1
|
Waddell BM, Roy AR, Z. Verdugo C, Wu CW. Differential effect of ubiquitous and germline depletion of Integrator complex function on C. elegans physiology. Biol Open 2025; 14:bio061930. [PMID: 40071568 PMCID: PMC12010912 DOI: 10.1242/bio.061930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The Integrator is a metazoan-conserved protein complex with endonuclease activity that functions to cleave various RNA substrates to shape transcriptome homeostasis by coordinating small nuclear RNA biogenesis to premature transcription termination. Depletion of Integrator results in developmental defects across different model systems and has emerged as a causative factor in human neurodevelopmental syndromes. Here, we used the model system Caenorhabditis elegans to enable study of the temporal effects of Integrator depletion on various physiological parameters with the auxin-inducible degron system that permitted depletion of INTS-4 (Integrator subunit) catalytic subunit of the protein complex. We found that Integrator activity is critical and required for C. elegans development within the L1 larval stage but becomes dispensable for development and lifespan after the animals have reached the L2/L3 stage. Depletion of INTS-4 only shortened lifespan if auxin was introduced at the L1 stage, suggesting that the previously described lifespan reduction by Integrator inhibition is linked to developmental growth defects. We also found that while germline-specific degradation of Integrator results in the accumulation of misprocessed snRNA transcript, it did not impair the development or lifespan but surprisingly increased progeny production. Together, our study illustrates a temporal, and a potentially tissue-specific requirement of the Integrator complex function in shaping whole organism development, aging, and reproduction.
Collapse
Affiliation(s)
- Brandon M. Waddell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Alice R. Roy
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Carlos Z. Verdugo
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
2
|
Baluapuri A, Zhao NC, Marina RJ, Huang KL, Kuzkina A, Amodeo ME, Stein CB, Ahn LY, Farr JS, Schaffer AE, Khurana V, Wagner EJ, Adelman K. Integrator loss leads to dsRNA formation that triggers the integrated stress response. Cell 2025:S0092-8674(25)00343-5. [PMID: 40233738 DOI: 10.1016/j.cell.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Integrator (INT) is a metazoan-specific complex that targets promoter-proximally paused RNA polymerase II (RNAPII) for termination, preventing immature RNAPII from entering gene bodies and functionally attenuating transcription of stress-responsive genes. Mutations in INT subunits are associated with many human diseases, including cancer, ciliopathies, and neurodevelopmental disorders, but how reduced INT activity contributes to disease is unknown. Here, we demonstrate that the loss of INT-mediated termination in human cells triggers the integrated stress response (ISR). INT depletion causes upregulation of short genes such as the ISR transcription factor activating transcription factor 3 (ATF3). Further, immature RNAPII that escapes into genes upon INT depletion is prone to premature termination, generating incomplete pre-mRNAs with retained introns. Retroelements within retained introns form double-stranded RNA (dsRNA) that is recognized by protein kinase R (PKR), which drives ATF4 activation and prolonged ISR. Critically, patient cells with INT mutations exhibit dsRNA accumulation and ISR activation, thereby implicating chronic ISR in diseases caused by INT deficiency.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Nicole ChenCheng Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Anastasia Kuzkina
- APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria E Amodeo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jordan S Farr
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vikram Khurana
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Bereshneh AH, Andrews JC, Eberl DF, Bademci G, Borja NA, Bivona S, Chung WK, Yamamoto S, Wangler MF, McKee S, Tekin M, Bellen HJ, Kanca O. De novo variants in CDKL1 and CDKL2 are associated with neurodevelopmental symptoms. Am J Hum Genet 2025; 112:846-862. [PMID: 40088891 DOI: 10.1016/j.ajhg.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
The CDKL (cyclin-dependent kinase-like) family consists of five members in humans, CDKL1-5, that encode serine-threonine kinases. The only member that has been associated with a Mendelian disorder is CDKL5, and variants in CDKL5 cause developmental and epileptic encephalopathy type 2 (DEE2). Here, we study four de novo variants in CDKL2 identified in five individuals, including three unrelated probands and monozygotic twins. These individuals present with overlapping symptoms, including global developmental delay, intellectual disability, childhood-onset epilepsy, dyspraxia, and speech deficits. We also identified two individuals with de novo missense variants in CDKL1 in the published Deciphering Developmental Disorders (DDD) and GeneDx cohorts with developmental disorders. Drosophila has a single ortholog of CDKL1-5, CG7236 (Cdkl). Cdkl is expressed in sensory neurons that project to specific regions of the brain that control sensory inputs. Cdkl loss causes semi-lethality, climbing defects, heat-induced seizures, hearing loss, and reduced lifespan. These phenotypes can be rescued by expression of the human reference CDKL1, CDKL2, or CDKL5, showing that the functions of these genes are conserved. In contrast, the CDKL1 and CDKL2 variants do not fully rescue the observed phenotypes, and overexpression of the variant proteins leads to phenotypes that are similar to Cdkl loss. Co-expression of CDKL1 or CDKL2 variants with CDKL1, CDKL2, or CDKL5 references in the mutant background suppresses the rescue ability of the reference genes. Our results suggest that the variants act as dominant negative alleles and are causative of neurological symptoms in these individuals.
Collapse
Affiliation(s)
- Ali H Bereshneh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Nicholas A Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Stephanie Bivona
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Zhang Y, Hill CM, Leach KA, Grillini L, Deliard S, Offley SR, Gatto M, Picone F, Zucco A, Gardini A. The enhancer module of Integrator controls cell identity and early neural fate commitment. Nat Cell Biol 2025; 27:103-117. [PMID: 39592860 PMCID: PMC11752693 DOI: 10.1038/s41556-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2024] [Indexed: 11/28/2024]
Abstract
Lineage-specific transcription factors operate as master orchestrators of developmental processes by activating select cis-regulatory enhancers and proximal promoters. Direct DNA binding of transcription factors ultimately drives context-specific recruitment of the basal transcriptional machinery that comprises RNA polymerase II (RNAPII) and a host of polymerase-associated multiprotein complexes, including the metazoan-specific Integrator complex. Integrator is primarily known to modulate RNAPII processivity and to surveil RNA integrity across coding genes. Here we describe an enhancer module of Integrator that directs cell fate specification by promoting epigenetic changes and transcription factor binding at neural enhancers. Depletion of Integrator's INTS10 subunit upends neural traits and derails cells towards mesenchymal identity. Commissioning of neural enhancers relies on Integrator's enhancer module, which stabilizes SOX2 binding at chromatin upon exit from pluripotency. We propose that Integrator is a functional bridge between enhancers and promoters and a main driver of early development, providing new insight into a growing family of neurodevelopmental syndromes.
Collapse
Affiliation(s)
| | - Connor M Hill
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey A Leach
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Grillini
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sarah R Offley
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Gatto
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
5
|
Tanaka T, Chung HL. Exploiting fly models to investigate rare human neurological disorders. Neural Regen Res 2025; 20:21-28. [PMID: 38767473 PMCID: PMC11246155 DOI: 10.4103/nrr.nrr-d-23-01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare neurological diseases, while individually are rare, collectively impact millions globally, leading to diverse and often severe neurological symptoms. Often attributed to genetic mutations that disrupt protein function or structure, understanding their genetic basis is crucial for accurate diagnosis and targeted therapies. To investigate the underlying pathogenesis of these conditions, researchers often use non-mammalian model organisms, such as Drosophila (fruit flies), which is valued for their genetic manipulability, cost-efficiency, and preservation of genes and biological functions across evolutionary time. Genetic tools available in Drosophila, including CRISPR-Cas9, offer a means to manipulate gene expression, allowing for a deep exploration of the genetic underpinnings of rare neurological diseases. Drosophila boasts a versatile genetic toolkit, rapid generation turnover, and ease of large-scale experimentation, making it an invaluable resource for identifying potential drug candidates. Researchers can expose flies carrying disease-associated mutations to various compounds, rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and, ultimately, clinical trials. In this comprehensive review, we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis, pathophysiology, and potential therapeutic implications. We discuss rare diseases associated with both neuron-expressed and glial-expressed genes. Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay, mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay, and mutations in IRF2BPL causing seizures, a neurodevelopmental disorder with regression, loss of speech, and abnormal movements. And we explore mutations in EMC1 related to cerebellar atrophy, visual impairment, psychomotor retardation, and gain-of-function mutations in ACOX1 causing Mitchell syndrome. Loss-of-function mutations in ACOX1 result in ACOX1 deficiency, characterized by very-long-chain fatty acid accumulation and glial degeneration. Notably, this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology, offering a platform for the rapid identification of potential therapeutic interventions. Rare neurological diseases involve a wide range of expression systems, and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia. Furthermore, mutations within the same gene may result in varying functional outcomes, such as complete loss of function, partial loss of function, or gain-of-function mutations. The phenotypes observed in patients can differ significantly, underscoring the complexity of these conditions. In conclusion, Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases. By facilitating the modeling of these conditions, Drosophila contributes to a deeper understanding of their genetic basis, pathophysiology, and potential therapies. This approach accelerates the discovery of promising drug candidates, ultimately benefiting patients affected by these complex and understudied diseases.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
6
|
Jiang L, Wang Y, Zhang W, Zhang X, Gao F, Yuan Z. INTS11-related neurodevelopmental disorder: a case report and literature review. J Hum Genet 2024; 69:669-673. [PMID: 39030370 DOI: 10.1038/s10038-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND INTS11 is a critical catalytic component of the Integrator complex that regulates RNA polymerase II termination and modulates gene expression. Until recently, INTS11 mutations were associated with human neurodevelopmental disorders, characterized by global developmental and language delays, generalized hypotonia, and progressive brain atrophy. CASE We report the case of a 2-year-old Chinese girl who presented with global developmental delay, generalized hypotonia, refractory epilepsy, craniofacial dysmorphism, and progressive brain atrophy. Novel variants were identified in exon 2 of INTS11 gene c.588_589del (p. Trp197AspfsTer2) and c.457_459del (p. Glu153del). CONCLUSION We identified a compound heterozygous mutation in INTS11, a clinical feature consistent with two previous reports of the variants in human INTS11, but her recurrent seizures were more pronounced and refractory to most antiepileptic drugs and ketogenic diets.
Collapse
Affiliation(s)
- Lihua Jiang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yilong Wang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Weiqin Zhang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xin Zhang
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Zhefeng Yuan
- Department of Neurology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
7
|
Casas-Tintó S. Drosophila as a Model for Human Disease: Insights into Rare and Ultra-Rare Diseases. INSECTS 2024; 15:870. [PMID: 39590469 PMCID: PMC11594678 DOI: 10.3390/insects15110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
Rare and ultra-rare diseases constitute a significant medical challenge due to their low prevalence and the limited understanding of their origin and underlying mechanisms. These disorders often exhibit phenotypic diversity and molecular complexity that represent a challenge to biomedical research. There are more than 6000 different rare diseases that affect nearly 300 million people worldwide. However, the prevalence of each rare disease is low, and in consequence, the biomedical resources dedicated to each rare disease are limited and insufficient to effectively achieve progress in the research. The use of animal models to investigate the mechanisms underlying pathogenesis has become an invaluable tool. Among the animal models commonly used in research, Drosophila melanogaster has emerged as an efficient and reliable experimental model for investigating a wide range of genetic disorders, and to develop therapeutic strategies for rare and ultra-rare diseases. It offers several advantages as a research model including short life cycle, ease of laboratory maintenance, rapid life cycle, and fully sequenced genome that make it highly suitable for studying genetic disorders. Additionally, there is a high degree of genetic conservation from Drosophila melanogaster to humans, which allows the extrapolation of findings at the molecular and cellular levels. Here, I examine the role of Drosophila melanogaster as a model for studying rare and ultra-rare diseases and highlight its significant contributions and potential to biomedical research. High-throughput next-generation sequencing (NGS) technologies, such as whole-exome sequencing and whole-genome sequencing (WGS), are providing massive amounts of information on the genomic modifications present in rare diseases and common complex traits. The sequencing of exomes or genomes of individuals affected by rare diseases has enabled human geneticists to identify rare variants and identify potential loci associated with novel gene-disease relationships. Despite these advances, the average rare disease patient still experiences significant delay until receiving a diagnosis. Furthermore, the vast majority (95%) of patients with rare conditions lack effective treatment or a cure. This scenario is enhanced by frequent misdiagnoses leading to inadequate support. In consequence, there is an urgent need to develop model organisms to explore the molecular mechanisms underlying these diseases and to establish the genetic origin of these maladies. The aim of this review is to discuss the advantages and limitations of Drosophila melanogaster, hereafter referred as Drosophila, as an experimental model for biomedical research, and the applications to study human disease. The main question to address is whether Drosophila is a valid research model to study human disease, and in particular, rare and ultra-rare diseases.
Collapse
Affiliation(s)
- Sergio Casas-Tintó
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| |
Collapse
|
8
|
Lin MH, Jensen MK, Elrod ND, Chu HF, Haseley M, Beam AC, Huang KL, Chiang W, Russell WK, Williams K, Pröschel C, Wagner EJ, Tong L. Cytoplasmic binding partners of the Integrator endonuclease INTS11 and its paralog CPSF73 are required for their nuclear function. Mol Cell 2024; 84:2900-2917.e10. [PMID: 39032490 PMCID: PMC11316654 DOI: 10.1016/j.molcel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.
Collapse
Affiliation(s)
- Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Madeline K Jensen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Hsu-Feng Chu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - MaryClaire Haseley
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Alissa C Beam
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kelsey Williams
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
Sabath K, Qiu C, Jonas S. Assembly mechanism of Integrator's RNA cleavage module. Mol Cell 2024; 84:2882-2899.e10. [PMID: 39032489 DOI: 10.1016/j.molcel.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
The modular Integrator complex is a transcription regulator that is essential for embryonic development. It attenuates coding gene expression via premature transcription termination and performs 3'-processing of non-coding RNAs. For both activities, Integrator requires endonuclease activity that is harbored by an RNA cleavage module consisting of INTS4-9-11. How correct assembly of Integrator modules is achieved remains unknown. Here, we show that BRAT1 and WDR73 are critical biogenesis factors for the human cleavage module. They maintain INTS9-11 inactive during maturation by physically blocking the endonuclease active site and prevent premature INTS4 association. Furthermore, BRAT1 facilitates import of INTS9-11 into the nucleus, where it is joined by INTS4. Final BRAT1 release requires locking of the mature cleavage module conformation by inositol hexaphosphate (IP6). Our data explain several neurodevelopmental disorders caused by BRAT1, WDR73, and INTS11 mutations as Integrator assembly defects and reveal that IP6 is an essential co-factor for cleavage module maturation.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chunhong Qiu
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Razew M, Fraudeau A, Pfleiderer MM, Linares R, Galej WP. Structural basis of the Integrator complex assembly and association with transcription factors. Mol Cell 2024; 84:2542-2552.e5. [PMID: 38823386 DOI: 10.1016/j.molcel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Integrator is a multi-subunit protein complex responsible for premature transcription termination of coding and non-coding RNAs. This is achieved via two enzymatic activities, RNA endonuclease and protein phosphatase, acting on the promoter-proximally paused RNA polymerase Ⅱ (RNAPⅡ). Yet, it remains unclear how Integrator assembly and recruitment are regulated and what the functions of many of its core subunits are. Here, we report the structures of two human Integrator sub-complexes: INTS10/13/14/15 and INTS5/8/10/15, and an integrative model of the fully assembled Integrator bound to the RNAPⅡ paused elongating complex (PEC). An in silico protein-protein interaction screen of over 1,500 human transcription factors (TFs) identified ZNF655 as a direct interacting partner of INTS13 within the fully assembled Integrator. We propose a model wherein INTS13 acts as a platform for the recruitment of TFs that could modulate the stability of the Integrator's association at specific loci and regulate transcription attenuation of the target genes.
Collapse
Affiliation(s)
- Michal Razew
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Angelique Fraudeau
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Romain Linares
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
11
|
Mao D, Liu C, Wang L, Ai-Ouran R, Deisseroth C, Pasupuleti S, Kim SY, Li L, Rosenfeld JA, Meng L, Burrage LC, Wangler MF, Yamamoto S, Santana M, Perez V, Shukla P, Eng CM, Lee B, Yuan B, Xia F, Bellen HJ, Liu P, Liu Z. AI-MARRVEL - A Knowledge-Driven AI System for Diagnosing Mendelian Disorders. NEJM AI 2024; 1:10.1056/aioa2300009. [PMID: 38962029 PMCID: PMC11221788 DOI: 10.1056/aioa2300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Diagnosing genetic disorders requires extensive manual curation and interpretation of candidate variants, a labor-intensive task even for trained geneticists. Although artificial intelligence (AI) shows promise in aiding these diagnoses, existing AI tools have only achieved moderate success for primary diagnosis. METHODS AI-MARRVEL (AIM) uses a random-forest machine-learning classifier trained on over 3.5 million variants from thousands of diagnosed cases. AIM additionally incorporates expert-engineered features into training to recapitulate the intricate decision-making processes in molecular diagnosis. The online version of AIM is available at https://ai.marrvel.org. To evaluate AIM, we benchmarked it with diagnosed patients from three independent cohorts. RESULTS AIM improved the rate of accurate genetic diagnosis, doubling the number of solved cases as compared with benchmarked methods, across three distinct real-world cohorts. To better identify diagnosable cases from the unsolved pools accumulated over time, we designed a confidence metric on which AIM achieved a precision rate of 98% and identified 57% of diagnosable cases out of a collection of 871 cases. Furthermore, AIM's performance improved after being fine-tuned for targeted settings including recessive disorders and trio analysis. Finally, AIM demonstrated potential for novel disease gene discovery by correctly predicting two newly reported disease genes from the Undiagnosed Diseases Network. CONCLUSIONS AIM achieved superior accuracy compared with existing methods for genetic diagnosis. We anticipate that this tool may aid in primary diagnosis, reanalysis of unsolved cases, and the discovery of novel disease genes. (Funded by the NIH Common Fund and others.).
Collapse
Affiliation(s)
- Dongxue Mao
- Department of Pediatrics, Baylor College of Medicine, Houston
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Chaozhong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston
| | - Linhua Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston
| | - Rami Ai-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Department of Data Science and AI, Al Hussein Technical University, Amman, Jordan
| | - Cole Deisseroth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Sasidhar Pasupuleti
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Seon Young Kim
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Lucian Li
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | | | | | | | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Human Genome Sequencing Center, Baylor College of Medicine, Houston
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Department of Neuroscience, Baylor College of Medicine, Houston
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| |
Collapse
|
12
|
Waddell BM, Wu CW. A role for the C. elegans Argonaute protein CSR-1 in small nuclear RNA 3' processing. PLoS Genet 2024; 20:e1011284. [PMID: 38743783 PMCID: PMC11125478 DOI: 10.1371/journal.pgen.1011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/24/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.
Collapse
Affiliation(s)
- Brandon M. Waddell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Kuang H, Li Y, Wang Y, Shi M, Duan R, Xiao Q, She H, Liu Y, Liang Q, Teng Y, Zhou M, Liang D, Li Z, Wu L. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder. Cell Rep 2023; 42:113445. [PMID: 37980560 DOI: 10.1016/j.celrep.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.
Collapse
Affiliation(s)
- Hanzhe Kuang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yixuan Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Meizhen Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiao Xiao
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Haoyuan She
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiaowei Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Miaojin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| |
Collapse
|
15
|
Riquin K, Isidor B, Mercier S, Nizon M, Colin E, Bonneau D, Pasquier L, Odent S, Le Guillou Horn XM, Le Guyader G, Toutain A, Meyer V, Deleuze JF, Pichon O, Doco-Fenzy M, Bézieau S, Cogné B. Integrating RNA-Seq into genome sequencing workflow enhances the analysis of structural variants causing neurodevelopmental disorders. J Med Genet 2023; 61:47-56. [PMID: 37495270 DOI: 10.1136/jmg-2023-109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Molecular diagnosis of neurodevelopmental disorders (NDDs) is mainly based on exome sequencing (ES), with a diagnostic yield of 31% for isolated and 53% for syndromic NDD. As sequencing costs decrease, genome sequencing (GS) is gradually replacing ES for genome-wide molecular testing. As many variants detected by GS only are in deep intronic or non-coding regions, the interpretation of their impact may be difficult. Here, we showed that integrating RNA-Seq into the GS workflow can enhance the analysis of the molecular causes of NDD, especially structural variants (SVs), by providing valuable complementary information such as aberrant splicing, aberrant expression and monoallelic expression. METHODS We performed trio-GS on a cohort of 33 individuals with NDD for whom ES was inconclusive. RNA-Seq on skin fibroblasts was then performed in nine individuals for whom GS was inconclusive and optical genome mapping (OGM) was performed in two individuals with an SV of unknown significance. RESULTS We identified pathogenic or likely pathogenic variants in 16 individuals (48%) and six variants of uncertain significance. RNA-Seq contributed to the interpretation in three individuals, and OGM helped to characterise two SVs. CONCLUSION Our study confirmed that GS significantly improves the diagnostic performance of NDDs. However, most variants detectable by GS alone are structural or located in non-coding regions, which can pose challenges for interpretation. Integration of RNA-Seq data overcame this limitation by confirming the impact of variants at the transcriptional or regulatory level. This result paves the way for new routinely applicable diagnostic protocols.
Collapse
Affiliation(s)
- Kevin Riquin
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
| | - Bertrand Isidor
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Sandra Mercier
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Mathilde Nizon
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Estelle Colin
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | - Dominique Bonneau
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | | | - Sylvie Odent
- Service de Génétique Clinique, ERN ITHACA, Rennes, France
- Institut de Génétique et Développement de Rennes, IGDR UMR 6290 CNRS, INSERM, IGDR Univ Rennes, Rennes, France
| | - Xavier Maximin Le Guillou Horn
- Service de génétique médicale, CHU de Poitiers, Poitiers, France
- LabCom I3M-Dactim mis/LMA CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Annick Toutain
- UF de Génétique Médicale, Centre Hospitalier Universitaire, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Olivier Pichon
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Martine Doco-Fenzy
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Stéphane Bézieau
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Benjamin Cogné
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| |
Collapse
|
16
|
Fujiwara R, Zhai SN, Liang D, Shah AP, Tracey M, Ma XK, Fields CJ, Mendoza-Figueroa MS, Meline MC, Tatomer DC, Yang L, Wilusz JE. IntS6 and the Integrator phosphatase module tune the efficiency of select premature transcription termination events. Mol Cell 2023; 83:4445-4460.e7. [PMID: 37995689 PMCID: PMC10841813 DOI: 10.1016/j.molcel.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.
Collapse
Affiliation(s)
- Rina Fujiwara
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Si-Nan Zhai
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aayushi P Shah
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew Tracey
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher J Fields
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - María Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michele C Meline
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife 2023; 12:RP89891. [PMID: 38079206 PMCID: PMC10712953 DOI: 10.7554/elife.89891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Albert N Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Michael W Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for ChildrenBostonUnited States
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science UniversityPortlandUnited States
| | - Ruth J Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
- VA Portland Health Care SystemPortlandUnited States
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science UniversityPortlandUnited States
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|