1
|
Kawamura A, Uojima H, Chuma M, Shao X, Hidaka H, Nakazawa T, Take A, Sakaguchi Y, Numata K, Kako M, Nozaki A, Azuma S, Horio K, Kusano C, Atsuda K. The change rate in serum nitric oxide may affect lenvatinib therapy in hepatocellular carcinoma. BMC Cancer 2022; 22:912. [PMID: 35999529 PMCID: PMC9396897 DOI: 10.1186/s12885-022-10002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lenvatinib is appropriate for reducing the production of nitric oxide (NO) and facilitating as block angiogenesis. However, to our knowledge, there are no data that support the correlation between NO and clinical response in patients who received lenvatinib therapy for HCC. Therefore, we investigated the correlation between the change rate of NO levels and clinical responses including adverse events (AEs) after lenvatinib therapy for unresectable hepatocellular carcinoma (HCC). Methods This study was conducted using previously collected data from another study. We enrolled 70 patients who received lenvatinib for advanced or unresectable HCC. NO was measured by converting nitrate (NO3−) to nitrite (NO2−) with nitrate reductase, followed by quantitation of NO2− based on Griess reagent. To determine whether lenvatinib influences NO in unresectable HCC, we evaluated the influence of the change rate of NO from baseline after administration of lenvatinib on maximal therapeutic response and SAE. Results After lenvatinib administration, a change rate in the NO from 0.27 to 4.16 was observed. There was no difference between the clinical response to lenvatinib and the change rate of NO (p = 0.632). However, the change rate of NO was significantly lower in patients with AEs than in those without AEs (p = 0.030). When a reduction in NO rate of < 0.8 was defined as a clinically significant reduction of NO (CSRN), the CSRN group had significantly worse progression-free survival (PFS) and overall survival (OS) than the non-CSRN group (p = 0.029 and p = 0.005, respectively). Conclusion Decreased NO levels were associated with the occurrence of AEs and worse prognosis after lenvatinib administration. Change rate in serum NO can be used as predictive markers in patients receiving lenvatinib therapy for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10002-x.
Collapse
Affiliation(s)
- Atsushi Kawamura
- Department of Pharmacy, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan. .,Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
| | - Makoto Chuma
- Department of Gastroenterology, Yokohama City University Hospital, Yokohama, Kanagawa, Japan.,Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Xue Shao
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Takahide Nakazawa
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan.,Nakazawa Internal Medicine Clinic, Sagamihara, Kanagawa, Japan
| | - Akira Take
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Makoto Kako
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Shintaro Azuma
- Department of Pharmacy, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Kazue Horio
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Chika Kusano
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Koichiro Atsuda
- Department of Pharmacy, Kitasato University Hospital, Sagamihara, Kanagawa, Japan.,School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo, Japan
| |
Collapse
|
2
|
Elsonbaty SM, Zahran WE, Moawed FS. Gamma-irradiated β-glucan modulates signaling molecular targets of hepatocellular carcinoma in rats. Tumour Biol 2017; 39:1010428317708703. [PMID: 28810822 DOI: 10.1177/1010428317708703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-glucans are one of the most abundant forms of polysaccharides known as biological response modifiers which influence host's biological response and stimulate immune system. Accordingly, this study was initiated to evaluate irradiated β-glucan as a modulator for cellular signaling growth factors involved in the pathogenesis of hepatocellular carcinoma in rats. Hepatocellular carcinoma was induced with 20 mg diethylnitrosamine/kg BW. Rats received daily by gastric gavage 65 mg irradiated β-glucan/kg BW. It was found that treatment of rats with diethylnitrosamine induced hepatic injury and caused significant increase in liver injury markers with a concomitant significant increase in both hepatic oxidative and inflammatory indices: alpha-fetoprotein, interferon gamma, and interleukin 6 in comparison with normal and irradiated β-glucan-treated groups. Western immunoblotting showed a significant increase in the signaling growth factors: extracellular signal-regulated kinase 1 and phosphoinositide 3-kinase proteins in a diethylnitrosamine-treated group while both preventive and therapeutic irradiated β-glucan treatments recorded significant improvement versus diethylnitrosamine group via the modulation of growth factors that encounters hepatic toxicity. The transcript levels of vascular endothelial growth factor A and inducible nitric oxide synthase genes were significantly higher in the diethylnitrosamine-treated group in comparison with controls. Preventive and therapeutic treatments with irradiated β-glucan demonstrated that the transcript level of these genes was significantly decreased which demonstrates the protective effect of β-glucan. Histological investigations revealed that diethylnitrosamine treatment affects the hepatic architecture throughout the significant severe appearance of inflammatory cell infiltration in the portal area and congestion in the portal vein in association with severe degeneration and dysplasia in hepatocytes all over hepatic parenchyma. The severity of hepatic architecture changes was significantly decreased with both β-glucan therapeutic and preventive treatments. In conclusion, irradiated β-glucan modulated signal growth factors, vascular endothelial growth factor A, extracellular signal-regulated kinase 1, and phosphatidylinositol-3-kinase, which contributed to experimental hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sawsan M Elsonbaty
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Walid E Zahran
- 2 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma Sm Moawed
- 1 National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|