1
|
Maugeri A, Casini B, Esposito E, Bracaloni S, Scarpaci M, Patanè F, Milazzo G, Agodi A, Barchitta M. Impact of ultraviolet light disinfection on reducing hospital-associated infections: a systematic review in healthcare environments. J Hosp Infect 2025; 159:32-41. [PMID: 39924116 DOI: 10.1016/j.jhin.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Hospital-associated infections (HAIs) are a significant burden on healthcare systems. Ultraviolet light (UVL) disinfection has emerged as a potential method for reducing HAIs by decontaminating healthcare environments. AIM To evaluate the effectiveness of UVL in reducing HAIs across various hospital settings. METHODS A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, with searches performed in PubMed, Web of Science, and Scopus through July 2023. Peer-reviewed observational and experimental studies assessing UVL's impact on HAIs were included. Data extraction focused on study characteristics, UVL type, and infection outcomes. Studies focusing on environmental contamination or lacking sufficient data were excluded. FINDINGS Twenty-five studies met the inclusion criteria. UVL types included ultraviolet-C (UV-C), pulsed xenon UV (PX-UV), and unspecified UVL. For PX-UV, several studies reported reductions in infection rates, with some showing up to a 70% decrease in Clostridioides difficile infection rates, especially in high-risk areas such as intensive care units, though results vary across settings, with some studies not observing significant improvements. UV-C disinfection has also been found to reduce HAIs, with its effectiveness varying based on the healthcare setting and targeted pathogens, and it is most effective when used in conjunction with other infection control strategies. CONCLUSION UVL disinfection technologies have demonstrated potential in reducing HAIs, particularly when integrated into a comprehensive infection prevention strategy. Their effectiveness, however, varies by application, pathogen type, and healthcare setting. Further research is needed to optimize UVL implementation and assess its cost-effectiveness in diverse clinical environments.
Collapse
Affiliation(s)
- A Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy.
| | - B Casini
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - E Esposito
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S Bracaloni
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - M Scarpaci
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - F Patanè
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - G Milazzo
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - A Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - M Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| |
Collapse
|
2
|
Thomas S, Bittinger K, Livornese LL. Utilizing the biosimulator to analyze the environmental microbiome within the intensive care units of a hospital. Biotechniques 2025; 77:66-75. [PMID: 40012336 DOI: 10.1080/07366205.2025.2467550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Hospital-acquired infections (HAIs), also known as nosocomial infections, are illnesses contracted during treatment at a healthcare facility and can result in severe or life-threatening complications. HAIs are caused by microorganisms that exhibit resistance to standard antibiotics. HAIs can lead to severe complications, longer stays, and increased mortality, particularly in vulnerable patients. In our previous study, we demonstrated the ability of an engraved Petri dish, referred to as a "biosimulator," to induce adhesion of non-adherent cells and the microbiome. This paper explores the use of the biosimulator to elucidate the microbiome composition within intensive care units (ICUs) in a hospital setting. The biosimulator, with a nutrient-rich bacterial growth medium, was placed in ICUs for 24 h, then incubated for three days under aerobic and anaerobic conditions. Using 16S rRNA sequencing, we profiled the ICU microbiome from multiple samples. Our findings showed that ICU microbiomes closely mirrored those of patients, with microorganisms in the ICU exhibiting stronger interrelationships than in control conditions. The combined use of the biosimulator and profiling offers an effective approach for analyzing and understanding microbiome changes in healthcare settings, particularly in high-risk areas, such as ICUs.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Department of Gastroenterology, Lankenau Medical Center, Wynnewood, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
4
|
Lee LD, Lie L, Bauer M, Bolanos B, Olmsted RN, Varma JK, Parada JP. Reduction of airborne and surface-borne bacteria in a medical center burn intensive care unit using active, upper-room, germicidal ultraviolet (GUV) disinfection. Infect Control Hosp Epidemiol 2024; 45:367-373. [PMID: 37877197 PMCID: PMC10933500 DOI: 10.1017/ice.2023.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE To determine the effectiveness of active, upper-room, germicidal ultraviolet (GUV) devices in reducing bacterial contamination in patient rooms in air and on surfaces as a supplement to the central heating, ventilation, and air conditioning (HVAC) air handling unit (AHU) with MERV 14 filters and UV-C disinfection. METHODS This study was conducted in an academic medical center, burn intensive care unit (BICU), for 4 months in 2022. Room occupancy was monitored and recorded. In total, 402 preinstallation and postinstallation bacterial air and non-high-touch surface samples were obtained from 10 BICU patient rooms. Airborne particle counts were measured in the rooms, and bacterial air samples were obtained from the patient-room supply air vents and outdoor air, before and after the intervention. After preintervention samples were obtained, an active, upper-room, GUV air disinfection system was deployed in each of the patient rooms in the BICU. RESULTS The average levels of airborne bacteria of 395 CFU/m3 before GUV device installation and 37 CFU/m3 after installation indicated an 89% overall decrease (P < .0001). Levels of surface-borne bacteria were associated with a 69% decrease (P < .0001) after GUV device installation. Outdoor levels of airborne bacteria averaged 341 CFU/m3 in March before installation and 676 CFU/m3 in June after installation, but this increase was not significant (P = .517). CONCLUSIONS Significant reductions in air and surface contamination occurred in all rooms and areas and were not associated with variations in outdoor air concentrations of bacteria. The significant decrease of surface bacteria is an unexpected benefit associated with in-room GUV air disinfection, which can potentially reduce overall bioburden.
Collapse
Affiliation(s)
| | - Louise Lie
- Loyola University Medical Center, Maywood, Illinois
| | | | | | | | - Jay K. Varma
- Weill Cornell Medical College, New York, New York
| | - Jorge P. Parada
- Loyola University Medical Center, Maywood, Illinois
- Loyola University Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Nadi ZB, Raisali F, Jafari N, Bayramzadeh S. The influence of physical environment on health care-associated infections: A literature review. Am J Infect Control 2024; 52:229-242. [PMID: 37356457 DOI: 10.1016/j.ajic.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Health care-associated infections (HAIs) are a common issue in health care settings, caused by environmental microorganisms, leading to health risks and financial strain. Despite efforts to reduce HAIs, the role of the physical environment in reducing HAIs is not fully understood. This literature review aimed to identify physical environment variables contributing to HAIs. METHODS A literature search was conducted in scientific databases between 2016 and 2022 using keywords associated with infections and physical environment variables. After screening retrieved articles for eligibility, the articles were analyzed for relevant environmental and infection variables. RESULTS Out of 145, 27 articles were identified. The findings were grouped into 8 categories, including layout design, surfaces, behavior, lighting, Internet of Things, materials, airflow, and air quality, with sub-themes in each group. CONCLUSIONS The physical environment in health care facilities plays a crucial role in reducing and preventing the spread of HAIs. Proper design and construction of health care buildings, including ventilation and air conditioning systems, help prevent infection spread between functional areas. Antimicrobial materials, cleaning and disinfection protocols, and personal hygiene practices, such as hand hygiene, are key factors in infection control. The positioning of hand hygiene stations is also essential to improve compliance among health care professionals.
Collapse
Affiliation(s)
- Zeekra B Nadi
- Healthcare Design Program, College of Architecture and Environmental Design, Kent State University, Kent, OH
| | - Farimah Raisali
- Healthcare Design Program, College of Architecture and Environmental Design, Kent State University, Kent, OH
| | - Nazli Jafari
- Healthcare Design Program, College of Architecture and Environmental Design, Kent State University, Kent, OH
| | - Sara Bayramzadeh
- Healthcare Design Program, College of Architecture and Environmental Design, Kent State University, Kent, OH.
| |
Collapse
|
6
|
Messina G, Amodeo D, Taddeini F, De Palma I, Puccio A, Cevenini G. Wind of change: Better air for microbial environmental control. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100240. [PMID: 37520926 PMCID: PMC9339158 DOI: 10.1016/j.cscee.2022.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 08/01/2023]
Abstract
Background The COVID19 epidemic highlighted the importance of air in the transmission of pathogens. Air disinfection is one of the key points to reduce the risk of transmission both in the health sector and in public, civil and industrial environments. All bacteria and viruses tested to date can be inactivated by UV-C rays. Laboratory tested UV-C systems are increasingly popular and proposed as effective technologies for air purification; few studies have evaluated their performance in populated indoor environments. The aim of this investigation was to evaluate the effectiveness of a UV-C disinfection system for air in a real working context. Methods This experimental study was conducted between December 2020 and February 2021 in an office of the Department of Molecular and Developmental Medicine of the University of Siena, Italy. A pre-final version air purifier (Cleaning Air T12), capable of treating 210 m3/h of air, was first tested for its ability to filter particulates and reduce microbial air contamination in the absence of people. Subsequently, the experiments were conducted in the presence of 3-5 subjects who worked for several hours in an office. During the tests, microbiological samples of air were collected in real time, switching the system on and off periodically. Air samples were collected and incubated on Petri dishes at 36 °C and 22 °C. Statistical analysis was performed with Stata 16 software assuming a significance level of 95%. An interpolating model was identified to describe the dynamics of contamination reduction when the device operates. Results Preliminary tests showed a significant 62.5% reduction in Colony-Forming Units (CFUs) with 36 °C incubation. Reductions in the particulate component were also observed. In the main test, comparison of CFU data, between the device-on phase (90 min) and the subsequent device-off phase (60 min), showed statistically significant increase (p = 0.001) of environmental contamination passing from a mean of 86.6 (65.8-107.4) to 171.1 (143.9-198.3) CFU/m3, that is a rise of about 100%. The interpolating model exhibited a good fit of CFU reduction trend with the device on. Conclusions The system, which mainly uses UV-C lamps for disinfection, was able to significantly reduce environmental and human contamination in real time. Experimental tests have shown that as soon as the device is switched off, after at least half an hour of operation, the healthiness of the air decreases drastically within 10 minutes, bringing the airborne microbial contamination (induced by the presence of operators in the environment) to levels even higher than 150% of the last value with the device on. Re-engineering strategies for system improvement were also discussed.
Collapse
Affiliation(s)
- G Messina
- Post Graduate School of Public Health, University of Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Italy
| | - D Amodeo
- Department of Molecular and Developmental Medicine, University of Siena, Italy
| | - F Taddeini
- Post Graduate School of Public Health, University of Siena, Italy
| | - I De Palma
- Department of Molecular and Developmental Medicine, University of Siena, Italy
| | - A Puccio
- Department of Medical Biotechnologies, Bioengineering Lab, University of Siena, Italy
| | - G Cevenini
- Department of Medical Biotechnologies, Bioengineering Lab, University of Siena, Italy
| |
Collapse
|
7
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, ter Stege J, de Samber M, Munster VJ. UV-C Light Completely Blocks Aerosol Transmission of Highly Contagious SARS-CoV-2 Variants WA1 and Delta in Hamsters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12424-12430. [PMID: 36001075 PMCID: PMC9437662 DOI: 10.1021/acs.est.2c02822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Behavioral and medical control measures have not been effective in containing the spread of SARS-CoV-2 in large part due to the unwillingness of populations to adhere to "best practices". Ultraviolet light with wavelengths of between 200 and 280 nm (UV-C) and, in particular, germicidal ultraviolet light, which refers to wavelengths around 254 nm, have the potential to unobtrusively reduce the risk of SARS-CoV-2 transmission in enclosed spaces. We investigated the effectiveness of a strategy using UV-C light to prevent airborne transmission of the virus in a hamster model. Treatment of environmental air with 254 nm UV-C light prevented transmission of SARS-CoV-2 between individuals in a model using highly susceptible Syrian golden hamsters. The prevention of transmission of SARS-CoV-2 in a natural system by treating elements of the surrounding environment is one more weapon in the arsenal to combat COVID. The results presented indicate that coupling mitigation strategies utilizing UV-C light, along with current methods to reduce transmission risk, have the potential to allow a return to normal indoor activities.
Collapse
Affiliation(s)
- Robert J. Fischer
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Julia R. Port
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Myndi G. Holbrook
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Kwe Claude Yinda
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Jeroen ter Stege
- UVConsult
BV, Hoofdstraat 249, 1611 AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE Eindhoven, The Netherlands
| | - Vincent J. Munster
- Laboratory
of Virology, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 United States
| |
Collapse
|
8
|
Smith M. Ultraviolet-C radiation: A supplemental tool for disinfection. Nursing 2022; 52:35-39. [PMID: 35609075 DOI: 10.1097/01.nurse.0000829900.60122.4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In response to the COVID-19 pandemic, healthcare facilities have purchased more ultraviolet-C (UVC) disinfection devices than in previous years. This article discusses the safety and efficacy of UVC disinfection in healthcare settings.
Collapse
Affiliation(s)
- Mairead Smith
- Mairead Smith is a senior project engineer at ECRI in Pennsylvania
| |
Collapse
|
9
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, Ter Stege J, de Samber M, Munster VJ. UV-C light completely blocks highly contagious Delta SARS-CoV-2 aerosol transmission in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.10.475722. [PMID: 35043111 PMCID: PMC8764719 DOI: 10.1101/2022.01.10.475722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavioral and medical control measures are not effective in containing the spread of SARS-CoV-2. Here we report on the effectiveness of a preemptive environmental strategy using UV-C light to prevent airborne transmission of the virus in a hamster model and show that UV-C exposure completely prevents airborne transmission between individuals.
Collapse
Affiliation(s)
- Robert J Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Jeroen Ter Stege
- UVConsult BV, Hoofdstraat 249, 1611AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
10
|
Lee LD, Delclos G, Berkheiser ML, Barakat MT, Jensen PA. Evaluation of multiple fixed in-room air cleaners with ultraviolet germicidal irradiation, in high-occupancy areas of selected commercial indoor environments. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:67-77. [PMID: 34647857 DOI: 10.1080/15459624.2021.1991581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of ultraviolet germicidal irradiation (UVGI) to combat disease transmission has come into the international spotlight again because of the recent SARS-CoV-2 pandemic and ongoing outbreaks of multidrug resistant organisms in hospitals. Although the implementation of ultraviolet disinfection technology is widely employed in healthcare facilities and its effectiveness has been repeatedly demonstrated, the use of such technology in the commercial sector has been limited. Considering that most disease transmission occurs in commercial, public, and residential indoor environments as opposed to healthcare facilities, there is a need to understand whether ultraviolet (UV) disinfection technology can be effective for mitigating disease transmission in these environments. The results presented here demonstrate that the installation of fixed in-room UVGI air cleaners in commercial buildings, including restaurants and offices, can produce significant reductions in both airborne and surface-borne bacterial contamination. Total airborne reductions after UV implementation at six separate commercial sites averaged 73% (p < 0.0001) with a range of 71-88%. Total non-high touch surface reductions after implementation averaged 55% (p < 0.0001) with a range of 28-88%. All reductions at the mitigated sites were statistically significant. The mean value of indoor airborne bacteria was 320 CFU/m3 before intervention and 76 CFU/m3 after. The mean value of indoor non-high touch surface borne bacteria was 131 CFU/plate before intervention and 47 CFU/plate after. All test locations and controls had their required pandemic cleaning procedures in place for pre- and post-sampling events. Outdoor levels of airborne bacteria were monitored and there was no significant correlation between the levels of airborne bacteria in the outside air as opposed to the indoor air. Rooms with fixed in-room UVGI air cleaners installed had significant CFU reductions on local surface contamination, which is a novel and important finding. Installation of fixed in-room UVGI air cleaners in commercial buildings will decontaminate the indoor environment and reduce hazardous exposure to human pathogens.
Collapse
Affiliation(s)
- Linda D Lee
- University of Texas School of Public Health, Houston, Texas
| | - George Delclos
- University of Texas, Health Science Center at Houston, Houston, Texas
| | - Matthew Lee Berkheiser
- Environmental Health & Safety, University of Texas, Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
11
|
Miranda MN, Sampaio MJ, Tavares PB, Silva AMT, Pereira MFR. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148914. [PMID: 34271374 DOI: 10.1016/j.scitotenv.2021.148914] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
The changes in the chemical structure, surface morphology and crystallinity are reported for three different polymers (LDPE, PET and uPVC) in microplastic form, after being artificially exposed to different aging agents that can affect microplastics in urban environments: ozone, UV-C, and solar radiation. In parallel to the laboratory experiments, the microplastics were exposed to real weathering conditions for three-months in a building rooftop located in the city of Porto (Portugal). By analysing the (virgin and aged) microplastic samples periodically through ATR-FTIR spectroscopy and estimating the Carbonyl Index, it was possible to sketch the aging degree evolution through time and identify the most aggressive agents for each polymer regarding the changes in their chemical structure. SEM and XRD measurements allowed to complement the ATR-FTIR results, giving a more complete picture of the effects of each treatment on each polymer and suggesting that ATR-FTIR measurements are not sufficient to correctly evaluate the aging degree of microplastics. The changes observed in the microplastic particles studied support the theory that microplastics in the environment undergo aging and change their characteristics through time, potentially affecting their behavior and intensifying their impacts.
Collapse
Affiliation(s)
- Mariana N Miranda
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Maria J Sampaio
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Pedro B Tavares
- Centro de Química - Vila Real (CQVR), Departamento de Química, Escola de Ciências da Vida e do Ambiente, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
12
|
Brought to Light: How Ultraviolet Disinfection Can Prevent the Nosocomial Transmission of COVID-19 and Other Infectious Diseases. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has brought to light the role of environmental hygiene in controlling disease transmission. Healthcare facilities are hot spots for infectious pathogens where physical distancing and personal protective equipment (PPE) are not always sufficient to prevent disease transmission. Healthcare facilities need to consider adjunct strategies to prevent transmission of infectious pathogens. In combination with current infection control procedures, many healthcare facilities are incorporating ultraviolet (UV) disinfection into their routines. This review considers how pathogens are transmitted in healthcare facilities, the mechanism of UV microbial inactivation and the documented activity of UV against clinical pathogens. Emphasis is placed on the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as well as multidrug resistant organisms (MDROs) that are commonly transmitted in healthcare facilities. The potential benefits and limitations of UV technologies are discussed to help inform healthcare workers, including clinical studies where UV technology is used in healthcare facilities.
Collapse
|
13
|
El-Tanbouly R, Hassan Z, El-Messeiry S. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Front Mol Biosci 2021; 8:709395. [PMID: 34277711 PMCID: PMC8279815 DOI: 10.3389/fmolb.2021.709395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
The last two decades have seen the discovery of novel retroviruses that have resulted in severe negative consequences for human health. In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged with a high transmission rate and severe effects on human health, with 5% infected persons requiring hospitalisation and 3.81 million deaths to date globally. Aerosol particles containing virions are considered the main source of SARS CoV-2 transmission in this pandemic, with increased infection rates in confined spaces. Consequently, public and private institutions had to institute mitigation measures including the use of facial masks and social distancing to limit the spread of the virus. Moreover, the role of air purification and bio-decontamination is understood as being essential to mitigate viral spread. Various techniques can be applied to bio-decontaminate the air such as the use of filtration and radiation; however, these methods are expensive and not feasible for home use. Another method of air purification is where indoor plants can purify the air by the removal of air pollutants and habituated airborne microbes. The use of indoor plants could prove to be a cost-efficient way of indoor air-purification that could be adapted for a variety of environments with no need for special requirements and can also add an aesthetic value that can have an indirect impact on human health. In this review, we discuss the emergence of the COVID-19 pandemic and the currently used air purification methods, and we propose the use of indoor plants as a new possible eco-friendly tool for indoor air purification and for reducing the spread of COVID-19 in confined places.
Collapse
Affiliation(s)
- Rania El-Tanbouly
- Department of Floriculture, Ornamental Horticulture and Landscape Design, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ziad Hassan
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Thomas RE. Reducing Morbidity and Mortality Rates from COVID-19, Influenza and Pneumococcal Illness in Nursing Homes and Long-Term Care Facilities by Vaccination and Comprehensive Infection Control Interventions. Geriatrics (Basel) 2021; 6:48. [PMID: 34066781 PMCID: PMC8162358 DOI: 10.3390/geriatrics6020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic identifies the problems of preventing respiratory illnesses in seniors, especially frail multimorbidity seniors in nursing homes and Long-Term Care Facilities (LCTFs). Medline and Embase were searched for nursing homes, long-term care facilities, respiratory tract infections, disease transmission, infection control, mortality, systematic reviews and meta-analyses. For seniors, there is strong evidence to vaccinate against influenza, SARS-CoV-2 and pneumococcal disease, and evidence is awaited for effectiveness against COVID-19 variants and when to revaccinate. There is strong evidence to promptly introduce comprehensive infection control interventions in LCFTs: no admissions from inpatient wards with COVID-19 patients; quarantine and monitor new admissions in single-patient rooms; screen residents, staff and visitors daily for temperature and symptoms; and staff work in only one home. Depending on the vaccination situation and the current risk situation, visiting restrictions and meals in the residents' own rooms may be necessary, and reduce crowding with individual patient rooms. Regional LTCF administrators should closely monitor and provide staff and PPE resources. The CDC COVID-19 tool measures 33 infection control indicators. Hand washing, social distancing, PPE (gowns, gloves, masks, eye protection), enhanced cleaning of rooms and high-touch surfaces need comprehensive implementation while awaiting more studies at low risk of bias. Individual ventilation with HEPA filters for all patient and common rooms and hallways is needed.
Collapse
Affiliation(s)
- Roger E Thomas
- Department of Family Medicine, Faculty of Medicine, University of Calgary, Calgary, AB T2M 1M1, Canada
| |
Collapse
|
15
|
Dancer SJ, King MF. Systematic review on use, cost and clinical efficacy of automated decontamination devices. Antimicrob Resist Infect Control 2021; 10:34. [PMID: 33579386 PMCID: PMC7881692 DOI: 10.1186/s13756-021-00894-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/21/2021] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND More evidence is emerging on the role of surface decontamination for reducing hospital-acquired infection (HAI). Timely and adequate removal of environmental pathogens leads to measurable clinical benefit in both routine and outbreak situations. OBJECTIVES This systematic review aimed to evaluate published studies describing the effect of automated technologies delivering hydrogen peroxide (H202) or ultra-violet (UV) light on HAI rates. METHODS A systematic review was performed using relevant search terms. Databases were scanned from January 2005 to March 2020 for studies reporting clinical outcome after use of automated devices on healthcare surfaces. Information collected included device type, overall findings; hospital and ward data; study location, length and size; antimicrobial consumption; domestic monitoring; and infection control interventions. Study sponsorship and duplicate publications were also noted. RESULTS While there are clear benefits from non-touch devices in vitro, we found insufficient objective assessment of patient outcome due to the before-and-after nature of 36 of 43 (84%) studies. Of 43 studies, 20 (47%) used hydrogen peroxide (14 for outbreaks) and 23 (53%) used UV technology (none for outbreaks). The most popular pathogen targeted, either alone or in combination with others, was Clostridium difficile (27 of 43 studies: 63%), followed by methicillin-resistant Staphylococcus aureus (MRSA) (16 of 43: 37%). Many owed funding and/or personnel to industry sponsorship (28 of 43: 65%) and most were confounded by concurrent infection control, antimicrobial stewardship and/or cleaning audit initiatives. Few contained data on device costs and rarely on comparable costs (1 of 43: 2%). There were expected relationships between the country hosting the study and location of device companies. None mentioned the potential for environmental damage, including effects on microbial survivors. CONCLUSION There were mixed results for patient benefit from this review of automated devices using H202 or UV for surface decontamination. Most non-outbreak studies lacked an appropriate control group and were potentially compromised by industry sponsorship. Concern over HAI encourages delivery of powerful disinfectants for eliminating pathogens without appreciating toxicity or cost benefit. Routine use of these devices requires justification from standardized and controlled studies to understand how best to manage contaminated healthcare environments.
Collapse
Affiliation(s)
- Stephanie J Dancer
- Department of Microbiology, Hairmyres Hospital, NHS, Lanarkshire, G75 8RG, Scotland, UK.
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | | |
Collapse
|
16
|
McGinn C, Scott R, Donnelly N, Roberts KL, Bogue M, Kiernan C, Beckett M. Exploring the Applicability of Robot-Assisted UV Disinfection in Radiology. Front Robot AI 2021; 7:590306. [PMID: 33501347 PMCID: PMC7815819 DOI: 10.3389/frobt.2020.590306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
The importance of infection control procedures in hospital radiology departments has become increasingly apparent in recent months as the impact of COVID-19 has spread across the world. Existing disinfectant procedures that rely on the manual application of chemical-based disinfectants are time consuming, resource intensive and prone to high degrees of human error. Alternative non-touch disinfection methods, such as Ultraviolet Germicidal Irradiation (UVGI), have the potential to overcome many of the limitations of existing approaches while significantly improving workflow and equipment utilization. The aim of this research was to investigate the germicidal effectiveness and the practical feasibility of using a robotic UVGI device for disinfecting surfaces in a radiology setting. We present the design of a robotic UVGI platform that can be deployed alongside human workers and can operate autonomously within cramped rooms, thereby addressing two important requirements necessary for integrating the technology within radiology settings. In one hospital, we conducted experiments in a CT and X-ray room. In a second hospital, we investigated the germicidal performance of the robot when deployed to disinfect a CT room in <15 minutes, a period which is estimated to be 2-4 times faster than current practice for disinfecting rooms after infectious (or potentially infectious) patients. Findings from both test sites show that UVGI successfully inactivated all of measurable microbial load on 22 out of 24 surfaces. On the remaining two surfaces, UVGI reduced the microbial load by 84 and 95%, respectively. The study also exposes some of the challenges of manually disinfecting radiology suites, revealing high concentrations of microbial load in hard-to-reach places. Our findings provide compelling evidence that UVGI can effectively inactivate microbes on commonly touched surfaces in radiology suites, even if they were only exposed to relatively short bursts of irradiation. Despite the short irradiation period, we demonstrated the ability to inactivate microbes with more complex cell structures and requiring higher UV inactivation energies than SARS-CoV-2, thus indicating high likelihood of effectiveness against coronavirus.
Collapse
Affiliation(s)
- Conor McGinn
- School of Engineering, Trinity College Dublin, Dublin, Ireland
- Akara Robotics, Dublin, Ireland
| | - Robert Scott
- School of Engineering, Trinity College Dublin, Dublin, Ireland
| | | | - Kim L. Roberts
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Marina Bogue
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Michael Beckett
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Gordon D, Ward J, Yao CJ, Lee J. Built Environment Airborne Infection Control Strategies in Pandemic Alternative Care Sites. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2020; 14:38-48. [PMID: 33307835 DOI: 10.1177/1937586720979832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES, PURPOSES, OR AIM To identify design strategies utilized in airborne infection isolation and biocontainment patient rooms that improve infection control potential in an alternative care environment. BACKGROUND As SARS-CoV-2 spreads and health care facilities near or exceed capacity, facilities may implement alternative care sites (ACSs). With COVID-19 surges predicted, developing additional capacity in alternative facilities, including hotels and convention centers, into patient care environments requires early careful consideration of the existing space constraints, infrastructure, and modifications needed for patient care and infection control. Design-based strategies utilizing engineering solutions have the greatest impact, followed by medical and operational strategies. METHODS This article evaluates infection control and environmental strategies in inpatient units and proposes system modifications to ACS surge facilities to reduce infection risk and improve care environments. RESULTS Although adequate for an acute infectious disease outbreak, existing capacity in U.S. biocontainment units and airborne infection isolation rooms is not sufficient for widespread infection control and isolation during a pandemic. To improve patients' outcomes and decrease infection transmission risk in the alternative care facility, hospital planners, administrators, and clinicians can take cues from evidence-based strategies implemented in biocontainment units and standard inpatient rooms. CONCLUSIONS Innovative technologies, including optimized air-handling systems with ultraviolet and particle filters, can be an essential part of an infection control strategy. For flexible surge capacity in future ACS and hospital projects, interdisciplinary design and management teams should apply strategies optimizing the treatment of both infectious patients and minimizing the risk to health care workers.
Collapse
Affiliation(s)
| | - Jane Ward
- Uniformed Services University, Bethesda, MD, USA
| | - Christopher J Yao
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Joyce Lee
- 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Cooper CW, Aithinne KAN, Stevenson BS, Black JE, Johnson DL. Comparison and evaluation of a high volume air sampling system for the collection of Clostridioides difficile endospore aerosol in health care environments. Am J Infect Control 2020; 48:1354-1360. [PMID: 32334002 DOI: 10.1016/j.ajic.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Environmental contamination of patient rooms and adjacent areas with C. difficile spores is a recognized transmission risk. Previous studies have shown that spores are aerosolized during patient care. These spores can remain airborne for extended periods and may contaminate distant surfaces. High-volume air sampling equipment allows for the collection of a large volume of air and was evaluated in the collection of C. difficile aerosol. METHOD Air samplers evaluated in this research included the DFU-1000, XMX/2L-MIL, Biocapture-650, and a MB2. Aerosols of C. difficile were generated in a 5-m3 chamber and each air sampler sampled in the aerosol test chamber simultaneously with referee air samplers. RESULTS The DFU-1000 achieved the highest efficiency of the 4 air samplers (P = .0145) with a mean efficiency of 38.60%. The relative efficiencies of the Biocapture-650, XMX/2L-MIL, and MB2 were 28.16%, 10.51%, and 3.05%, respectively. DISCUSSION/CONCLUSIONS This study demonstrated high variation based on the sampling method employed. Based on the results of these studies, high-volume air samplers may be effectively applied to sample for airborne C. difficile in health care environments. The high sampling flow rate of the DFU-1000 would allow for the complete sampling of a patient room-sized volume in less than 1 hour.
Collapse
Affiliation(s)
- Casey W Cooper
- Department of Systems and Engineering Management, Air Force Institute of Technology, Wright-Patterson AFB, OH.
| | - Kathleen A N Aithinne
- Department of Occupational and Environmental Health, University of Oklahoma, Hudson College of Public Health, Oklahoma City, OK
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK
| | - Jon E Black
- Bioenvironmental Engineering, Wright Patterson Medical Center, Wright Patterson AFB, OH
| | - David L Johnson
- Department of Occupational and Environmental Health, University of Oklahoma, Hudson College of Public Health, Oklahoma City, OK
| |
Collapse
|
19
|
Pearce-Walker JI, Troup DJ, Ives R, Ikner LA, Rose JB, Kennedy MA, Verhougstraete MP. Investigation of the effects of an ultraviolet germicidal irradiation system on concentrations of aerosolized surrogates for common veterinary pathogens. Am J Vet Res 2020; 81:506-513. [PMID: 32436797 DOI: 10.2460/ajvr.81.6.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether exposure to UV germicidal irradiation (UVGI) reduces concentrations of viable aerosolized microorganisms (attenuated strains of common veterinary pathogens) in a simulated heating, ventilation, and air conditioning (HVAC) system. SAMPLE 42 air samples seeded with bacteriophage MS2 or attenuated strains of Bordetella bronchiseptica, feline calicivirus, feline herpesvirus-1, canine parvovirus, or canine distemper virus (6/microorganism) or with no microorganisms added (6). PROCEDURES A simulated HVAC unit was built that included a nebulizer to aerosolize microorganisms suspended in phosphate-buffered water, a fan to produce airflow, 2 UVGI bulb systems, and an impinger for air sampling. Ten-minute trials (3 with UVGI, 3 without UVGI, and 1 negative control) were conducted for each microorganism. Impingers collected microorganisms into phosphate-buffered water for subsequent quantification with culture-based assays. Results for samples yielding no target microorganisms were recorded as the assay's lower limit of detection. Statistical analysis was not performed. RESULTS The UVGI treatment resulted in subjectively lower concentrations of viable MS2, B bronchiseptica, and canine distemper virus (arithmetic mean ± SD log10 microorganism reduction, 2.57 ± 0.47, ≥ 3.45 ± 0.24, and ≥ 1.50 ± 0.25, respectively) collected from air. Feline herpesvirus-1 was detected in only 1 sample without and no samples with UVGI treatment. Feline calicivirus and canine parvovirus were not detectable in any collected samples. CONCLUSIONS AND CLINICAL RELEVANCE Results for some surrogates of veterinary pathogens suggested a potential benefit to supplementing manual disinfection practices with UVGI-based air cleaning systems in animal care environments. Further research is needed to investigate the utility of UVGI in operating HVAC systems.
Collapse
|
20
|
Bioburden Assessment by Passive Methods on a Clinical Pathology Service in One Central Hospital from Lisbon: What Can it Tell Us Regarding Patients and Staff Exposure? ATMOSPHERE 2020. [DOI: 10.3390/atmos11040351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The assessment and control of microbial contamination in health care facilities is presently a mandatory and vital part of strategies to prevent and control hospital-acquired infections. This study aims to assess the bioburden with two passive sampling methods (30 ventilations grids swabs and 16 electrostatic dust collectors (EDCs)) at Clinical Pathology Services. The fungal burden was characterized through molecular tools, antifungal resistance, and the mycotoxins and cytotoxicity profile. Total bacteria presented the highest prevalence in both matrixes, whereas Gram-bacteria presented the lowest. Swabs presented a higher prevalence (27.6%) for fungal burden. Chrysonilia sitophila presented the highest prevalence in swabs, whereas for EDCs, C. sitophila and Mucor sp. were the most prevalent. Concerning Aspergillus genera on swabs, section Flavi was the one with the highest prevalence (58.02%), whereas, for EDCs, section Versicolores was the only section observed (100%). Aspergillus section Fumigati was detected in 10 swabs and 7 EDC samples and Aspergillus section Versicolores was detected in one EDC sample. Fungal growth on azole-supplemented media was observed in eight EDC samples. No mycotoxins were detected in any of the samples. A low cytotoxic effect was observed in two sites upon incubation of collected samples with A549 and SK cells and in two other sites upon incubation of collected samples with SK cells only. A medium cytotoxic effect was observed with one EDC sample upon incubation with A549 cells. This study reinforces the need of determination of the azole resistance profile for fungal species and allowed a preliminary risk characterization regarding the cytotoxicity. An intervention including the use of a ultraviolet with wavelength between 200 nm and 280 nm (UVC)—emitting device and an increased maintenance and cleaning of the central heating, ventilation, and air conditioning (HVAC) systems should be ensured to promote the reduction of microbial contamination.
Collapse
|
21
|
Dunn AN, Vaisberg P, Fraser TG, Donskey CJ, Deshpande A. Perceptions of Patients, Health Care Workers, and Environmental Services Staff Regarding Ultraviolet Light Room Decontamination Devices. Am J Infect Control 2019; 47:1290-1293. [PMID: 31253549 DOI: 10.1016/j.ajic.2019.04.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mobile ultraviolet C (UV-C) room decontamination devices are widely used in health care facilities; however, there is limited information on the perceptions of patients, health care workers (HCWs), and environmental services staff (EVS-staff) regarding their use for environmental decontamination. METHODS An anonymous questionnaire was administered to participants in 4 medical/surgical units of a tertiary care hospital where UV-C devices were deployed for a 6-month period. Survey questions assessed perceptions regarding the importance of environmental disinfection, effectiveness of UV-C decontamination, willingness to delay hospital admission in order to use UV-C, and safety of UV-C devices. RESULTS Questionnaires were completed by 102 patients, 130 HCWs, and 47 EVS-staff. All of the HCWs and EVS-staff and 99% of the patients agreed that environmental disinfection is important to reduce the risk of exposure from contaminated surfaces. Ninety-eight percent of the EVS-staff, 89% of the HCWs, and 96% of the patients felt that the use of UV-C as an adjunct to routine cleaning increased confidence that rooms are clean. Ninety-four percent of the EVS-staff, 85% of the HCWs, and 90% of the patients expressed a willingness to delay being admitted to a room in order to have UV-C decontamination completed. Seventy-nine percent of the EVS-staff, 76% of the HCWs, and 86% of the patients had no concerns about the safety of UV-C devices. CONCLUSIONS Patients, HCWs, and EVS-staff agreed that environmental disinfection is important and that UV-C devices are efficacious and safe. Educational tools are needed to allay safety concerns expressed by a minority of HCWs and EVS-staff.
Collapse
|
22
|
Effect of a shielded continuous ultraviolet-C air disinfection device on reduction of air and surface microbial contamination in a pediatric oncology outpatient care unit. Am J Infect Control 2019; 47:1248-1254. [PMID: 31053372 DOI: 10.1016/j.ajic.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND For a clean hospital environment, we evaluated whether ultraviolet-C (UV-C) air disinfection reduces airborne and surface microbial contamination in an outpatient pediatric oncology center. METHODS A pre- and post-intervention study compared 6 test locations, where continuous shielded UV-C air disinfection devices were installed, with 10 control locations without UV-C. Pre- and post-intervention air and surface samples were collected for bacterial and fungal cultures. Percent changes in colony forming unit (CFU) counts in the test and control locations were compared. RESULTS Mean bacterial CFU count per cubic meter air and per surface contact plates decreased by 27% (P = .219) and 37% (P = .01), respectively, in test locations compared to 40% (P = .054) and 30% (P = .006) reductions in control locations. Mean fungal CFU count per cubic meter air and per surface contact plates increased by 14% (P = .156) and 19% (P = .048), respectively, in test locations compared to 24% (P = .409) and 2% (P = .34) increases in control locations. CONCLUSIONS There were no consistent statistically significant differences in the air and surface culture results between test locations where UV-C devices were installed and control locations. The effectiveness of UV-C air disinfection in reducing air and surface microbial contamination in outpatient clinical areas where immunocompromised children are encountered was not proven.
Collapse
|
23
|
An Optical Fiber Sensor Based on La₂O₂S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time. SENSORS 2018; 18:s18113754. [PMID: 30400264 PMCID: PMC6263712 DOI: 10.3390/s18113754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023]
Abstract
A novel ultraviolet (UV) optical fiber sensor (UVOFS) based on the scintillating material La2O2S:Eu has been designed, tested, and its performance compared with other scintillating materials and other conventional UV detectors. The UVOFS is based on PMMA (polymethyl methacrylate) optical fiber which includes a scintillating material. Scintillating materials provide a unique opportunity to measure UV light intensity even in the presence of strong electromagnetic interference. Five scintillating materials were compared in order to select the most appropriate one for the UVOFS. The characteristics of the sensor are reported, including a highly linear response to radiation intensity, reproducibility, temperature response, and response time (to pulsed light) based on emission from a UV source (UV fluorescence tube) centered on a wavelength of 308 nm. A direct comparison with the commercially available semiconductor-based UV sensor proves the UVOFS of this investigation shows superior performance in terms of accuracy, long-term reliability, response time and linearity.
Collapse
|
24
|
Joseph A, Henriksen K, Malone E. The Architecture Of Safety: An Emerging Priority For Improving Patient Safety. Health Aff (Millwood) 2018; 37:1884-1891. [DOI: 10.1377/hlthaff.2018.0643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anjali Joseph
- Anjali Joseph is a professor of architecture and the Spartanburg Regional Healthcare System Endowed Chair in Architecture and Health Design, School of Architecture, Clemson University, in South Carolina
| | - Kerm Henriksen
- Kerm Henriksen is a senior adviser, Human Factors and Patient Safety, at the Agency for Healthcare Research and Quality, in Rockville, Maryland
| | - Eileen Malone
- Eileen Malone is a Realizing Improved Patient Care through Human Centered Design in the Operating Room advisory board member, School of Architecture, Clemson University
| |
Collapse
|