1
|
Ding Z, Lu Y, Zhao J, Zhang D, Gao B. Network Pharmacology and Molecular Dynamics Identified Potential Androgen Receptor-Targeted Metabolites in Crocus alatavicus. Int J Mol Sci 2025; 26:3533. [PMID: 40331986 PMCID: PMC12027412 DOI: 10.3390/ijms26083533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The objective of this study is to identify the active components of Crocus alatavicus and potential targets through a combination of network pharmacology, molecular docking technology combined with molecular dynamics simulation, and binding free energy analyses. A total of 253 active ingredients from C. alatavicus were screened, and 1360 associated targets were predicted through systematic searches conducted using TCMSP, SwissDrugDesign, and SymMap, which were integrated to construct a pharmacological network to dissect the relationships among active components, targets, diseases, and pathways; we found prostate cancer-related genes were significantly enriched among the targets. Subsequently, the core prostate cancer-related targets were identified in the network, and the binding interactions between protein targets and active components were evaluated using molecular docking technology. Furthermore, molecular dynamics simulation and binding free energy analyses were performed to verify the binding stability of the most promising complex. Then, protein-protein interaction network analysis was conducted to evaluate the core target sites, leading to the identification of nine target proteins with significant correlations, providing potential targets for cancer treatment. Furthermore, these targets were found to be associated with 20 signaling pathways, including neuroactive ligand-receptor interactions, prostate cancer, lipid metabolism and atherosclerosis, as well as calcium signaling pathways. The active component-target-disease-pathway network diagram suggests that Capillarisin, Eugenol, 1-(4-Methoxyphenyl)-1-propanol, 2,4,2',4'-tetrahydroxy-3'-prenylchalcone, and 4-Hydroxymandelonitrile may serve as key components targeting prostate cancer. Molecular docking analyses demonstrated that Capillarisin has a high affinity for the androgen receptor (AR), and molecular dynamics simulation was performed to further verify the binding stability, indicating that Capillarisin may exert its pharmacological effects in prostate cancer. Based on the integrated strategies of network pharmacology, molecular docking, molecular dynamics simulation, and binding free energy analysis, this study generated novel insights into the active components of C. alatavicus and potential targets related to prostate cancer, thus providing valuable biological resources for future drug research and development.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Yuanfeng Lu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210008, China
| | - Jichen Zhao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Daoyuan Zhang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bei Gao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Shen M, García-Marqués F, Muruganantham A, Liu S, White JR, Bermudez A, Rice MA, Thompson K, Chen CL, Hung CN, Zhang Z, Huang TH, Liss MA, Pienta KJ, Pitteri SJ, Stoyanova T. Identification of a 5-gene signature panel for the prediction of prostate cancer progression. Br J Cancer 2024; 131:1748-1761. [PMID: 39402324 PMCID: PMC11589118 DOI: 10.1038/s41416-024-02854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Despite nearly 100% 5-year survival for localised prostate cancer, the survival rate for metastatic prostate cancer significantly declines to 32%. Thus, it is crucial to identify molecular indicators that reflect the progression from localised disease to metastatic prostate cancer. METHODS To search for molecular indicators associated with prostate cancer metastasis, we performed proteomic analysis of rapid autopsy tissue samples from metastatic prostate cancer (N = 8) and localised prostate cancer (N = 2). Then, we utilised multiple independent, publicly available prostate cancer patient datasets to select candidates that also correlate with worse prostate cancer clinical prognosis. RESULTS We identified 154 proteins with increased expressions in metastases relative to localised prostate cancer through proteomic analysis. From the subset of these candidates that correlate with prostate cancer recurrence (N = 28) and shorter disease-free survival (N = 37), we identified a 5-gene signature panel with improved performance in predicting worse clinical prognosis relative to individual candidates. CONCLUSIONS Our study presents a new 5-gene signature panel that is associated with worse clinical prognosis and is elevated in prostate cancer metastasis on both protein and mRNA levels. Our 5-gene signature panel represents a potential modality for the prediction of prostate cancer progression towards the onset of metastasis.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Meghan A Rice
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kelsey Thompson
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- School of Nursing, UT Health San Antonio, San Antonio, TX, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Tim H Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
4
|
Tian Y, Wu L, Huang CC, Wang L. Identify Regulatory eQTLs by Multiome Sequencing in Prostate Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599704. [PMID: 38948854 PMCID: PMC11213234 DOI: 10.1101/2024.06.19.599704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
While genome-wide association studies and expression quantitative trait loci (eQTL) analysis have made significant progress in identifying noncoding variants associated with prostate cancer risk and bulk tissue transcriptome changes, the regulatory effect of these genetic elements on gene expression remains largely unknown. Recent developments in single-cell sequencing have made it possible to perform ATAC-seq and RNA-seq profiling simultaneously to capture functional associations between chromatin accessibility and gene expression. In this study, we tested our hypothesis that this multiome single-cell approach allows for mapping regulatory elements and their target genes at prostate cancer risk loci. We applied a 10X Multiome ATAC + Gene Expression platform to encapsulate Tn5 transposase-tagged nuclei from multiple prostate cell lines for a total of 65,501 high quality single cells from RWPE1, RWPE2, PrEC, BPH1, DU145, PC3, 22Rv1 and LNCaP cell lines. To address data sparsity commonly seen in the single-cell sequencing, we performed targeted sequencing to enrich sequencing data at prostate cancer risk loci involving 2,730 candidate germline variants and 273 associated genes. Although not increasing the number of captured cells, the targeted multiome data did improve eQTL gene expression abundance by about 20% and chromatin accessibility abundance by about 5%. Based on this multiomic profiling, we further associated RNA expression alterations with chromatin accessibility of germline variants at single cell levels. Cross validation analysis showed high overlaps between the multiome associations and the bulk eQTL findings from GTEx prostate cohort. We found that about 20% of GTEx eQTLs were covered within the significant multiome associations (p-value ≤ 0.05, gene abundance percentage ≥ 5%), and roughly 10% of the multiome associations could be identified by significant GTEx eQTLs. We also analyzed accessible regions with available heterozygous SNP reads and observed more frequent association in genomic regions with allelically accessible variants (p = 0.0055). Among these findings were previously reported regulatory variants including rs60464856-RUVBL1 (multiome p-value = 0.0099 in BPH1) and rs7247241-SPINT2 (multiome p-value = 0.0002- 0.0004 in 22Rv1). We also functionally validated a new regulatory SNP and its target gene rs2474694-VPS53 (multiome p-value = 0.00956 in BPH1 and 0.00625 in DU145) by reporter assay and SILAC proteomics sequencing. Taken together, our data demonstrated the feasibility of the multiome single-cell approach for identifying regulatory SNPs and their regulated genes.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawai i Cancer Center, University of Hawai i at Mānoa, Honolulu, HI 96813, USA
| | - Chang-Ching Huang
- Zilber College of Public Health, University of Wisconsin, Milwaukee, WI 53226, United States
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
5
|
Peak T, Tian Y, Patel A, Shaw T, Obermayer A, Laborde J, Kim Y, Johnson J, Stewart P, Fang B, Teer JK, Koomen J, Berglund A, Marchion D, Francis N, Echevarria PR, Dhillon J, Clark N, Chang A, Sexton W, Zemp L, Chahoud J, Wang L, Manley B. Pathogenic Roles for RNASET2 in Clear Cell Renal Cell Carcinoma. J Transl Med 2024; 104:102041. [PMID: 38431116 DOI: 10.1016/j.labinv.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
A specific splicing isoform of RNASET2 is associated with worse oncologic outcomes in clear cell renal cell carcinoma (ccRCC). However, the interplay between wild-type RNASET2 and its splice variant and how this might contribute to the pathogenesis of ccRCC remains poorly understood. We sought to better understand the relationship of RNASET2 in the pathogenesis of ccRCC and the interplay with a pathogenic splicing isoform (RNASET2-SV) and the tumor immune microenvironment. Using data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium, we correlated clinical variables to RNASET2 expression and the presence of a specific RNASET2-SV. Immunohistochemical staining with matched RNA sequencing of ccRCC patients was then utilized to understand the spatial relationships of RNASET2 with immune cells. Finally, in vitro studies were performed to demonstrate the oncogenic role of RNASET2 and highlight its potential mechanisms. RNASET2 gene expression is associated with higher grade tumors and worse overall survival in The Cancer Genome Atlas cohort. The presence of the RNASET2-SV was associated with increased expression of the wild-type RNASET2 protein and epigenetic modifications of the gene. Immunohistochemical staining revealed increased intracellular accumulation of RNASET2 in patients with increased RNA expression of RNASET2-SV. In vitro experiments reveal that this accumulation results in increased cell proliferation, potentially from altered metabolic pathways. RNASET2 exhibits a tumor-promoting role in the pathogenesis of ccRCC that is increased in the presence of a specific RNASET2-SV and associated with changes in the cellular localization of the protein.
Collapse
Affiliation(s)
- Taylor Peak
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aman Patel
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Tim Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jose Laborde
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Joseph Johnson
- Analytic Microcopy Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Bin Fang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Doug Marchion
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Natasha Francis
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paola Ramos Echevarria
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Noel Clark
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Andrew Chang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Wade Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Logan Zemp
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
6
|
Xu Q, Zhou W, Zhou Y, Zhang X, Jiang R, Ai Z, Chen J, Ma L. IRX2 regulates endometrial carcinoma oncogenesis by transcriptional repressing RUVBL1. Exp Cell Res 2024; 434:113866. [PMID: 38042247 DOI: 10.1016/j.yexcr.2023.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Endometrial carcinoma (EC) is a rising concern among gynecological malignancies. Iroquois Homeobox 2 (IRX2), a member of the Iroquois homeobox gene family, demonstrates variable effects in different cancer types, emphasizing the need for extensive exploration of its involvement in EC progression. Utilizing TCGA and GEO databases, as well as performing immunohistochemistry (IHC) analysis on clinical samples, we assessed the expression levels of IRX2 and its promoter methylation in EC. To understand the functional roles of IRX2, we conducted various assays including in vitro CCK-8 assays, colony formation assays, cell invasion assays, and cell apoptosis assays. Moreover, we utilized in vivo subcutaneous xenograft mouse models. Additionally, we performed KEGG pathway and gene set enrichment analyses to gain insights into the underlying mechanisms. To validate the regulatory relationship between IRX2 and RUVBL1, we employed chromatin immunoprecipitation and luciferase reporter assays. Our results indicate significantly reduced levels of IRX2 expression in EC, correlating with higher histological grades, advanced clinical stages, and diminished overall survival. We observed that DNA methylation of the IRX2 promoter suppresses its expression in EC, with cg26333652 and cg11793269 playing critical roles as methylated sites. In contrast, ectopic overexpression of IRX2 substantially inhibits cell proliferation and invasion, and promotes cell apoptosis. Additionally, we discovered that IRX2 exerts negative regulation on the expression of RUVBL1, which is upregulated in EC and associated with a poorer prognosis. In conclusion, our findings indicate that decreased expression of IRX2 facilitates EC cell growth through the regulation of RUVBL1 expression, thereby contributing to the development of EC. Hence, targeting the IRX2-RUVBL1 axis holds promise as a potential therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanzhen Zhou
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuedi Zhou
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueying Zhang
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongzhen Jiang
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Ai
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Ma
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|