1
|
Selci M, Correggia M, Cordone A, Guida M, Quero GM, Piredda R, Vetriani C, Ramirez C, Lloyd KG, de Moor JM, Barry PH, Schrenk MO, Giovannelli D. Recreational hot springs as environmental reservoir of potential multidrug-resistant pathogens. ENVIRONMENTAL RESEARCH 2024; 262:119841. [PMID: 39182755 DOI: 10.1016/j.envres.2024.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Matteo Selci
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, USA
| | - Monica Correggia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Grazia Marina Quero
- Institute for Marine Biological and Biotechnological Resources, National Research Council of Italy (CNR-IRBIM), Ancona, Italy
| | - Roberta Piredda
- Department of Veterinary Medicine - University of Bari Aldo Moro, Bari, Italy
| | - Costantino Vetriani
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, USA; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, USA
| | - Carlos Ramirez
- Servicio Geológico Ambiental (SeGeoAm), San Josè, Costa Rica
| | - Karen G Lloyd
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Maarten de Moor
- Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia, Costa Rica
| | - Peter H Barry
- Marine Chemistry & Geochemistry Department - Woods Hole Oceanographic Institution, MA, USA
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy; Institute for Marine Biological and Biotechnological Resources, National Research Council of Italy (CNR-IRBIM), Ancona, Italy; Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, USA; Marine Chemistry & Geochemistry Department - Woods Hole Oceanographic Institution, MA, USA; Earth-Life Science Institute, Tokyo Institute for Technology, Tokyo, Japan.
| |
Collapse
|
2
|
Moulin E, Filippidis P, Paire-Ficout CA, Blanc DS, Grandbastien B, Senn L. Successful control of an environmental reservoir of NDM-producing Klebsiella pneumoniae associated with nosocomial transmissions in a low-incidence setting. Antimicrob Resist Infect Control 2024; 13:130. [PMID: 39468652 PMCID: PMC11520856 DOI: 10.1186/s13756-024-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The hospital wastewater system has been reported as a source of nosocomial acquisition of carbapenemase producing Enterobacteriaceae (CPE) in various settings. Cleaning and disinfection protocols or replacement of contaminated equipment often fail to eradicate these environmental reservoirs, which can lead to long-term transmission of CPE. We report a successful multimodal approach to control a New Delhi metallo-beta-lactamase positive Klebsiella pneumoniae (NDM-KP) nosocomial outbreak implicating contamination of sink traps in a low-incidence setting. METHODS Following the incidental identification of NDM-KP in a urine culture of an inpatient, we performed an epidemiological investigation, including patient and environmental CPE screening, and whole genome sequencing (WGS) of strains. We also implemented multimodal infection prevention and control (IPC) measures, namely the isolation of cases, waterless patient care, replacement of contaminated P-traps and connecting pieces, and bleach and steam disinfection of sinks for 6 months, followed by patient and environmental screenings for eradication. RESULTS Between February and May 2022, five NDM-KP cases were identified in an eight-bed neurosurgical intermediate care unit. Among the eight sink traps of the unit, three were positive for NDM-KP. Patient and environmental isolates belonged to multilocus sequence typing ST-268. All isolate genomes were genetically very similar suggesting cross-transmission and a potential role of the environment as the source of transmissions. Following the introduction of combined IPC measures, no new case was subsequently detected and sink traps remained negative for NDM-KP within 6 months after the intervention. CONCLUSION The implementation of multimodal IPC measures, including waterless patient care combined with the replacement and disinfection of P-traps and connecting pieces, was successful in the control of NDM-KP after eight months. In a low-incidence setting, this approach has made it possible to pursue the objective of zero transmission of carbapenemase-producing Enterobacteriaceae (CPE).
Collapse
Affiliation(s)
- Estelle Moulin
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland.
| | - Paraskevas Filippidis
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Aymon Paire-Ficout
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
| | - Dominique S Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, (NARA), University of Fribourg, Fribourg, Switzerland
| | - Bruno Grandbastien
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
| | - Laurence Senn
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
| |
Collapse
|
3
|
Kramer A, Seifert J, Abele-Horn M, Arvand M, Biever P, Blacky A, Buerke M, Ciesek S, Chaberny I, Deja M, Engelhart S, Eschberger D, Gruber B, Hedtmann A, Heider J, Hoyme UB, Jäkel C, Kalbe P, Luckhaupt H, Novotny A, Papan C, Piechota H, Pitten FA, Reinecke V, Schilling D, Schulz-Schaeffer W, Sunderdiek U. S2k-Guideline hand antisepsis and hand hygiene. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc42. [PMID: 39391860 PMCID: PMC11465089 DOI: 10.3205/dgkh000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The consensus-based guideline "hand antisepsis and hand hygiene" for Germany has the following sections: Prevention of nosocomial infections by hygienic hand antisepsis, prevention of surgical site infections by surgical hand antisepsis, infection prevention in the community by hand antisepsis in epidemic or pandemic situations, hand washing, selection of alcohol-based hand rubs and wash lotions, medical gloves and protective gloves, preconditions for hand hygiene, skin protection and skin care, quality assurance of the implementation of hand hygiene measures and legal aspects. The guideline was developed by the German Society for Hospital Hygiene in cooperation with 22 professional societies, 2 professional organizations, the German Care Council, the Federal Working Group for Self-Help of People with Disabilities and Chronic Illness and their Family Members, the General Accident Insurance Institution Austria and the German-speaking Interest Group of Infection Prevention Experts and Hospital Hygiene Consultants.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Mardjan Arvand
- Robert Koch Institute, Department Infectious Diseases, Unit Hospital Hygiene, Infection Prevention and Control, Berlin, Germany
| | - Paul Biever
- German Society for Internal Intensive Care and Emergency Medicine, Berlin, Germany
| | | | | | | | - Iris Chaberny
- German Society for Hygiene and Microbiology, Münster, Germany
| | - Maria Deja
- German Society of Anaesthesiology and Intensive Care Medicine, München, Germany
| | - Steffen Engelhart
- Society of Hygiene, Environmental and Public Health Sciences, Freiburg, Germany
| | - Dieter Eschberger
- Vienna Regional Office of the Austrian Workers' Compensation Insurance, Vienna, Austria
| | | | - Achim Hedtmann
- Professional Association of Orthopaedic and Trauma Specialists (BVOU), German Society for Orthopaedics and Trauma, Berlin, Germany
| | - Julia Heider
- German Society for Oral, Maxillofacial and Facial Surgery, Hofheim am Taunus, Germany
| | - Udo B. Hoyme
- Working Group for Infections and Infectious Immunology in the German Society for Gynecology and Obstetrics, Freiburg, Germany
| | - Christian Jäkel
- Dr. Jäkel, Medical Law, Pharmaceuticals Law, Medical Devices Law, Luebben, Germany
| | - Peter Kalbe
- Professional Association of German Surgery, Berlin, Germany
| | - Horst Luckhaupt
- German Society of Oto-Rhino-Laryngology, Head and Neck Surgery, Bonn, Germany
| | | | - Cihan Papan
- German Society for Pediatric Infectious Diseases, Berlin, Germany
| | | | | | - Veronika Reinecke
- German-speaking Interest Group of Experts for Infection Prevention and Consultants for Hospital Hygiene, Zurich, Switzerland
| | - Dieter Schilling
- German Society for Digestive and Metabolic Diseases, Berlin, Germany
| | - Walter Schulz-Schaeffer
- Department of Neuropathology, Medical Faculty of the Saarland University, Homburg/Saar, Germany
| | - Ulrich Sunderdiek
- German X-ray Society and German Society for Interventional Radiology and Minimally Invasive Therapy, Berlin. Germany
| |
Collapse
|
4
|
Chang B, Wan Q, Wu G, Cheng Y, Wang J, Huang T, Wen G. Formation of filamentous fungal biofilms in water and the transformation of resistance to chlor(am)ine disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135138. [PMID: 38996681 DOI: 10.1016/j.jhazmat.2024.135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biofilms are composed of complex multi-species in nature, potentially threatening drinking water safety. In this work, the formation of single- and multi-species fungal biofilms formed by Aspergillus niger (A. niger) and Aspergillus flavus (A. flavus), and the inactivation of mature biofilms using chlor(am)ine were firstly investigated. Results revealed that the antagonistic interaction occurred between A. niger and A. flavus. Chloramination at 20 mg/L for 30 min achieved 74.74 % and 76.04 % inactivation of A. flavus and multi-species biofilm, which were 1.69- and 1.84-fold higher than that of chlorine at the same condition. However, no significant difference was observed in the inactivation of A. niger biofilm between chlorine and monochloramine disinfection due to the lower amount of extracellular polymeric substance produced by it (p > 0.05). The inactivation of biofilm by monochloramine fitted the Weibull model well. According to the Weibull model, the monochloramine resistance of biofilm were as follows: A. flavus > multi-species > A. niger biofilm. Besides, an increase in reactive oxygen levels, damage of cell membrane, and leakage of intracellular substances in biofilms were observed after chlor(am)ination. More intracellular polysaccharides and proteins were leaked in chloramination inactivation (p < 0.05). This study provides important implications for controlling fungal biofilm.
Collapse
Affiliation(s)
- Baochun Chang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gehui Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyi Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Ma LL, Wei YY, Li J, Sun YY, Liu SR, Ma KM, Leung PHM, Tao XM. Clinical study of antibacterial medical textiles containing polyhydroxyalkanoate oligomers for reduction of hospital-acquired infections. J Hosp Infect 2024; 149:144-154. [PMID: 38705475 DOI: 10.1016/j.jhin.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION The prevention and control of hospital-acquired infections remain a significant challenge worldwide, as textiles used in hospital wards are highly involved in transmission processes. This paper reports a new antibacterial medical fabric used to prepare hospital pillowcases, bottom sheets and quilt covers for controlling and reducing hospital-acquired infections. METHOD The medical fabric was composed of blended yarns of staple polyester (PET) and degradable poly(3-hydroxybutyrate co-3-hydroxyvalerate) (PHBV)/polylactic acid (PLA) fibres, which were coated with polylactide oligomers (PLAO), which are environmentally friendly and safe antimicrobial agents with excellent thermal stability in high-temperature laundry. A clinical trial was conducted, with emphasis on the bacterial species that were closely related to the infection cases in the study hospital. RESULT After 7 days of use, 94% of PET/PHBV/PLA-PLAO fabric retained <20 colony-forming units/100 cm2 of the total bacterial amount, meeting hygiene and cleanliness standards. CONCLUSION This study demonstrates the potential of fabrics containing polyhydroxyalkanoate oligomers as highly effective, safe and long-lasting antimicrobial medical textiles that can effectively reduce the incidence of hospital-acquired infections.
Collapse
Affiliation(s)
- L L Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - Y-Y Wei
- Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - J Li
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - Y-Y Sun
- Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - S R Liu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - K M Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - P H-M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - X M Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
6
|
Fucini GB, Hackmann C, Gastmeier P. Sink interventions in the ICU to reduce risk of infection or colonization with Gram-negative pathogens: a systematic review of the literature. J Hosp Infect 2024; 143:82-90. [PMID: 38529781 DOI: 10.1016/j.jhin.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 03/27/2024]
Abstract
BACKGROUND Healthcare-associated infections (HAIs) are a major problem in intensive care units (ICUs). The hospital water environment is a potential reservoir for Gram-negative bacteria (GNB), and it has been shown that contaminated sinks contribute to the spread of GNB in outbreak and non-outbreak settings. This study aimed to investigate which sink interventions may reduce GNB infection and colonization rates in the ICU. METHODS A database search (MEDLINE via PubMed, EMBASE via Ovid and ClinicalTrials.gov) was undertaken without restrictions on language or date of publication. Studies of any design were included if they described an intervention on the water fixtures in patient rooms, and presented data about HAI or colonization rates in non-outbreak settings. Acquisition (infection and/or colonization) rates of GNB and Pseudomonas aeruginosa were analysed as outcomes. RESULTS In total, 4404 records were identified. Eleven articles were included in the final analysis. No randomized controlled trials were included in the analysis, and all studies were reported to have moderate to serious risk of bias. Removing sinks and applying filters on taps had a significant impact on GNB acquisition, but there was high heterogeneity among reported outcomes and sample size among the studies. CONCLUSION Few studies have investigated the association of sinks in patient rooms with healthcare-associated acquisition of GNB in non-outbreak settings. Heterogeneity in study design made it impossible to generalize the results. Prospective trials are needed to further investigate whether removing sinks from patient rooms can reduce the endemic rate of HAIs in the ICU.
Collapse
Affiliation(s)
- G-B Fucini
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany.
| | - C Hackmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - P Gastmeier
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| |
Collapse
|
7
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Pruden A, Edwards MA. Influence of pipe materials on in-building disinfection of P. aeruginosa and A. baumannii in simulated hot water plumbing. WATER RESEARCH X 2023; 21:100189. [PMID: 38098877 PMCID: PMC10719577 DOI: 10.1016/j.wroa.2023.100189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 12/17/2023]
Abstract
A framework is needed to account for interactive effects of plumbing materials and disinfectants on opportunistic pathogens (OPs) in building water systems. Here we evaluated free chlorine, monochloramine, chlorine dioxide, and copper-silver ionization (CSI) for controlling Pseudomonas aeruginosa and Acinetobacter baumannii as two representative OPs that colonize hot water plumbing, in tests using polyvinylchloride (PVC), copper-PVC, and iron-PVC convectively-mixed pipe reactors (CMPRs). Pipe materials vulnerable to corrosion (i.e., iron and copper) altered the pH, dissolved oxygen, and disinfectant levels in a manner that influenced growth trends of the two OPs and total bacteria. P. aeruginosa grew well in PVC CMPRs, poorly in iron-PVC CMPRs, and was best controlled by CSI disinfection, whereas A. baumannii showed the opposite trend for pipe material and was better controlled by chlorine and chlorine dioxide. Various scenarios were identified in which pipe material and disinfectant can interact to either hinder or accelerate growth of OPs, illustrating the difficulties of controlling OPs in portions of plumbing systems experiencing warm, stagnant water.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Mattheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Myra D. Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| |
Collapse
|
9
|
Schneider JS, Froböse NJ, Kuczius T, Schwierzeck V, Kampmeier S. Sink Drains in a Neonatal Intensive Care Unit: A Retrospective Risk Assessment and Evaluation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6692. [PMID: 37681832 PMCID: PMC10487867 DOI: 10.3390/ijerph20176692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Water systems in health care facilities can form reservoirs for Gram-negative bacteria. While planning a new neonatal intensive care unit (NICU), we performed a retrospective evaluation of potential risks from water-diverting systems on the existing NICU of our tertiary care University Hospital. During 2017 to 2023, we recorded nine nosocomial cluster events with bacterial pathogens in our NICU. Of these, three clusters of Gram-negative bacteria were potentially related to sink drains: A Klebsiella oxytoca, a Pseudomonas aeruginosa, and an Enterobacter hormaechei cluster were uncovered by clinical routine screening of patients and breastmilk samples. They were confirmed using whole-genome sequencing and a subsequent core genome multilocus sequence typing (cgMLST) algorithm. Our observations highlight that the implementation of sink drains in a NICU may have negative effects on patients' safety. Construction planning should concentrate on the avoidance of washbasins in patient rooms when redesigning sensitive areas such as NICUs.
Collapse
Affiliation(s)
- Julia S. Schneider
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany; (J.S.S.); (T.K.); (V.S.)
| | - Neele J. Froböse
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany;
| | - Thorsten Kuczius
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany; (J.S.S.); (T.K.); (V.S.)
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany; (J.S.S.); (T.K.); (V.S.)
| | - Stefanie Kampmeier
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany; (J.S.S.); (T.K.); (V.S.)
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Kartsev NN, Detusheva EV, Kalmantaeva OV, Korobova OV, Gerasimov VN, Kombarova TI, Borzilov AI, Fursova NK, Vereshchagin AN, Svetoch EA. Hetero-Pathogenic O181:H4 EAHEC Strain of Sequence Type ST678 Associated with Hemolytic-Uremic Syndrome in Schoolchildren in Russia. Microorganisms 2023; 11:1771. [PMID: 37512943 PMCID: PMC10383572 DOI: 10.3390/microorganisms11071771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In the last decade, the importance of hetero-pathogenic enteroaggregative Shiga-toxin-producing E. coli for public health has increased. Recently, we described the genetic background of the EAHEC O181:H4 strain of ST678 carrying the stx2 gene in prophage and five plasmids, including the plasmid-carrying aggR and aaiC genes. Here, we present the morphological and enzymatic characteristics of this strain, as well as susceptibility to antimicrobials, biofilm formation, etc. Methods: Bacterial morphology was studied using an electron microscope. Susceptibility to antimicrobials was determined using the microdilution method. Cytotoxicity was estimated in Vero cells. Virulence was studied on mice. RESULTS The morphological and enzymatic properties of the hetero-pathogenic EAHEC strain were typical for E. coli; electron microscopy revealed the specific flagella. The strain was susceptible to most antibiotics and disinfectants but resistant to ampicillin and ciprofloxacin and showed a high degree of biofilm formation. Cytotoxicity towards Vero cells was estimated as 80%. CONCLUSIONS The emergence of a new O181:H4 EAHEC strain poses a potential threat to humans because of the virulence potential that must be taken into account in the epidemiological analysis of outbreaks and sporadic cases of foodborne infections associated with hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- Nikolay N Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Elena V Detusheva
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Olga V Kalmantaeva
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Olga V Korobova
- Laboratory of Biological Trials, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Vladimir N Gerasimov
- Department of Disinfectology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Tatiana I Kombarova
- Laboratory of Biological Trials, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Aleksander I Borzilov
- Laboratory of Biological Trials, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Nadezhda K Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | | | - Edward A Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| |
Collapse
|
11
|
The prevalence of antibiotic-resistant Acinetobacter baumannii infections among the Iranian ICU patients: A systematic review and meta-analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Herazo MS, Nani G, Zurita F, Nakase C, Zamora S, Herazo LCS, Betanzo-Torres EA. A Review of the Presence of SARS-CoV-2 in Wastewater: Transmission Risks in Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8354. [PMID: 35886204 PMCID: PMC9324675 DOI: 10.3390/ijerph19148354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022]
Abstract
The appearance of SARS-CoV-2 represented a new health threat to humanity and affected millions of people; the transmission of this virus occurs through different routes, and one of them recently under debate in the international community is its possible incorporation and spread by sewage. Therefore, the present work's research objectives are to review the presence of SARS-CoV-2 in wastewater throughout the world and to analyze the coverage of wastewater treatment in Mexico to determine if there is a correlation between the positive cases of COVID-19 and the percentages of treated wastewater in Mexico as well as to investigate the evidence of possible transmission by aerosol sand untreated wastewater. Methodologically, a quick search of scientific literature was performed to identify evidence the presence of SARS-CoV-2 RNA (ribonucleic acid) in wastewater in four international databases. The statistical information of the positive cases of COVID-19 was obtained from data from the Health Secretary of the Mexican Government and the Johns Hopkins Coronavirus Resource Center. The information from the wastewater treatment plants in Mexico was obtained from official information of the National Water Commission of Mexico. The results showed sufficient evidence that SARS-CoV-2 remains alive in municipal wastewater in Mexico. Our analysis indicates that there is a low but significant correlation between the percentage of treated water and positive cases of coronavirus r = -0.385, with IC (95%) = (-0.647, -0.042) and p = 0.030; this result should be taken with caution because wastewater is not a transmission mechanism, but this finding is useful to highlight the need to increase the percentage of treated wastewater and to do it efficiently. In conclusions, the virus is present in untreated wastewater, and the early detection of SAR-CoV-2 could serve as a bioindicator method of the presence of the virus. This could be of great help to establish surveillance measures by zones to take preventive actions, which to date have not been considered by the Mexican health authorities. Unfortunately, wastewater treatment systems in Mexico are very fragile, and coverage is limited to urban areas and non-existent in rural areas. Furthermore, although the probability of contagion is relatively low, it can be a risk for wastewater treatment plant workers and people who are close to them.
Collapse
Affiliation(s)
- Mayerlin Sandoval Herazo
- Department of Engineering in Business Management, Tecnológico Nacional de México/Instituto Tecnológico de Misantla, Misantla 93821, Veracruz, Mexico; (M.S.H.); (G.N.)
- Wetland and Environmental Sustainability Laboratory, Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Misantla, Misantla 93821, Veracruz, Mexico
| | - Graciela Nani
- Department of Engineering in Business Management, Tecnológico Nacional de México/Instituto Tecnológico de Misantla, Misantla 93821, Veracruz, Mexico; (M.S.H.); (G.N.)
- Wetland and Environmental Sustainability Laboratory, Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Misantla, Misantla 93821, Veracruz, Mexico
| | - Florentina Zurita
- Research Center in Environmental Quality, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 4782, Jalisco, Mexico;
| | - Carlos Nakase
- Public Works Department, University of Local Government of Martínez de la Torre, Veracruz 93605, Veracruz, Mexico;
| | - Sergio Zamora
- Faculty of Engineering, Construction and Habitation, Universidad Veracruzana, Bv. Adolfo Ruíz Cortines 455, Costa Verde, Boca del Rio 94294, Veracruz, Mexico;
| | - Luis Carlos Sandoval Herazo
- Wetland and Environmental Sustainability Laboratory, Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Misantla, Misantla 93821, Veracruz, Mexico
| | - Erick Arturo Betanzo-Torres
- Estancia Postdoctoral CONACYT (Consejo Nacional de Ciencia y Tecnologia) Tecnológico Nacional de México Campus Misantla, Misantla 93821, Veracruz, Mexico
| |
Collapse
|
13
|
Hebden J, Monsees EA. Commentary: "Effectiveness of the systematic use of antimicrobial filters in the water taps of critical care units for the prevention of healthcare-associated infections with Pseudomonas aeruginosa". Am J Infect Control 2022; 50:473-474. [PMID: 35369938 DOI: 10.1016/j.ajic.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Joan Hebden
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD; President, IPC Consulting Group LLC.
| | - Elizabeth A Monsees
- Children's Mercy, Kansas City, MO; University of Missouri Kansas City, School of Medicine, MO
| |
Collapse
|
14
|
Orujyan D, Narinyan W, Rangarajan S, Rangchaikul P, Prasad C, Saviola B, Venketaraman V. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines (Basel) 2022; 10:vaccines10030390. [PMID: 35335022 PMCID: PMC8952781 DOI: 10.3390/vaccines10030390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
The genus mycobacterium includes several species that are known to cause infections in humans. The microorganisms are classified into tuberculous and non-tuberculous based on their morphological characteristics, defined by the dynamic relationship between the host defenses and the infectious agent. Non-tuberculous mycobacteria (NTM) include all the species of mycobacterium other than the ones that cause tuberculosis (TB). The group of NTM contains almost 200 different species and they are found in soil, water, animals—both domestic and wild—milk and food products, and from plumbed water resources such as sewers and showerhead sprays. A systematic review of Medline between 1946 and 2014 showed an 81% decline in TB incidence rates with a simultaneous 94% increase in infections caused by NTM. Prevalence of infections due to NTM has increased relative to infections caused by TB owing to the stringent prevention and control programs in Western countries such as the USA and Canada. While the spread of typical mycobacterial infections such as TB and leprosy involves human contact, NTM seem to spread easily from the environment without the risk of acquiring from a human contact except in the case of M. abscessus in patients with cystic fibrosis, where human transmission as well as transmission through fomites and aerosols has been recorded. NTM are opportunistic in their infectious processes, making immunocompromised individuals such as those with other systemic infections such as HIV, immunodeficiencies, pulmonary disease, or usage of medications such as long-term corticosteroids/TNF-α inhibitors more susceptible. This review provides insight on pathogenesis, treatment, and BCG vaccine efficacy against M. leprae and some important NTM infections.
Collapse
|
15
|
Occurrence of P. aeruginosa in Water Intended for Human Consumption and in Swimming Pool Water. ENVIRONMENTS 2021. [DOI: 10.3390/environments8120132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the fact that water is a basic need of every living being, it is important to ensure its safety. In this work, the data on the presence of the opportunistic pathogen P. aeruginosa in drinking water (n = 4171) as well as in pool water (n = 5059) in Primorje-Gorski Kotar County in Croatia in the five-year period (2016–2020) were analysed. In addition, the national criteria were compared with those of neighboring countries and worldwide. The proportion of P. aeruginosa-positive samples was similar for drinking water (3.9%) and pool water (4.6%). The prevalence of this bacterium was most pronounced in the warmer season. P. aeruginosa-positive drinking water samples were mostly collected during building commissioning, while pool samples were from entertainment and spa/hydromassage pools. Outdoor pools showed a higher percentage of positive samples than indoor pools, as well as the pools filled with freshwater rather than seawater. The highest P. aeruginosa load was found in rehabilitation pools. Croatia, Serbia and Montenegro are countries that have included P. aeruginosa in their national regulations as an indicator of the safety of water for human consumption as well as for bottled water, while Slovenia and Bosnia and Herzegovina have limited this requirement to bottled water only. In the case of swimming pool water, this parameter is mandatory in all countries considered in this study.
Collapse
|
16
|
Achouri F, Said MB, Wahab MA, Bousselmi L, Corbel S, Schneider R, Ghrabi A. Effect of photocatalysis (TiO 2/UV A) on the inactivation and inhibition of Pseudomonas aeruginosa virulence factors expression. ENVIRONMENTAL TECHNOLOGY 2021; 42:4237-4246. [PMID: 32241229 DOI: 10.1080/09593330.2020.1751729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Water disinfection using visible light-active photocatalyst has recently attracted more attention due to its potential to inactivate microbes. In this study, we have investigated the efficiency of photocatalysis (TiO2/UVA) on the inactivation of Pseudomonas aeruginosa and the attenuation of its virulence factors. For this aim, the photocatalytic effects of TiO2/UVA on the cultivability and viability of P. aeruginosa were investigated. Furthermore, during the photocatalysis, the morphology of the bacterial cells was examined by atomic force microscopy (AFM) while the virulence factors were assessed by protease and lipase activities in addition to the mobility and communication of cells. The results revealed that during the photocatalysis the bacterial cells lost their cultivability and viability on agar under the action of the reactive oxygen species generated by the photocatalytic reaction. In addition, AFM observations have shown a damage of the bacterial membrane and a total disruption of the bacterial cells. Moreover, the major virulence factors such as biofilm, lipase and protease expression have been markedly inhibited by TiO2/UVA treatment. In addition, the bacteria lost their ability of communication 'quorum sensing' and mobility with twitching and swarming types after 60 min of photocatalytic treatment. Accordingly, TiO2/UVA is an effective method to reduce P. aeruginosa virulence and to prevent biofilm formation.
Collapse
Affiliation(s)
- Faouzi Achouri
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR7274, CNRS, Université de Lorraine, Nancy Cedex, France
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Myriam Ben Said
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| | - Mohamed Ali Wahab
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire de Traitement et Valorisation des Rejets Hydriques, Université de Carthage, Soliman, Tunisia
| | - Latifa Bousselmi
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| | - Serge Corbel
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR7274, CNRS, Université de Lorraine, Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR7274, CNRS, Université de Lorraine, Nancy Cedex, France
| | - Ahmed Ghrabi
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| |
Collapse
|
17
|
Catho G, Martischang R, Boroli F, Chraïti MN, Martin Y, Koyluk Tomsuk Z, Renzi G, Schrenzel J, Pugin J, Nordmann P, Blanc DS, Harbarth S. Outbreak of Pseudomonas aeruginosa producing VIM carbapenemase in an intensive care unit and its termination by implementation of waterless patient care. Crit Care 2021; 25:301. [PMID: 34412676 PMCID: PMC8376114 DOI: 10.1186/s13054-021-03726-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long-term outbreaks of multidrug-resistant Gram-negative bacilli related to hospital-building water systems have been described. However, successful mitigation strategies have rarely been reported. In particular, environmental disinfection or replacement of contaminated equipment usually failed to eradicate environmental sources of Pseudomonas aeruginosa. METHODS We report the investigation and termination of an outbreak of P. aeruginosa producing VIM carbapenemase (PA-VIM) in the adult intensive care unit (ICU) of a Swiss tertiary care hospital with active case finding, environmental sampling and whole genome sequencing (WGS) of patient and environmental strains. We also describe the implemented control strategies and their effectiveness on eradication of the environmental reservoir. RESULTS Between April 2018 and September 2020, 21 patients became either infected or colonized with a PA-VIM strain. For 16 of them, an acquisition in the ICU was suspected. Among 131 environmental samples collected in the ICU, 13 grew PA-VIM in sink traps and drains. WGS confirmed the epidemiological link between clinical and environmental strains and the monoclonal pattern of the outbreak. After removing sinks from patient rooms and implementation of waterless patient care, no new acquisition was detected in the ICU within 8 months after the intervention. DISCUSSION Implementation of waterless patient care with removal of the sinks in patient rooms was successful for termination of a PA-VIM ICU outbreak linked to multiple environmental water sources. WGS provides highly discriminatory accuracy to investigate environment-related outbreaks.
Collapse
Affiliation(s)
- Gaud Catho
- Infection Control Program, WHO Collaborating Center for Patient Safety, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle Perret-Gentil, 4, CH-1205, Geneva, Switzerland.
| | - R Martischang
- Infection Control Program, WHO Collaborating Center for Patient Safety, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle Perret-Gentil, 4, CH-1205, Geneva, Switzerland
| | - F Boroli
- Division of Critical Care, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - M N Chraïti
- Infection Control Program, WHO Collaborating Center for Patient Safety, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle Perret-Gentil, 4, CH-1205, Geneva, Switzerland
| | - Y Martin
- Infection Control Program, WHO Collaborating Center for Patient Safety, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle Perret-Gentil, 4, CH-1205, Geneva, Switzerland
| | - Z Koyluk Tomsuk
- Division of Critical Care, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - G Renzi
- Bacteriology Laboratory, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - J Schrenzel
- Bacteriology Laboratory, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - J Pugin
- Division of Critical Care, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - P Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - D S Blanc
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
- Service of Hospital Preventive Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - S Harbarth
- Infection Control Program, WHO Collaborating Center for Patient Safety, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle Perret-Gentil, 4, CH-1205, Geneva, Switzerland
| |
Collapse
|
18
|
Detusheva EV, Ershova ON, Fursova NK. The sensitivity of planktonic cultures and biofilms of gram-negative bacteria to commercial disinfectant and antiseptic preparations. Klin Lab Diagn 2021; 66:438-447. [PMID: 34292687 DOI: 10.51620/0869-2084-2021-66-7-438-447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The in vitro antibacterial activity of 11 commercial disinfectant preparations and 8 antiseptics against 10 strains of the bacteria Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloaceae and Providencia stuartii obtained from international collections and isolated from neuroresuscitation patients in Moscow in 2018 was studied. The sensitivity of planktonic cultures to the preparations was determined by the method of serial dilutions in broth and the spot method on solid nutrient media, the sensitivity of biofilms by the applicator method. A general pattern was revealed: the level of sensitivity to tested disinfectants in clinical strains was lower than in reference strains. It was found that the disinfectants «Mikrobak-Forte», «SAT-22», «Neobak-Oksi» at the concentrations recommended by the manufacturers were effective against bacteria of all test strains, both in the plankton state and in the form of biofilms. On the contrary, the disinfectant preparations «Biodez-Optima», «Biodez-Extra DVU», «Novodez-Aktiv», «Triosept-Oksi», «Tristel Fusion for Surfaces», «Effect-Forte Plus», «Lactic-Oxy» did not have sufficient effectiveness in the concentrations recommended by the manufacturers, therefore it is proposed to use these drugs in higher concentrations. It was found that the disinfectant «Biodez-Extra DVU» is able to inhibit the growth of biofilms of bacteria of the species K. pneumoniae. The ability to suppress the growth of bacterial biofilms of K. pneumoniae, A. baumannii, P. aeruginosa was revealed for the «Triestel Fusion for surfaces disinfectant». The bacteria of all used test strains in the planktonic state were sensitive to all tested antiseptic preparations. However, the biofilms of the clinical strains of P. aeruginosa and P. stuartii. possessed resistance to the antiseptics «Octenidol», «Octenisept», «Miramistin», «Hexoral». Our studies indicate the need for sensitivity analysis of antibacterial drugs in representatives of hospital pathogens, including the modeling of bacterial biofilms, which is a very relevant and important scientific direction, necessary to improve the control of nosocomial infections in the Russian Federation.
Collapse
Affiliation(s)
| | | | - N K Fursova
- State Research Center for Applied Microbiology and Biotechnology
| |
Collapse
|
19
|
Bonadonna L, Briancesco R, Coccia AM, Meloni P, Rosa GL, Moscato U. Microbial Air Quality in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6226. [PMID: 34207509 PMCID: PMC8296088 DOI: 10.3390/ijerph18126226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
There is increasing evidence that indoor air quality and contaminated surfaces provide an important potential source for transmission of pathogens in hospitals. Airborne hospital microorganisms are apparently harmless to healthy people. Nevertheless, healthcare settings are characterized by different environmental critical conditions and high infective risk, mainly due to the compromised immunologic conditions of the patients that make them more vulnerable to infections. Thus, spread, survival and persistence of microbial communities are important factors in hospital environments affecting health of inpatients as well as of medical and nursing staff. In this paper, airborne and aerosolized microorganisms and their presence in hospital environments are taken into consideration, and the factors that collectively contribute to defining the infection risk in these facilities are illustrated.
Collapse
Affiliation(s)
- Lucia Bonadonna
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Rossella Briancesco
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Anna Maria Coccia
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Pierluigi Meloni
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Umberto Moscato
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Occupational Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Management of Microbiological Contamination of the Water Network of a Newly Built Hospital Pavilion. Pathogens 2021; 10:pathogens10010075. [PMID: 33467059 PMCID: PMC7829805 DOI: 10.3390/pathogens10010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The good installation, as well as commissioning plan, of a water network is a crucial step in reducing the risk of waterborne diseases. The aim of this study was to monitor the microbiological quality of water from a newly built pavilion before it commenced operation. Overall, 91 water samples were tested for coliforms, Escherichia coli, enterococci, Pseudomonas aeruginosa and Legionella at three different times: T0 (without any water treatment), T1 (after treatment with hydrogen peroxide and silver ions at initial concentration of 20 mg/L and after flushing of water for 20 min/day for seven successive days) and T2 (15 days later). Coliforms were detected in 47.3% of samples at T0, 36.3% at T1 and 4.4% at T2. E. coli was isolated in 4.4% of the samples only at T1, while enterococci appeared in 12.1% of the samples at T1 and in 2.2% at T2. P. aeruginosa was isolated in 50.5% of the samples at T0, 29.7% at T1 and 1.1% at T2. Legionella pneumophila serogroup 8 was isolated in 80.2% of the samples at T0, 36.3% at T1 and 2.2% at T2. Our results confirmed the need for a water safety plan in new hospital pavilions to prevent the risk of waterborne diseases.
Collapse
|
21
|
Kusuma SAF, Rostinawati T, Hendriani R, Budiman MF, Parwati I. Effect of water reservoirs types on the prevalence and antibiotic resistance profiles of Pseudomonas aeruginosa isolated from bathroom water in hospitals. J Adv Pharm Technol Res 2021; 12:52-56. [PMID: 33532355 PMCID: PMC7832186 DOI: 10.4103/japtr.japtr_103_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
This study was aimed to isolate and characterize Pseudomonas aeruginosa antibiotic resistance profiles that isolated from bathroom water of five hospitals in Bandung, Indonesia, with different types of water reservoirs. Total of 25 water samples from bathrooms of five hospitals were collected and analyzed for the existence of P. aeruginosa colonies on the surface of MacConkey agar media using a streak plate method and identified using phenotypic identification and a series of biochemical tests. All P. aeruginosa isolates were tested against ceftazidime, piperacillin/tazobactam, ciprofloxacin, meropenem, and gentamicin containing in paper disc, using the agar diffusion method. Of all samples, the total number of P. aeruginosa isolates was less than that of non-P. aeruginosa. In hospitals that use permanent bathtubs, a greater total bacterial count was obtained than those using pails. From 110 isolates, 14.54% were multidrug resistance antibiotics. The majority of the resistant isolates were from hospital B with permanent bathtubs. Of 25 isolates from that hospital, P. aeruginosa isolates were resistant to ceftazidime (20%), piperacillin/tazobactam (4%), ciprofloxacin (20%), and gentamicin (20%). The multiple antibiotic resistance index value of P. aeruginosa isolates was 0.4–0.6. Thus, it can be concluded that the bathroom wáter in the hospital with permanent bathtubs were potential reservoirs of antibiotic-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | - Tina Rostinawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | - Rini Hendriani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia
| | | | - Ida Parwati
- Clinical Pathology Department, Faculty of Medical, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
22
|
Day LW, Muthusamy VR, Collins J, Kushnir VM, Sawhney MS, Thosani NC, Wani S. Multisociety guideline on reprocessing flexible GI endoscopes and accessories. Gastrointest Endosc 2021; 93:11-33.e6. [PMID: 33353611 DOI: 10.1016/j.gie.2020.09.048] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Lukejohn W Day
- Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | | | - James Collins
- Department of Digestive Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vladimir M Kushnir
- Division of Gastroenterology, Washington University, St Louis, Missouri, USA
| | - Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nirav C Thosani
- Division of Gastroenterology, Hepatology and Nutrition, McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
23
|
Volling C, Ahangari N, Bartoszko JJ, Coleman BL, Garcia-Jeldes F, Jamal AJ, Johnstone J, Kandel C, Kohler P, Maltezou HC, Maze Dit Mieusement L, McKenzie N, Mertz D, Monod A, Saeed S, Shea B, Stuart RL, Thomas S, Uleryk E, McGeer A. Are Sink Drainage Systems a Reservoir for Hospital-Acquired Gammaproteobacteria Colonization and Infection? A Systematic Review. Open Forum Infect Dis 2020; 8:ofaa590. [PMID: 33553469 PMCID: PMC7856333 DOI: 10.1093/ofid/ofaa590] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/04/2020] [Indexed: 01/23/2023] Open
Abstract
Increasing rates of antimicrobial-resistant organisms have focused attention on sink drainage systems as reservoirs for hospital-acquired Gammaproteobacteria colonization and infection. We aimed to assess the quality of evidence for transmission from this reservoir. We searched 8 databases and identified 52 studies implicating sink drainage systems in acute care hospitals as a reservoir for Gammaproteobacterial colonization/infection. We used a causality tool to summarize the quality of evidence. Included studies provided evidence of co-occurrence of contaminated sink drainage systems and colonization/infection, temporal sequencing compatible with sink drainage reservoirs, some steps in potential causal pathways, and relatedness between bacteria from sink drainage systems and patients. Some studies provided convincing evidence of reduced risk of organism acquisition following interventions. No single study provided convincing evidence across all causality domains, and the attributable fraction of infections related to sink drainage systems remains unknown. These results may help to guide conduct and reporting in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Monod
- Sinai Health System, Toronto, Ontario, Canada
| | | | | | | | - Sera Thomas
- Sinai Health System, Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Volling C, Thomas S, Johnstone J, Maltezou HC, Mertz D, Stuart R, Jamal AJ, Kandel C, Ahangari N, Coleman BL, McGeer A. Development of a tool to assess evidence for causality in studies implicating sink drains as a reservoir for hospital-acquired gammaproteobacterial infection. J Hosp Infect 2020; 106:454-464. [PMID: 32898614 DOI: 10.1016/j.jhin.2020.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Decades of studies document an association between Gammaproteobacteria in sink drains and hospital-acquired infections, but the evidence for causality is unclear. AIM We aimed to develop a tool to assess the quality of evidence for causality in research studies that implicate sink drains as reservoirs for hospital-acquired Gammaproteobacterial infections. METHODS We used a modified Delphi process with recruited experts in hospital epidemiology to develop this tool from a pre-existing causal assessment application. FINDINGS Through four rounds of feedback and revision we developed the 'Modified CADDIS Tool for Causality Assessment of Sink Drains as a Reservoir for Hospital-Acquired Gammaproteobacterial Infection or Colonization'. In tests of tool application to published literature during development, mean percent agreement ranged from 46.7% to 87.5%, and the Gwet's AC1 statistic (adjusting for chance agreement) ranged from 0.13 to 1.0 (median 68.1). Areas of disagreement were felt to result from lack of a priori knowledge of causal pathways from sink drains to patients and uncertain influence of co-interventions to prevent organism acquisition. Modifications were made until consensus was achieved that further iterations would not improve the tool. When the tool was applied to 44 articles by two independent reviewers in an ongoing systematic review, percent agreement ranged from 93% to 98%, and the Gwet's AC1 statistic was 0.91-0.97. CONCLUSION The modified causality tool was useful for evaluating studies that implicate sink drains as reservoirs for hospital-acquired infections and may help guide the conduct and reporting of future research.
Collapse
Affiliation(s)
- C Volling
- Mount Sinai Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| | - S Thomas
- Mount Sinai Hospital, Toronto, ON, Canada
| | - J Johnstone
- Mount Sinai Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - H C Maltezou
- National Public Health Organization, Athens, Greece
| | - D Mertz
- Hamilton Health Sciences, Hamilton, ON, Canada; McMaster University, Hamilton, ON, Canada
| | - R Stuart
- Monash Health, Clayton, Victoria, Australia; Monash University, Clayton, Victoria, Australia
| | - Alainna J Jamal
- Mount Sinai Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - C Kandel
- Mount Sinai Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - N Ahangari
- Mount Sinai Hospital, Toronto, ON, Canada
| | - B L Coleman
- Mount Sinai Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - A McGeer
- Mount Sinai Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Mazzotta M, Girolamini L, Pascale MR, Lizzadro J, Salaris S, Dormi A, Cristino S. The Role of Sensor-Activated Faucets in Surgical Handwashing Environment as a Reservoir of Legionella. Pathogens 2020; 9:pathogens9060446. [PMID: 32516992 PMCID: PMC7350366 DOI: 10.3390/pathogens9060446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Surgical handwashing is a mandatory practice to protect both surgeons and patients in order to control Healthcare-Associated Infections (HAIs). The study is focused on Legionella and Pseudomonas aeruginosa contamination in Surgical Handwashing Outlets (SHWOs) provided by sensor-activated faucets with Thermostatic Mixer Valves (TMVs), as correlated to temperature, technologies, and disinfection used. Samples were analyzed by standard culture techniques, comparing hot- and cold-water samples. Legionella isolates were typed by an agglutination test and by mip sequencing. Legionella contamination showed the same distribution between hot and cold samples concerning positive samples and mean concentration: 44.5% and 1.94 Log10 cfu/L vs. 42.6% and 1.81 Log10 cfu/L, respectively. Regarding the distribution of isolates (Legionella pneumophila vs. Legionella non-pneumophila species), significant differences were found between hot- and cold-positive samples. The contamination found in relation to ranges of temperature showed the main positive samples (47.1%) between 45.1-49.6 °C, corresponding to high Legionella concentrations (2.17 Log10 cfu/L). In contrast, an increase of temperature (>49.6 °C) led to a decrease in positive samples (23.2%) and mean concentration (1.64 Log10 cfu/L). A low level of Pseudomonas aeruginosa was found. For SHWOs located in critical areas, lack of consideration of technologies used and uncorrected disinfection protocols may lead to the development of a high-risk environment for both patients and surgeons.
Collapse
Affiliation(s)
- Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy; (M.M.); (L.G.); (M.R.P.); (J.L.); (S.S.)
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy; (M.M.); (L.G.); (M.R.P.); (J.L.); (S.S.)
| | - Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy; (M.M.); (L.G.); (M.R.P.); (J.L.); (S.S.)
| | - Jessica Lizzadro
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy; (M.M.); (L.G.); (M.R.P.); (J.L.); (S.S.)
| | - Silvano Salaris
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy; (M.M.); (L.G.); (M.R.P.); (J.L.); (S.S.)
| | - Ada Dormi
- Department of Medical and Surgical Science, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy;
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, via San Giacomo 12, 40126 Bologna, Italy; (M.M.); (L.G.); (M.R.P.); (J.L.); (S.S.)
- Correspondence: ; Tel.: +39-051-209-4811; Fax: +39-051-209-4829
| |
Collapse
|
26
|
Chang TL, Zhou X, Liang J. Synthesis and characterization of Ag-Cu alloy nanoparticles for antimicrobial applications: A polydopamine chemistry application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:675-684. [DOI: 10.1016/j.msec.2018.12.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 10/27/2022]
|
27
|
Real-Time Continuous Surveillance of Temperature and Flow Events Presents a Novel Monitoring Approach for Hospital and Healthcare Water Distribution Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081332. [PMID: 31013887 PMCID: PMC6518245 DOI: 10.3390/ijerph16081332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/27/2023]
Abstract
Within hospitals and healthcare facilities opportunistic premise plumbing pathogens (OPPPs) are a major and preventable cause of healthcare-acquired infections. This study presents a novel approach for monitoring building water quality using real-time surveillance of parameters measured at thermostatic mixing valves (TMVs) across a hospital water distribution system. Temperature was measured continuously in real-time at the outlet of 220 TMVs located across a hospital over a three-year period and analysis of this temperature data was used to identify flow events. This real-time temperature and flow information was then compared with microbial water quality. Water samples were collected randomly from faucets over the three-year period. These were tested for total heterotrophic bacteria, Legionella spp. and L. pneumophila. A statistically significant association with total heterotrophic bacteria concentrations and the number of flow events seven days prior (rs[865] = -0.188, p < 0.01) and three days prior to sampling (rs[865] = -0.151, p < 0.01) was observed, with decreased heterotrophic bacteria linked to increased flushing events. Only four samples were positive for Legionella and statistical associations could not be determined; however, the environmental conditions for these four samples were associated with higher heterotrophic counts. This study validated a simple and effective remote monitoring approach to identifying changes in water quality and flagging high risk situations in real-time. This provides a complementary surveillance strategy that overcomes the time delay associated with microbial culture results. Future research is needed to explore the use of this monitoring approach as an indicator for different opportunistic pathogens.
Collapse
|
28
|
Elbourne A, Truong VK, Cheeseman S, Rajapaksha P, Gangadoo S, Chapman J, Crawford RJ. The use of nanomaterials for the mitigation of pathogenic biofilm formation. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
De Filippis P, Mozzetti C, Messina A, D'Alò GL. Prevalence of Legionella in retirement homes and group homes water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:715-724. [PMID: 29957436 DOI: 10.1016/j.scitotenv.2018.06.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although historically the focus has been placed above all on hospital infections and travel-associated outbreaks, most of the cases of Legionella infection are sporadic and occur in community-dwellers. OBJECTIVES To evaluate the presence and load of Legionella in hot water systems of non-healthcare facilities that host closed communities. Furthermore, we tried to verify the association between Heterotrophic Plate Counts (HPCs) and presence of Legionella. METHODS We collected hot water and biofilm samples from the showerheads of retirement homes and group homes. Samples were tested by culture method for the presence of Legionella. Confirmation and identification were carried out through Latex test and PCR. We determined the HPCs at 22 and 37 °C by the pour plate method. Statistics performed through STATA. RESULTS We collected 140 hot water and biofilm samples, 95 from 26 retirement homes and 35 from 9 group homes. Legionella was found in 36.8% samples collected from retirement homes and only in 10.3% group homes' samples (p = 0.01). Legionella was identified more frequently in water than in biofilm (29.8% vs 16.9%); just in one case the pathogen was found in the biofilm only. L. pneumophila sg 1 was the pathogen more frequently isolated (65.8%), with an average load of 2720 CFU/L (SD = 8393 CFU/L). We have often noticed a high microbial contamination (67% of HPCs >200 CFU/mL) and identified a higher prevalence of Legionella for intermediate values of HPC 22 °C (p = 0.011). 32% of people hosted in retirement homes were exposed to Legionella. CONCLUSIONS Colonization of water-systems of retirement homes and group homes is anything but occasional, and in our survey it mainly affects the former, moreover often due to L. pneumophila sg 1. The search for the pathogen in the biofilm has proved to be of little use. The relationship between HPC and Legionella deserves further studies.
Collapse
Affiliation(s)
- Patrizia De Filippis
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Cinzia Mozzetti
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandra Messina
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Gian Loreto D'Alò
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
30
|
Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective. SUSTAINABILITY 2018. [DOI: 10.3390/su10113967] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The holistic approach of “One Health” includes the consideration of possible links between animals, humans, and the environment. In this review, an effort was made to highlight knowledge gaps and various factors that contribute to the transmission of antibiotic-resistant bacteria between these three reservoirs. Due to the broad scope of this topic, we focused on pig production and selected “indicator bacteria”. In this context, the role of the bacteria livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and extended spectrum beta-lactamases carrying Escherichia coli (ESBL-E) along the pig production was particularly addressed. Hotspots of their prevalence and transmission are, for example, pig stable air for MRSA, or wastewater and manure for ESBL-E, or even humans as vectors in close contact to pigs (farmers and veterinarians). Thus, this review focuses on the biotope “stable environment” where humans and animals are both affected, but also where the end of the food chain is not neglected. We provide basic background information about antibiotics in livestock, MRSA, and ESBL-bacteria. We further present studies (predominantly European studies) in tabular form regarding the risk potentials for the transmission of resistant bacteria for humans, animals, and meat differentiated according to biotopes. However, we cannot guarantee completeness as this was only intended to give a broad superficial overview. We point out sustainable biotope approaches to try to contribute to policy management as critical assessment points in pig housing conditions, environmental care, animal health, and food product safety and quality as well as consumer acceptance have already been defined.
Collapse
|
31
|
Ariza‐Heredia EJ, Chemaly RF. Update on infection control practices in cancer hospitals. CA Cancer J Clin 2018; 68:340-355. [PMID: 29985544 PMCID: PMC7162018 DOI: 10.3322/caac.21462] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/12/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
Therapies in oncology have evolved rapidly over the last years. At the same pace, supportive care for patients receiving cancer therapy has also evolved, allowing patients to safely receive the newest advances in treatment in both an inpatient and outpatient basis. The recognition of the role of infection control and prevention (ICP) in the outcomes of patients living with cancer has been such that it is now a requirement for hospitals and involves multidisciplinary groups. Some unique aspects of ICP for patients with cancer that have gained momentum over the past few decades include catheter-related infections, multidrug-resistant organisms, community-acquired viral infections, and the impact of the health care environment on the horizontal transmission of organisms. Furthermore, as the potential for infections to cross international borders has increased, alertness for outbreaks or new infections that occur outside the area have become constant. As the future approaches, ICP in immunocompromised hosts will continue to integrate emerging disciplines, such as antibiotic stewardship and the microbiome, and new techniques for environmental cleaning and for controlling the spread of infections, such as whole-genome sequencing. CA Cancer J Clin 2018;000:000-000. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Ella J. Ariza‐Heredia
- Associate Professor, Department of Infectious Diseases, Infection Control, and Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Roy F. Chemaly
- Professor, Department of Infectious Diseases, Infection Control, and Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonTX
| |
Collapse
|
32
|
SISTI M, SCHIAVANO G, SANTI MDE, BRANDI G. Ultraviolet germicidal irradiation in tap water contaminated by Aspergillus spp. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2017; 58:E315-E319. [PMID: 29707663 PMCID: PMC5912791 DOI: 10.15167/2421-4248/jpmh2017.58.4.777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
We investigated the effect of ultraviolet germicidal irradiation (UVI) from a low-pressure mercury lamp on several pathogenic Aspergillus spp. including A. flavipes, A. flavus, A. fumigatus, A. glaucus, A. nidulans, A. niger, A. terreus, A. ustus and A. versicolor suspended in tap water under laboratory-scale conditions. It was shown that within 10 s of exposure, time species such as A. glaucus, A. niudulans and A. ustus were completely inactivated, while 40 s were needed for the elimination of all the species tested. A. flavus and A. niger were found to be less susceptible than other species. Based on these results we conclude that UV disinfection could effectively inactivate Aspergillus spp. in tap water. Such disinfection could be used to reduce potential exposure of high-risk patients to fungal aerosols, particularly in hospital settings, where point-of-use (POU) UV light devices could be installed to provide safe water at a very low cost.
Collapse
Affiliation(s)
- M. SISTI
- * Correspondence: Maurizio Sisti, Dipartimento di Scienze Biomolecolari, Sezione di Igiene, Università di Urbino “Carlo Bo”, via S. Chiara 27, 61029 Urbino (PU), Italy. Tel. +39 0722 303548. E-mail:
| | | | | | | |
Collapse
|
33
|
A systematic review of nosocomial waterborne infections in neonates and mothers. Int J Hyg Environ Health 2017; 220:1199-1206. [DOI: 10.1016/j.ijheh.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
|
34
|
Gamage SD, Ambrose M, Kralovic SM, Roselle GA. Water Safety and Legionella in Health Care: Priorities, Policy, and Practice. Infect Dis Clin North Am 2017; 30:689-712. [PMID: 27515143 DOI: 10.1016/j.idc.2016.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Health care facility water distribution systems have been implicated in the transmission of pathogens such as Legionella and nontuberculous mycobacteria to building occupants. These pathogens are natural inhabitants of water at low numbers and can amplify in premise plumbing water, especially if conditions are conducive to their growth. Because patients and residents in health care facilities are often at heightened risk for opportunistic infections, a multidisciplinary proactive approach to water safety is important to balance the various water priorities in health care and prevent water-associated infections in building occupants.
Collapse
Affiliation(s)
- Shantini D Gamage
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA.
| | - Meredith Ambrose
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA
| | - Stephen M Kralovic
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Medical Service, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| | - Gary A Roselle
- National Infectious Diseases Service, Specialty Care Services, Patient Care Services, Veterans Health Administration, Department of Veterans Affairs (VA), 810 Vermont Avenue, NW, Washington, DC 20420, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Medical Service, Cincinnati VA Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| |
Collapse
|
35
|
Dhesi S, Isakjee A, Davies T. Public health in the Calais refugee camp: environment, health and exclusion. CRITICAL PUBLIC HEALTH 2017. [DOI: 10.1080/09581596.2017.1335860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Surindar Dhesi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Arshad Isakjee
- Department of Geography and Planning, University of Liverpool, Liverpool, UK
| | - Thom Davies
- Department of Sociology, University of Warwick, Coventry, UK
| |
Collapse
|
36
|
De Filippis P, Mozzetti C, Amicosante M, D'Alò GL, Messina A, Varrenti D, Giammattei R, Di Giorgio F, Corradi S, D'Auria A, Fraietta R, Gabrieli R. Occurrence of Legionella in showers at recreational facilities. JOURNAL OF WATER AND HEALTH 2017; 15:402-409. [PMID: 28598344 DOI: 10.2166/wh.2017.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Critical environments, including water systems in recreational settings, represent an important source of Legionella pneumophila infection in humans. In order to assess the potential risk for legionellosis, we analyzed Legionella contamination of water distribution systems in 36 recreational facilities equipped with swimming pools. One hundred and sixty water samples were analyzed from shower heads or taps located in locker rooms or in bathrooms. By culture method and polymerase chain reaction, 41/160 samples were positive for Legionella from 12/36 recreational centers. Hotels (57.1%) and sports centers (41.2%) were the most contaminated. L. pneumophila serotypes 2-14 (25/41) were more frequently found than serotype 1 (10/41). Samples at temperature ≥30 °C were more frequently positive than samples at temperature <30 °C (n = 39 vs n = 2, p < 0.00001). The presence of L. pneumophila was investigated by comparison with heterotrophic plate count (HPC), an indicator of water quality. The presence of L. pneumophila was associated more frequently with high and intermediate HPC load at 37 °C, therefore should be considered a potential source when HPC at 37 °C is >10 CFU/mL. Maintenance, good hygiene practices, interventions on the hydraulic system and regular controls must be implemented to minimize exposure to L. pneumophila infection risk.
Collapse
Affiliation(s)
- Patrizia De Filippis
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy E-mail:
| | - Cinzia Mozzetti
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy E-mail:
| | - Massimo Amicosante
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy E-mail:
| | - Gian Loreto D'Alò
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy E-mail:
| | - Alessandra Messina
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy E-mail:
| | - Donatella Varrenti
- Service of Hygiene and Public Health, ASL Roma 6 ex H, Borgo Garibaldi 12, Albano Laziale, Rome 00041, Italy
| | - Roberto Giammattei
- Service of Hygiene and Public Health, ASL Roma 6 ex H, Borgo Garibaldi 12, Albano Laziale, Rome 00041, Italy
| | - Floriana Di Giorgio
- Service of Hygiene and Public Health, ASL Roma 6 ex H, Borgo Garibaldi 12, Albano Laziale, Rome 00041, Italy
| | - Stefania Corradi
- Service of Hygiene and Public Health, ASL Roma 6 ex H, Borgo Garibaldi 12, Albano Laziale, Rome 00041, Italy
| | - Alberto D'Auria
- Service of Hygiene and Public Health, ASL Roma 6 ex H, Borgo Garibaldi 12, Albano Laziale, Rome 00041, Italy
| | - Roberta Fraietta
- Service of Hygiene and Public Health, ASL Roma 6 ex H, Borgo Garibaldi 12, Albano Laziale, Rome 00041, Italy
| | - Rosanna Gabrieli
- Section of Hygiene, Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy E-mail:
| |
Collapse
|
37
|
Williams L. Benefits of Oral Care for Acute and Critically Ill Children. AACN Adv Crit Care 2017; 27:269-273. [PMID: 27959309 DOI: 10.4037/aacnacc2016969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Lori Williams
- Lori Williams is Clinical Nurse Specialist, Universal Care Unit, American Family Children's Hospital, University of Wisconsin Hospital and Clinics, Mail Code C850, 1675 Highland Ave, Madison, WI 53792
| |
Collapse
|
38
|
Prävention von Infektionen, die von Gefäßkathetern ausgehen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:171-206. [DOI: 10.1007/s00103-016-2487-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Analysis of Microorganisms in Hospital Environments and Potential Risks. SPRINGERBRIEFS IN PUBLIC HEALTH 2017. [PMCID: PMC7120946 DOI: 10.1007/978-3-319-49160-8_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Lu J, Buse H, Struewing I, Zhao A, Lytle D, Ashbolt N. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2326-2336. [PMID: 27815848 PMCID: PMC6155451 DOI: 10.1007/s11356-016-7921-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/16/2016] [Indexed: 05/22/2023]
Abstract
Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold = 26, N hot = 26) and shower (N shower = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L-1) of Mycobacterium spp. were highest (100 %, 1.4 × 105), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential pathogens.
Collapse
Affiliation(s)
- Jingrang Lu
- US EPA, Office of Research and Development, 26W Martin Luther King Dr., Cincinnati, OH, 45268, USA.
| | - Helen Buse
- Pegasus Technical Services, Inc., Cincinnati, OH,, USA
| | - Ian Struewing
- Pegasus Technical Services, Inc., Cincinnati, OH,, USA
| | - Amy Zhao
- US EPA, Office of Research and Development, 26W Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Darren Lytle
- US EPA, Office of Research and Development, 26W Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Nicholas Ashbolt
- School of Public Health, University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
|
42
|
Florentin A, Lizon J, Asensio E, Forin J, Rivier A. Water and surface microbiologic quality of point-of-use water filters: A comparative study. Am J Infect Control 2016; 44:1061-2. [PMID: 27086907 DOI: 10.1016/j.ajic.2016.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 10/21/2022]
Abstract
Waterborne pathogens, such Legionella pneumophila and Pseudomonas aeruginosa, are major contributors to hospital-associated infection. Point-of-use water filtration has demonstrated benefits to prevent infection implicating waterborne pathogens. Despite the quality of the filters, misuse may expose patients to these pathogens.
Collapse
|
43
|
Bédard E, Prévost M, Déziel E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen 2016; 5:937-956. [PMID: 27353357 PMCID: PMC5221438 DOI: 10.1002/mbo3.391] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is widely occurring in the environment and is recognized for its capacity to form or join biofilms. The present review consolidates current knowledge on P. aeruginosa ecology and its implication in healthcare facilities premise plumbing. The adaptability of P. aeruginosa and its capacity to integrate the biofilm from the faucet and the drain highlight the role premise plumbing devices can play in promoting growth and persistence. A meta‐analysis of P. aeruginosa prevalence in faucets (manual and electronic) and drains reveals the large variation in device positivity reported and suggest the high variability in the sampling approach and context as the main reason for this variation. The effects of the operating conditions that prevail within water distribution systems (disinfection, temperature, and hydraulic regime) on the persistence of P. aeruginosa are summarized. As a result from the review, recommendations for proactive control measures of water contamination by P. aeruginosa are presented. A better understanding of the ecology of P. aeruginosa and key influencing factors in premise plumbing are essential to identify culprit areas and implement effective control measures.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada.,INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
44
|
Lefebvre A, Quantin C, Vanhems P, Lucet JC, Bertrand X, Astruc K, Chavanet P, Aho-Glélé LS. Impact of new water systems on healthcare-associated colonization or infection with Pseudomonas aeruginosa. GMS HYGIENE AND INFECTION CONTROL 2016; 11:Doc12. [PMID: 27274443 PMCID: PMC4886352 DOI: 10.3205/dgkh000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We aimed to study the impact of new water systems, which were less contaminated with P. aeruginosa, on the incidence of healthcare-associated P. aeruginosa cases (colonizations or infections) in care units that moved to a different building between 2005 and 2014. METHODS Generalized Estimated Equations were used to compare the incidence of P. aeruginosa healthcare-associated cases according to the building. RESULTS Twenty-nine units moved during the study period and 2,759 cases occurred in these units. No difference was observed when the new building was compared with older buildings overall. CONCLUSION Our results did not support our hypothesis of a positive association between water system contamination and the incidence of healthcare-associated P. aeruginosa cases. These results must be confirmed by linking results of water samples and patients' data.
Collapse
Affiliation(s)
- Annick Lefebvre
- Service d’épidémiologie et hygiène hospitalières, CHU Dijon, France
- Laboratoire Microbiologie Environnementale et Risques Sanitaires, Dijon, France
- Equipe opérationnelle d’hygiène, CHU Reims, Hôpital Maison Blanche, Reims, France
| | - Catherine Quantin
- Service de Biostatistiques et Information Médicale, CHU Dijon, France
- Département d’épidémiologie – EA 4184, Université de Bourgogne, Dijon, France
- Inserm UMR 1181 «Biostatistique, Biomathématique, PharmacoEpidémiologie et Maladies Infectieuses», Université de Bourgogne Franche-Comté, Dijon, France
| | - Philippe Vanhems
- Service d’Hygiène Hospitalière, Epidémiologie et Prévention, groupe hospitalier Edouard Herriot, Lyon, France
- Equipe d’épidémiologie et santé publique, Université Claude Bernard, Lyon, France
| | - Jean-Christophe Lucet
- UHLIN, groupe hospitalier Bichat – Claude Bernard, HUPNVS, AP-HP, Paris, France
- Université Paris Diderot, Paris, France
| | - Xavier Bertrand
- Service d’hygiène, CHU Besançon, France
- Laboratoire Chrono-environnement, UMR CNRS 6249, Université de Franche-Comté, Besançon, France
| | - Karine Astruc
- Service d’épidémiologie et hygiène hospitalières, CHU Dijon, France
| | - Pascal Chavanet
- Laboratoire Microbiologie Environnementale et Risques Sanitaires, Dijon, France
- Département de maladies infectieuses, CHU Dijon, France
| | | |
Collapse
|
45
|
Hsu MS, Wu MY, Huang YT, Liao CH. Efficacy of chlorine dioxide disinfection to non-fermentative Gram-negative bacilli and non-tuberculous mycobacteria in a hospital water system. J Hosp Infect 2016; 93:22-8. [DOI: 10.1016/j.jhin.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
|
46
|
Capelletti RV, Moraes ÂM. Waterborne microorganisms and biofilms related to hospital infections: strategies for prevention and control in healthcare facilities. JOURNAL OF WATER AND HEALTH 2016; 14:52-67. [PMID: 26837830 DOI: 10.2166/wh.2015.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water is the main stimulus for the development of microorganisms, and its flow has an important role in the spreading of contaminants. In hospitals, the water distribution system requires special attention since it can be a source of pathogens, including those in the form of biofilms often correlated with resistance of microorganisms to various treatments. In this paper, information relevant to cases of nosocomial infections involving water circuits as a source of contaminants is compiled, with emphasis on the importance of microbiological control strategies to prevent the installation, spreading and growth of microorganisms in hospitals. An overview of the worldwide situation is provided, with emphasis on Brazilian hospitals. Different approaches normally used to control the occurrence of nosocomial infections due to waterborne contaminants are analyzed, and the use of the polysaccharide chitosan for this specific application is briefly discussed.
Collapse
Affiliation(s)
- Raquel Vannucci Capelletti
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), CEP 13083-852, Campinas, São Paulo, Brazil E-mail:
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), CEP 13083-852, Campinas, São Paulo, Brazil E-mail:
| |
Collapse
|
47
|
Zacharias N, Kistemann T, Schreiber C. Application of flow cytometry and PMA-qPCR to distinguish between membrane intact and membrane compromised bacteria cells in an aquatic milieu. Int J Hyg Environ Health 2015; 218:714-22. [DOI: 10.1016/j.ijheh.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022]
|
48
|
Völker S, Kistemann T. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system? ENVIRONMENTAL TECHNOLOGY 2015; 36:2138-2147. [PMID: 25708236 DOI: 10.1080/09593330.2015.1022231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.
Collapse
Affiliation(s)
- Sebastian Völker
- a Institute for Hygiene and Public Health , University of Bonn , Sigmund-Freud-Str. 25, 53105 Bonn , Germany
| | | |
Collapse
|
49
|
Kusić D, Kampe B, Ramoji A, Neugebauer U, Rösch P, Popp J. Raman spectroscopic differentiation of planktonic bacteria and biofilms. Anal Bioanal Chem 2015; 407:6803-13. [PMID: 26123442 DOI: 10.1007/s00216-015-8851-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Both biofilm formations as well as planktonic cells of water bacteria such as diverse species of the Legionella genus as well as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli were examined in detail by Raman microspectroscopy. Production of various molecules involved in biofilm formation of tested species in nutrient-deficient media such as tap water was observed and was particularly evident in the biofilms formed by six Legionella species. Biofilms of selected species of the Legionella genus differ significantly from the planktonic cells of the same organisms in their lipid amount. Also, all Legionella species have formed biofilms that differ significantly from the biofilms of the other tested genera in the amount of lipids they produced. We believe that the significant increase in the synthesis of this molecular species may be associated with the ability of Legionella species to form biofilms. In addition, a combination of Raman microspectroscopy with chemometric approaches can distinguish between both planktonic form and biofilms of diverse bacteria and could be used to identify samples which were unknown to the identification model. Our results provide valuable data for the development of fast and reliable analytic methods based on Raman microspectroscopy, which can be applied to the analysis of tap water-adapted microorganisms without any cultivation step.
Collapse
Affiliation(s)
- Dragana Kusić
- Institut für Physikalische Chemie and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Ashbolt NJ. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens 2015; 4:390-405. [PMID: 26102291 PMCID: PMC4493481 DOI: 10.3390/pathogens4020390] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens.
Collapse
Affiliation(s)
- Nicholas J Ashbolt
- School of Public Health, University of Alberta, Rm 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada.
| |
Collapse
|