activity in the All of Us Research Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.12.24305393. [PMID: 38645242 PMCID: PMC11030488 DOI: 10.1101/2024.04.12.24305393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) protects red blood cells against oxidative damage through regeneration of NADPH. Individuals with G6PD polymorphisms (variants) that produce an impaired G6PD enzyme are usually asymptomatic, but at risk of hemolytic anemia from oxidative stressors, including certain drugs and foods. Prevention of G6PD deficiency-related hemolytic anemia is achievable through G6PD genetic testing or whole-genome sequencing (WGS) to identify affected individuals who should avoid hemolytic triggers. However, accurately predicting the clinical consequence of G6PD variants is limited by over 800 G6PD variants which remain of uncertain significance. There also remains significant variability in which deficiency-causing variants are included in pharmacogenomic testing arrays across institutions: many panels only include c.202G>A, even though dozens of other variants can also cause G6PD deficiency. Here, we seek to improve G6PD genotype interpretation using data available in the All of Us Research Program and using a yeast functional assay. We confirm that G6PD coding variants are the main contributor to decreased G6PD activity, and that 13% of individuals in the All of Us data with deficiency-causing variants would be missed if only the c.202G>A variant were tested for. We expand clinical interpretation for G6PD variants of uncertain significance; reporting that c.595A>G, known as G6PD Dagua or G6PD Açores, and the newly identified variant c.430C>G, reduce activity sufficiently to lead to G6PD deficiency. We also provide evidence that five missense variants of uncertain significance are unlikely to lead to G6PD deficiency, since they were seen in hemi- or homozygous individuals without a reduction in G6PD activity. We also applied the new WHO guidelines and were able to classify two synonymous variants as WHO class C. We anticipate these results will improve the accuracy, and prompt increased use, of G6PD genetic tests through a more complete clinical interpretation of G6PD variants. As the All of Us data increases from 245,000 to 1 million participants, and additional functional assays are carried out, we expect this research to serve as a template to enable complete characterization of G6PD deficiency genotypes. With an increased number of interpreted variants, genetic testing of G6PD will be more informative for preemptively identifying individuals at risk for drug- or food-induced hemolytic anemia.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
| | - Renee C Geck
- University of Washington, Department of Genome Sciences, Seattle WA
| | - Dongbing Lai
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis IN
| | - Tyler Shugg
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis IN
| | - Maitreya Dunham
- University of Washington, Department of Genome Sciences, Seattle WA
| |
Collapse
|
17
|
Boonyuen U, Jacob BAC, Wongwigkan J, Chamchoy K, Singha-Art N, Pengsuk N, Songdej D, Adams ER, Edwards T, Chamnanchanunt S, Amran SI, Latif NA, Louis NE, Chandran S. Genetic analysis and molecular basis of G6PD deficiency among malaria patients in Thailand: implications for safe use of 8-aminoquinolines. Malar J 2024; 23:38. [PMID: 38308253 PMCID: PMC10835850 DOI: 10.1186/s12936-024-04864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Beatriz Aira C Jacob
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutamas Wongwigkan
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kamonwan Chamchoy
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natsamon Singha-Art
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnicha Pengsuk
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duantida Songdej
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emily R Adams
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Syazwani Itri Amran
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nurriza Ab Latif
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Naveen Eugene Louis
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shamini Chandran
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
18
|
Bianchi DW, Brennan PF, Chiang MF, Criswell LA, D'Souza RN, Gibbons GH, Gilman JK, Gordon JA, Green ED, Gregurick S, Hodes RJ, Kilmarx PH, Koob GF, Koroshetz WJ, Langevin HM, Lorsch JR, Marrazzo JM, Pérez-Stable EJ, Rathmell WK, Rodgers GP, Rutter JL, Simoni JM, Tromberg BJ, Tucci DL, Volkow ND, Woychik R, Zenk SN, Kozlowski E, Peterson RS, Ginsburg GS, Denny JC. The All of Us Research Program is an opportunity to enhance the diversity of US biomedical research. Nat Med 2024; 30:330-333. [PMID: 38374344 PMCID: PMC11835384 DOI: 10.1038/s41591-023-02744-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The All of Us Research Program has prioritized the enrollment of people from backgrounds historically underrepresented in medical research to bring precision medicine to the full diversity of the US population and to improve health outcomes for all.
Collapse
Affiliation(s)
- Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lindsey A Criswell
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rena N D'Souza
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Gary H Gibbons
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - James K Gilman
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Joshua A Gordon
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Eric D Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Gregurick
- Office of Data Science Strategy, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Hodes
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Peter H Kilmarx
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Helene M Langevin
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Jon R Lorsch
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jeanne M Marrazzo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eliseo J Pérez-Stable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - W Kimryn Rathmell
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Griffin P Rodgers
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joni L Rutter
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jane M Simoni
- Offices of the Director and Behavioral and Social Sciences Research, National Institutes of Health, Bethesda, MD, USA
| | - Bruce J Tromberg
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Debara L Tucci
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute of Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Rick Woychik
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shannon N Zenk
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Elyse Kozlowski
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Rachele S Peterson
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey S Ginsburg
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Joshua C Denny
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Geck RC, Powell NR, Dunham MJ. Response to Luzzatto et al. Am J Hum Genet 2023; 110:1986. [PMID: 37922886 PMCID: PMC10645562 DOI: 10.1016/j.ajhg.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Nicholas R Powell
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195.
| |
Collapse
|
20
|
Luzzatto L, Nannelli C, Notaro R. Potentially pathogenic and pathogenic G6PD variants. Am J Hum Genet 2023; 110:1983-1985. [PMID: 37922885 PMCID: PMC10645560 DOI: 10.1016/j.ajhg.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
| | - Caterina Nannelli
- University of Florence, Firenze, Italy; Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy.
| | - Rosario Notaro
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| |
Collapse
|
21
|
Nannelli C, Bosman A, Cunningham J, Dugué PA, Luzzatto L. Genetic variants causing G6PD deficiency: Clinical and biochemical data support new WHO classification. Br J Haematol 2023; 202:1024-1032. [PMID: 37415281 DOI: 10.1111/bjh.18943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (Km G6P ), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.
Collapse
Affiliation(s)
- Caterina Nannelli
- University of Florence, Florence, Italy
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica, Core Research Laboratory, Florence, Italy
| | - Andrea Bosman
- World Health Organisation, Global Malaria Programme, Geneva, Switzerland
| | - Jane Cunningham
- World Health Organisation, Global Malaria Programme, Geneva, Switzerland
| | - Pierre-Antoine Dugué
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Council Victoria, Melbourne, Victoria, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucio Luzzatto
- University of Florence, Florence, Italy
- Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| |
Collapse
|
22
|
Riskin A, Bravdo Y, Habib C, Maor I, Mousa J, Shahbarat S, Shahak E, Shalata A. The Genetics of Glucose-6-Phosphate-Dehydrogenase (G6PD) and Uridine Diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) Promoter Gene Polymorphism in Relation to Quantitative Biochemical G6PD Activity Measurement and Neonatal Hyperbilirubinemia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1172. [PMID: 37508669 PMCID: PMC10378156 DOI: 10.3390/children10071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and polymorphism in uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) were associated with significant neonatal hyperbilirubinemia (NHB) and increased risk for kernicterus. However, quantitative screening tests for G6PD enzyme activity proved unsatisfactory in estimating the risk for significant NHB, especially in heterozygous females that could present phenotype overlap between normal homozygotes, heterozygotes, and deficient homozygotes, resulting in a continuum of intermediate G6PD activity. OBJECTIVE To examine the association of genotype and phenotype in newborns with decreased G6PD activity and its relation to NHB. STUDY DESIGN Quantitative G6PD enzyme activities were measured on umbilical cord blood samples. After accepting parental consent, samples were analyzed for G6PD mutations and UGT1A1 gene polymorphisms (number of TA repeats in the UGT1A1 promoter). The associations to quantitative G6PD activity and bilirubin levels were assessed. RESULTS 28 females and 27 males were studied. The Mediterranean mutation (NM_001360016.2(G6PD): c.563C>T (p.Ser188Phe)) was responsible for most cases of G6PD deficiency (20 hemizygous males, 3 homozygous and 16 heterozygous females). The association between this mutation, decreased G6PD activity and higher bilirubin levels was confirmed. Heterozygosity to 6/7 TA repeats in the UGT1A1 promoter was associated with increased NHB, especially in female newborns with G6PD deficiency. However, it seems that the interaction between G6PD deficiency, UGT1A1 promoter polymorphism, and NHB is more complex, possibly involving other genetic interactions, not yet described. Despite genotyping females with G6PD deficiency, the overlap between the upper range of borderline and the lower range of normal G6PD activity could not be resolved. CONCLUSIONS The results of this study highlight the possibility for future implementation of molecular genetic screening to identify infants at risk for significant NHB, especially UGT1A1 polymorphism in heterozygous females with borderline G6PD deficiency. However, further studies are needed before such screening could be applicable to daily practice.
Collapse
Affiliation(s)
- Arieh Riskin
- Department of Neonatology, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Yulia Bravdo
- Department of Pediatrics, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Clair Habib
- Department of Pediatrics, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Irit Maor
- Biochemistry Laboratory, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Julnar Mousa
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Sizett Shahbarat
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Elena Shahak
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|