1
|
Nasr J, Abdessamad H, Mina J, Haykal T, Jamil Y, Abboud E, Mahdi A, Asmar R, Abi Assaad R, Alameddine D, Bourji A, Mahdi M, Abdulaal R, Tomassian S, El Ahmadieh H, Azzam W, Mokhbat JE, Moghnieh R, Rodriguez-Morales AJ, Husni R. The epidemiology of gram-negative bacteremia in Lebanon: a study in four hospitals. Ann Clin Microbiol Antimicrob 2024; 23:90. [PMID: 39385237 PMCID: PMC11465513 DOI: 10.1186/s12941-024-00740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Gram-negative bacteremia is a life-threatening infection with high morbidity and mortality. Its incidence is rising worldwide, and treatment has become more challenging due to emerging bacterial resistance. Little data is available on the burden and outcome of such infections in Lebanon. METHODS We conducted this retrospective study in four Lebanese hospitals. Data on medical conditions and demographics of 2400 patients diagnosed with a bloodstream infection based on a positive blood culture were collected between January 2014 and December 2020. RESULTS Most bacteremias were caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, with the more resistant organisms being hospital-acquired. Third-generation cephalosporin and quinolone resistance was steady throughout the study, but carbapenem resistance increased. Mortality with such infections is high, but carbapenem resistance or infection with Pseudomonas or Acinetobacter species were significant risk factors for poor outcomes. CONCLUSION This is the first multi-center study from Lebanon on gram-negative bacteremia, resistance patterns, and factors associated with a poor outcome. More surveillance is needed to provide data to guide empirical treatment for bacteremia in Lebanon.
Collapse
Affiliation(s)
- Janane Nasr
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Hilal Abdessamad
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Johnathan Mina
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Tony Haykal
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Yasser Jamil
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Emma Abboud
- Laboratory Director, Mount Lebanon Hospital University Medical Center, Beirut, 1102, Lebanon
| | - Ahmad Mahdi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Rana Asmar
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Rawad Abi Assaad
- Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Dana Alameddine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Alaa Bourji
- Department of Surgery, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Mahmoud Mahdi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Razan Abdulaal
- Department of Internal Medicine, University of Balamand, Balamand, Lebanon
| | - Serge Tomassian
- Department of Internal Medicine, University of Balamand, Balamand, Lebanon
| | - Hanane El Ahmadieh
- Infection Control Coordination, Mount Lebanon Hospital University Medical Center, Beirut, 1102, Lebanon
| | - Wael Azzam
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Jacques E Mokhbat
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Rima Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
| | - Alfonso J Rodriguez-Morales
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon
- Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, 15067, Peru
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102, Lebanon.
| |
Collapse
|
2
|
Leonidou N, Xia Y, Friedrich L, Schütz MS, Dräger A. Exploring the metabolic profile of A. baumannii for antimicrobial development using genome-scale modeling. PLoS Pathog 2024; 20:e1012528. [PMID: 39312576 PMCID: PMC11463759 DOI: 10.1371/journal.ppat.1012528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With the emergence of multidrug-resistant bacteria, the World Health Organization published a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resistant Acinetobacter baumannii designated as "critical". Such isolates, frequently detected in healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of bacterial metabolism and allow the development of new therapeutics is to apply constraint-based modeling. Here, we developed a versatile workflow to build high-quality and simulation-ready genome-scale metabolic models. We applied our workflow to create a metabolic model for A. baumannii and validated its predictive capabilities using experimental nutrient utilization and gene essentiality data. Our analysis showed that our model iACB23LX could recapitulate cellular metabolic phenotypes observed during in vitro experiments, while positive biomass production rates were observed and experimentally validated in various growth media. We further defined a minimal set of compounds that increase A. baumannii's cellular biomass and identified putative essential genes with no human counterparts, offering new candidates for future antimicrobial development. Finally, we assembled and curated the first collection of metabolic reconstructions for distinct A. baumannii strains and analyzed their growth characteristics. The presented models are in a standardized and well-curated format, enhancing their usability for multi-strain network reconstruction.
Collapse
Affiliation(s)
- Nantia Leonidou
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Yufan Xia
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lea Friedrich
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Monika S. Schütz
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
4
|
Wang Q, Zheng S, Liu Y, Wang C, Gu B, Zhang L, Wang S. Isothermal Amplification and Hypersensitive Fluorescence Dual-Enhancement Nucleic Acid Lateral Flow Assay for Rapid Detection of Acinetobacter baumannii and Its Drug Resistance. BIOSENSORS 2023; 13:945. [PMID: 37887138 PMCID: PMC10605404 DOI: 10.3390/bios13100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is among the main pathogens that cause nosocomial infections. The ability to rapidly and accurately detect A. baumannii and its drug resistance is essential for blocking secondary infections and guiding treatments. In this study, we reported a nucleic acid fluorescent lateral flow assay (NFLFA) to identify A. baumannii and carbapenem-resistant A. baumannii (CRAB) in a rapid and quantitative manner by integrating loop-mediated isothermal amplification (LAMP) and silica-based multilayered quantum dot nanobead tag (Si@MQB). First, a rapid LAMP system was established and optimised to support the effective amplification of two bacterial genes in 35 min. Then, the antibody-modified Si@MQB was introduced to capture the two kinds of amplified DNA sequences and simultaneously detect them on two test lines of a LFA strip, which greatly improved the detection sensitivity and stability of the commonly used AuNP-based nucleic acid LFA. With these strategies, the established LAMP-NFLFA achieved detection limits of 199 CFU/mL and 287 CFU/mL for the RecA (house-keeping gene) and blaOXA-23 (drug resistance gene) genes, respectively, within 43 min. Furthermore, the assay exhibited good repeatability and specificity for detecting target pathogens in real complex specimens and environments; thus, the proposed assay undoubtedly provides a promising and low-cost tool for the on-site monitoring of nosocomial infections.
Collapse
Affiliation(s)
- Qian Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shuai Zheng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Liu
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| | - Chongwen Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Long Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
| | - Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, China; (S.Z.); (Y.L.); (C.W.)
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| |
Collapse
|
5
|
Gupta A, Vijayan V, Pant P, Kaur P, Singh TP, Sharma P, Sharma S. Structure prediction and discovery of inhibitors against phosphopantothenoyl cysteine synthetase of Acinetobacter baumannii. J Biomol Struct Dyn 2022; 40:11405-11417. [PMID: 34348086 DOI: 10.1080/07391102.2021.1958699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii is an extremely dangerous multidrug-resistant (MDR) gram-negative pathogen which poses a serious life-threatening risk in immunocompromised patients. Phosphopantothenoyl cysteine synthetase (PPCS) catalyzes the formation of an amide bond between L-cysteine and phosphopantothenic acid (PPA) to form 4'- Phosphopantothenoylcysteine during Coenzyme A (CoA) biosynthesis. CoA is a crucial cofactor for cellular survival and inhibiting its synthesis will result in cell death. Bacterial PPCS differs from eukaryotic PPCS in a number of ways like it exists as a C-terminal domain of a PPCDC/PPCS fusion protein whereas eukaryotic PPCS exists as an independent protein. This difference makes it an attractive drug target. For which a conventional iterative approach of SBDD (structure-based drug design) was used, which began with three-dimensional structure prediction of AbPPCS using PHYRE 2.0. A database of FDA-approved compounds (Drug Bank) was then screened against the target of interest by means of docking score and glide energy, leading to the identification of 6 prominent drug candidates. The shortlisted 6 molecules were further subjected to all-atom MD simulation studies in explicit-solvent conditions (using AMBER force field). The MD simulation studies revealed that the ligands DB65103, DB449108 and DB443210, maintained several H-bonds with intense van der Waals contacts at the active site of the protein with high binding free energies: -11.42 kcal/mol, -10.49 kcal/mol and -10.98 kcal/mol, respectively, calculated via MM-PBSA method. Overall, binding of these compounds at the active site was found to be the most stable and robust highlighting the potential of these compounds to serve as antibacterials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akshita Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Viswanathan Vijayan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Cruz-López F, Martínez-Meléndez A, Villarreal-Treviño L, Morfín-Otero R, Maldonado-Garza H, Garza-González E. Contamination of healthcare environment by carbapenem-resistant Acinetobacter baumannii. Am J Med Sci 2022; 364:685-694. [PMID: 35853519 DOI: 10.1016/j.amjms.2022.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023]
Abstract
Acinetobacter baumannii is frequently found on floors, devices, and environmental sites in hospitals and can survive for prolonged periods and accumulate resistance determinants. The infection and presence of carbapenem-resistant A. baumannii (CRAB) in patients is associated with increased mortality, severe clinical outcomes, and longer lengths of stay at hospitals. This review addresses contamination by CRAB in corporal surfaces of patients and healthcare workers and environmental sites at healthcare-related settings. We summarized published data during the last decade on potential reservoirs for CRAB, including contamination frequency and the involved resistance mechanisms, and some measures associated with the elimination of CRAB from hospital surfaces.
Collapse
Affiliation(s)
- Flora Cruz-López
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Licet Villarreal-Treviño
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara 'Fray Antonio Alcalde', e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Héctor Maldonado-Garza
- Facultad de Medicina y Hospital Universitario 'Dr. José Eleuterio González', Universidad Autónoma de Nuevo León, Monterrey, México
| | - Elvira Garza-González
- Facultad de Medicina y Hospital Universitario 'Dr. José Eleuterio González', Universidad Autónoma de Nuevo León, Monterrey, México.
| |
Collapse
|
7
|
Chaudhuri S, Rasooli I, Oskouei RH, Pishgahi M, Jahangir A, Andisi VF, Schryvers AB. Hybrid antigens expressing surface loops of BauA from Acinetobacter baumannii are capable of inducing protection against infection. Front Immunol 2022; 13:933445. [PMID: 36045685 PMCID: PMC9420935 DOI: 10.3389/fimmu.2022.933445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a human bacterial pathogen of increasing concern in clinical settings due to the emergence of antibiotic resistant strains and the lack of effective therapeutics. Researchers have been exploring new treatment options such as novel drug candidates and vaccines to prevent severe infections and mortality. Bacterial surface antigens that are essential to A. baumannii for acquiring micronutrients (e.g. iron, zinc) from nutrient restricted environments are being considered as targets for vaccines or immunotherapy due to their crucial role for growth and pathogenesis in the human host. BauA, the outer membrane receptor for the siderophore acinetobactin was targeted for vaccine development in this study. Due to challenges in the commercial production of membrane proteins for vaccines, a novel hybrid antigen method developed by our group was used. Exposed loops of BauA were selected and displayed on a foreign scaffold to generate novel hybrid antigens designed to elicit an immune response against the native BauA protein. The potential epitopes were incorporated into a scaffold derived from the C-lobe of Neisseria meningitidis transferrin binding protein B (TbpB), named the loopless C-lobe (LCL). Hybrid proteins displaying three selected loops (5, 7 and 8) individually or in combination were designed and produced and evaluated in an A. baumannii murine sepsis model as vaccine antigens. Immunization with the recombinant BauA protein protected 100% of the mice while immunization with hybrid antigens displaying individual loops achieved between 50 and 100% protection. The LCL scaffold did not induce a protective immune response, enabling us to attribute the observed protection elicited by the hybrid antigens to the displayed loops. Notably, the mice immunized with the hybrid antigen displaying loop 7 were completely protected from infection. Taken together, these results suggest that our hybrid antigen approach is a viable method for generating novel vaccine antigens that target membrane surface proteins necessary for bacterial growth and pathogenesis and the loop 7 hybrid antigen can be a foundation for approaches to combat A. baumannii infections.
Collapse
Affiliation(s)
- Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
| | | | | | - Abolfazl Jahangir
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahid Farshchi Andisi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony B. Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anthony B. Schryvers,
| |
Collapse
|
8
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Abstract
Acinetobacter baumannii is an important hospital-associated pathogen that causes antibiotic resistant infections and reoccurring hospital outbreaks. A. baumannii’s ability to asymptomatically colonize patients is a risk factor for infection and exacerbates its spread. However, there is little information describing the mechanisms it employs to colonize patients. A. baumannii often colonizes the upper respiratory tract and skin. Antibiotic use is a risk factor for colonization and infection suggesting that A. baumannii likely competes with commensal bacteria to establish a niche. To begin to investigate this possibility, we cocultured A. baumannii and commensal bacteria of the upper respiratory tract and skin. In conditions that mimic iron starvation experienced in the host, we observed that A. baumannii inhibits Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and Corynebacterium striatum. Then using an ordered transposon library screen we identified the A. baumannii siderophore acinetobactin as the causative agent of the inhibition phenotype. Using mass spectrometry, we show that acinetobactin is released from A. baumannii under our coculture conditions and that purified acinetobactin can inhibit C. striatum and S. hominis. Together our data suggest that acinetobactin may provide a competitive advantage for A. baumannii over some respiratory track and skin commensal bacteria and possibly support its ability to colonize patients. IMPORTANCE The ability of Acinetobacter baumannii to asymptomatically colonize patients is a risk factor for infection and exacerbates its clinical spread. However, there is minimal information describing how A. baumannii asymptomatically colonizes patients. Here we provide evidence that A. baumannii can inhibit the growth of many skin and upper respiratory commensal bacteria through iron competition and identify acinetobactin as the molecule supporting its nutritional advantage. Outcompeting endogenous commensals through iron competition may support the ability of A. baumannii to colonize and spread among patients.
Collapse
|
10
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
11
|
Abstract
Gram-negative bacteremia is a devastating public health threat, with high mortality in vulnerable populations and significant costs to the global economy. Concerningly, rates of both Gram-negative bacteremia and antimicrobial resistance in the causative species are increasing. Gram-negative bacteremia develops in three phases. First, bacteria invade or colonize initial sites of infection. Second, bacteria overcome host barriers, such as immune responses, and disseminate from initial body sites to the bloodstream. Third, bacteria adapt to survive in the blood and blood-filtering organs. To develop new therapies, it is critical to define species-specific and multispecies fitness factors required for bacteremia in model systems that are relevant to human infection. A small subset of species is responsible for the majority of Gram-negative bacteremia cases, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii The few bacteremia fitness factors identified in these prominent Gram-negative species demonstrate shared and unique pathogenic mechanisms at each phase of bacteremia progression. Capsule production, adhesins, and metabolic flexibility are common mediators, whereas only some species utilize toxins. This review provides an overview of Gram-negative bacteremia, compares animal models for bacteremia, and discusses prevalent Gram-negative bacteremia species.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Identification of Nasal Gammaproteobacteria with Potent Activity against Staphylococcus aureus: Novel Insights into the "Noncarrier" State. mSphere 2021; 6:6/1/e01015-20. [PMID: 33408227 PMCID: PMC7802429 DOI: 10.1128/msphere.01015-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasal carriage of Staphylococcus aureus is a risk factor for infection, but it is not yet understood why some individuals carry nasal S. aureus persistently, intermittently, or seemingly not at all when tested via culture methods. This study compared the nasal microbiomes of established S. aureus carriers and noncarriers, identified species associated with noncarriage, and tested them for anti-S. aureus activity using assays developed to model the nutrient-limited nasal mucosa. Staphylococcus aureus nasal carriage provides the bacterial reservoir for opportunistic infection. In comparing the nasal microbiomes of culture-defined persistent S. aureus carriers versus noncarriers, we detected S. aureus DNA in all noses, including those with an established history of S. aureus negativity based on culture. Colonization with Gammaproteobacteria, including Klebsiella aerogenes, Citrobacter koseri, Moraxella lincolnii, and select Acinetobacter spp., was associated with S. aureus noncarriage. We next developed physiological competition assays for testing anti-S. aureus activity of isolated nasal species, utilizing medium modeling the nutrient-limited fluid of the nasal mucosa, polarized primary nasal epithelia, and nasal secretions. K. aerogenes from the nose of an S. aureus noncarrier demonstrated >99% inhibition of S. aureus recovery in all assays, even when S. aureus was coincubated in 9-fold excess. Secreted S. aureus inhibitory proteins from K. aerogenes and M. lincolnii were heat-stable and <30 kDa, fitting the profile of antimicrobial peptides. C. koseri, Acinetobacter haemolyticus, Acinetobacter junii, and Acinetobacter schindleri inhibited S. aureus recovery on nasal epithelia in a contact-dependent manner, while several other species either had no effect or promoted S. aureus growth. Collectively, this project is one of the first to identify resident nasal microbial species that impede S. aureus survival, and it implies that detectable nasal S. aureus results from shifts in microbial community composition. IMPORTANCE Nasal carriage of Staphylococcus aureus is a risk factor for infection, but it is not yet understood why some individuals carry nasal S. aureus persistently, intermittently, or seemingly not at all when tested via culture methods. This study compared the nasal microbiomes of established S. aureus carriers and noncarriers, identified species associated with noncarriage, and tested them for anti-S. aureus activity using assays developed to model the nutrient-limited nasal mucosa. We determined that all nostril swabs contain S. aureus DNA, even swabs from hosts considered to be long-term noncarriers. Select members of the Gammaproteobacteria class were more prevalent in noncarrier than carrier nostrils and demonstrated potent activity against multiple strains of S. aureus. The results described here provide a better understanding of how the nasal microbiome controls S. aureus growth and viability and may be useful in the design of improved S. aureus decolonization strategies.
Collapse
|
13
|
Peters C, Dulon M, Nienhaus A, Schablon A. Occupational Infection Risk with Multidrug-Resistant Organisms in Health Personnel-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16111983. [PMID: 31167449 PMCID: PMC6604006 DOI: 10.3390/ijerph16111983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
The increase in multi-drug-resistant organisms (MDROs) in the last years has become a public health problem. MDROs are partially responsible for numerous nosocomial infections, extended hospital stays, high costs, and high mortality. In addition to methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), Gram-negative bacteria are also a key area of focus. The knowledge of MDROs among the medical staff in the occupational context is limited, with the exception of MRSA. Therefore, a systematic review was carried out to determine the occupational risk for employees posed by MDROs. The search included studies from the year 2000 onwards among personnel who had contact with MDROs. A total of 22 primarily cross-sectional studies in hospital or geriatric care settings were found, with large differences regarding number of participants, examination method, inclusion of a control group, and study quality. The most frequently examined pathogens were extended-spectrum ß-lactamase (ESBL)-producing bacteria with a prevalence of 2.6-48.5%, VRE (0-9.6%), and MRSA (0.9-14.5%). There are only few qualitatively good studies available on MDROs' risk infection for employees in the health service. Any comparison of the results was limited by data heterogeneity. More research is required to describe the occupational risk of infection with MDROs.
Collapse
Affiliation(s)
- Claudia Peters
- Competence Centre for Epidemiology and Health Services Research for Healthcare Professionals (CVcare), University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany.
| | - Madeleine Dulon
- Department of Occupational Medicine, Public health and Hazardous Substances, Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services, 22089 Hamburg, Germany.
| | - Albert Nienhaus
- Competence Centre for Epidemiology and Health Services Research for Healthcare Professionals (CVcare), University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany.
- Department of Occupational Medicine, Public health and Hazardous Substances, Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services, 22089 Hamburg, Germany.
| | - Anja Schablon
- Competence Centre for Epidemiology and Health Services Research for Healthcare Professionals (CVcare), University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany.
| |
Collapse
|
14
|
Diversity of nasal microbiota and its interaction with surface microbiota among residents in healthcare institutes. Sci Rep 2019; 9:6175. [PMID: 30992494 PMCID: PMC6467918 DOI: 10.1038/s41598-019-42548-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Nasal microbial communities may have crucial implications for human health, including for residents of healthcare institutes (HCIs). Factors that determine the diversity of nasal microbiota in HCIs remain unclear. Herein, we used 16S rRNA amplicon sequencing to investigate the relationship between nasal and surface microbiota in three HCIs. Participants were classified into a hospitalised or nonhospitalised group based on their most recent date of hospitalisation. A total of 88 nasal samples and 83 surface samples were analysed. Dysgonomonas and Corynebacterium were the most abundant taxa in the surface and nasal samples, respectively. Significant differences were discovered in microbiota diversity among HCIs when comparing the surface and nasal samples. Fifteen taxa were identified as present in all the surface and nasal samples. SourceTracker analysis revealed that the ventilation conditions of environment might be associated with the proportion of shared microbial communities between nasal and surface. Additionally, as compared with the nonhospitalised group, the hospitalised group had a higher proportion of surface microbiota in their nasal samples, which might lead to a higher risk of human-related microorganisms or pathogens colonising the nasal cavity. The data suggest that nasal bacterial diversity could be influenced by both health status and living environment. Our results therefore highlight the importance of the indoor environment for HCI residents.
Collapse
|
15
|
Tan XL, Liu HY, Long J, Jiang Z, Luo Y, Zhao X, Cai S, Zhong X, Cen Z, Su J, Zhou H. Septic patients in the intensive care unit present different nasal microbiotas. Future Microbiol 2019; 14:383-395. [PMID: 30803270 PMCID: PMC6479279 DOI: 10.2217/fmb-2018-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM The primary objective of this study was to evaluate correlations among mortality, intensive care unit (ICU) length of stay and airway microbiotas in septic patients. MATERIALS & METHODS A deep-sequencing analysis of the 16S rRNA gene V4 region was performed. RESULTS The nasal microbiota in septic patients was dominated by three nasal bacterial types (Corynebacterium, Staphylococcus and Acinetobacter). The Acinetobacter type was associated with the lowest diversity and longest length of stay (median: 9 days), and the Corynebacterium type was associated with the shortest length of stay. We found that the Acinetobacter type in the >9-day group was associated with the highest mortality (33%). CONCLUSION Septic patients have three nasal microbiota types, and the nasal microbiota is related to the length of stay and mortality.
Collapse
Affiliation(s)
- Xi-Lan Tan
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, PR China.,Division of Infection Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Hai-Yue Liu
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun Long
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zhaofang Jiang
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yuemei Luo
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, PR China.,State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xin Zhao
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shumin Cai
- Department of Intensive Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaozhu Zhong
- Division of Infection Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zhongran Cen
- Division of Intensive Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jin Su
- Chronic Airways Diseases Laboratory, Department of Respiratory & Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Hongwei Zhou
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, PR China.,State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
16
|
Klotz P, Higgins PG, Schaubmar AR, Failing K, Leidner U, Seifert H, Scheufen S, Semmler T, Ewers C. Seasonal Occurrence and Carbapenem Susceptibility of Bovine Acinetobacter baumannii in Germany. Front Microbiol 2019; 10:272. [PMID: 30853949 PMCID: PMC6395434 DOI: 10.3389/fmicb.2019.00272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 01/06/2023] Open
Abstract
Acinetobacter baumannii is one of the leading causes of nosocomial infections in humans. To investigate its prevalence, distribution of sequence types (STs), and antimicrobial resistance in cattle, we sampled 422 cattle, including 280 dairy cows, 59 beef cattle, and 83 calves over a 14-month period. Metadata, such as the previous use of antimicrobial agents and feeding, were collected to identify putative determining factors. Bacterial isolates were identified via MALDI-TOF/MS and PCR, antimicrobial susceptibility was evaluated via VITEK2 and antibiotic gradient tests, resistance genes were identified by PCR. Overall, 15.6% of the cattle harbored A. baumannii, predominantly in the nose (60.3% of the A. baumannii isolates). It was more frequent in dairy cows (21.1%) than in beef cattle (6.8%) and calves (2.4%). A seasonal occurrence was shown with a peak between May and August. The rate of occurrence of A. baumannii was correlated with a history of use of 3rd generation cephalosporins in the last 6 months prior to sampling Multilocus sequence typing (Pasteur scheme) revealed 83 STs among 126 unique isolates. Nine of the bovine STs have previously been implicated in human infections. Besides known intrinsic resistance of the species, the isolates did not show additional resistance to the antimicrobial substances tested, including carbapenems. Our data suggest that cattle are not a reservoir for nosocomial A. baumannii but carry a highly diverse population of this species. Nevertheless, some STs seem to be able to colonize both cattle and humans.
Collapse
Affiliation(s)
- Peter Klotz
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Andreas R Schaubmar
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ursula Leidner
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sandra Scheufen
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|