1
|
González Escobar AB, Barco Moreno E, López-Egea Bueno MA, Galván Cano JM, Luque Aranda R, González Gómez A. Retinopathy associated with MELAS syndrome. A case report. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2025; 100:197-201. [PMID: 40058687 DOI: 10.1016/j.oftale.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 03/15/2025]
Abstract
MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) is an inherited disease frequently caused by a mutation in the mitochondrial DNA variant m.3243A>G in the MT-TL1 gene. The most frequent ophthalmologic finding present in 86-87% of patients with this mutation is mitochondrial retinopathy, where the clinical picture may vary from a macular and peripapillary salt-and-pepper granular pattern to chorioretinal atrophy. We present the case of a 47-year-old woman with type 1 diabetes mellitus, epilepsy, leukoencephalopathy, and deafness who was suspected of having mitochondrial disease after fundus examination. We would like to emphasize the importance of suspecting a mitochondrial disease in progressive multisystem disorders associated with neuro-ophthalmological manifestations, since early diagnosis allows for better monitoring of systemic manifestations, reducing morbidity and mortality.
Collapse
Affiliation(s)
| | - E Barco Moreno
- Departamento de Oftalmología, Hospital Virgen de la Victoria, Málaga, Spain
| | | | - J M Galván Cano
- Departamento de Oftalmología, Hospital Virgen de la Victoria, Málaga, Spain
| | - R Luque Aranda
- Departamento de Oftalmología, Hospital Virgen de la Victoria, Málaga, Spain
| | - A González Gómez
- Departamento de Oftalmología, Hospital Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
2
|
Savastano MC, Placidi G, Fossataro C, Giannuzzi F, D'Onofrio NC, Hu L, Cestrone V, D'Agostino E, Biagini I, Paris L, Coppa G, Rizzo C, Kilian R, Chiurazzi P, Bertelli M, Maltese PE, Falsini B, Rizzo S. Retinal Pigment Epithelium and Outer Retinal Atrophy (RORA) in Retinitis Pigmentosa: Functional, Structural, and Genetic Evaluation. Transl Vis Sci Technol 2024; 13:44. [PMID: 39212608 PMCID: PMC11364178 DOI: 10.1167/tvst.13.8.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose To examine whether the extension of retinal pigment epithelium (RPE) and outer retinal atrophy (RORA) and various other morphofunctional parameters correlate with the genetic assessment and severity of retinitis pigmentosa (RP). Methods Thirty-eight patients (76 eyes) with RP were prospectively enrolled and underwent full ophthalmic examination, including visual field testing, full-field electroretinography (ERG), and optical coherence tomography angiography. The severity of the disease was calculated using the RP stage scoring system, and the area of RORA was assessed using the automatically calculated area of sub-RPE illumination. Blood or saliva samples were collected from subjects, and DNA extraction was performed to evaluate genetic mutations and nucleotide and amino acid variations. Results There was a statistically significant correlation between the extent of RORA and patient age, best-corrected visual acuity, ellipsoid zone extension, and disease severity in both eyes (each, P < 0.05). In contrast, RORA did not correlate with either the visual field or the ERG amplitude. Cumulative score and grade severity were both significantly correlated with superficial and deep capillary plexus density (both, P < 0.001) in both eyes. Evaluating RORA, we found genes with an overall less severe phenotype, such as EYS, PCDH15, and PRPF31, and those with a worse phenotype, such as RPGR. Conclusions The correlation of RORA with structural, functional, and genetic assessment in RP disease leads us to consider RORA as a potential biomarker for prediction of disease stage. Multicenter studies are needed to confirm our findings. Translational Relevance The morphofunctional and genetic correlations suggest a role for RORA in RP diagnosis and follow-up.
Collapse
Affiliation(s)
- Maria Cristina Savastano
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Placidi
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Fossataro
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Giannuzzi
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Claudio D'Onofrio
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Hu
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Cestrone
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena D'Agostino
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilaria Biagini
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence and AOU Careggi, Firenze, Italy
| | - Ludovica Paris
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgia Coppa
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara Rizzo
- Ophthalmology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Pietro Chiurazzi
- Medical Genetics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Genomic Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Benedetto Falsini
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stanislao Rizzo
- Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
4
|
Chwiejczak K, Byles D, Gerry P, Von Lany H, Tasiopoulou A, Hattersley A. Multimodal analysis in symptomatic MIDD-associated retinopathy. A case report and literature review. GMS OPHTHALMOLOGY CASES 2023; 13:Doc23. [PMID: 38111473 PMCID: PMC10726563 DOI: 10.3205/oc000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Purpose To present results of contemporary multimodal ophthalmic imaging in a case of maternally inherited diabetes and deafness (MIDD) and a literature review of MIDD. Methods A case of a 47-year-old female with diabetes mellitus, severe insulin resistance, familial lipodystrohy, deafness and increasing problems with vision is reported. A full ophthalmic examination was done, including best corrected visual acuity (BCVA, LogMAR), funduscopy, and imaging studies: optical coherence tomography (OCT), OCT angiography (OCT-A), fundus autofloresence (FAF), visual fields (HVF) 10-2 , electrophysiology (EP) and genetic testing were performed. Literature available on the topic was reviewed. Results BCVA was 0.06 LogMAR in the right eye and 0.1 LogMAR in the left. Funduscopy revealed atrophy (AT) and pigmentary changes but no diabetic retinopathy. HVF confirmed corresponding defects. The imaging and diagnostic tests showed the following abnormalities: FAF: hypoautofluoresence in areas of AT and mottled appearance in the macular and peripapillary area; OCT: attenuation of outer retinal layers and retinal pigment epithelium (RPE) in the AT; OCT-A: thinning of the deep capillary plexus and choriocapillaris; EP: abnormalities on full field electroretinogram (ERG), 30 Hz flicker and single cone flash response; multifocal ERG: reduced responses; genetic testing: A-to-G transition mutation at position 3243 of the mitochondrial genome, typical for MIDD. After one year OCT ganglion cell analysis showed loss of thickness. Conclusions Genetic testing should be considered in diabetic patients with pigmentary retinopathy. Imaging studies and diagnostic testing showed structural and functional retinal changes, confined to the macula and progressive in nature.
Collapse
Affiliation(s)
- Katarzyna Chwiejczak
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- The University of Sydney, Australia
| | - Daniel Byles
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Paul Gerry
- Neurophysiology Department, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Hirut Von Lany
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Anastasia Tasiopoulou
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- Athens Eye Center, Athens, Greece
| | - Andrew Hattersley
- The MacLeod Diabetes and Endocrine Centre, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- College of Medicine and Health, University of Exeter, United Kingdom
| |
Collapse
|
5
|
Guimaraes TACD, Arram E, Shakarchi AF, Georgiou M, Michaelides M. Inherited causes of combined vision and hearing loss: clinical features and molecular genetics. Br J Ophthalmol 2023; 107:1403-1414. [PMID: 36162969 DOI: 10.1136/bjo-2022-321790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Combined vision and hearing loss, also known as dual sensory impairment, can occur in several genetic conditions, including ciliopathies such as Usher and Bardet-Biedl syndrome, mitochondrial DNA disorders and systemic diseases, such as CHARGE, Stickler, Waardenburg, Alport and Alstrom syndrome. The retinal phenotype may point to the diagnosis of such disorders. Herein, we aim to provide a comprehensive review of the molecular genetics and clinical features of the most common non-chromosomal inherited disorders to cause dual sensory impairment.
Collapse
Affiliation(s)
| | - Elizabeth Arram
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Ahmed F Shakarchi
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michalis Georgiou
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
6
|
Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Issa PC. Mitochondrial Retinopathy. Ophthalmol Retina 2021; 6:65-79. [PMID: 34257060 DOI: 10.1016/j.oret.2021.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To report the retinal phenotype and the associated genetic and systemic findings in patients with mitochondrial disease. DESIGN Retrospective case series. PARTICIPANTS Twenty-three patients with retinopathy and mitochondrial disease, including chronic progressive external ophthalmoplegia (CPEO), maternally inherited diabetes and deafness (MIDD), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Kearns-Sayre syndrome, neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, and other systemic manifestations. METHODS Review of case notes, retinal imaging, electrophysiologic assessment, molecular genetic testing including protein modeling, and histologic analysis of muscle biopsy. MAIN OUTCOME MEASURES Phenotypic characteristics of mitochondrial retinopathy. RESULTS Genetic testing identified sporadic large-scale mitochondrial DNA deletions and variants in MT-TL1, MT-ATP6, MT-TK, MT-RNR1, or RRM2B. Based on retinal imaging, 3 phenotypes could be differentiated: type 1 with mild, focal pigmentary abnormalities; type 2 characterized by multifocal white-yellowish subretinal deposits and pigment changes limited to the posterior pole; and type 3 with widespread granular pigment alterations. Advanced type 2 and 3 retinopathy presented with chorioretinal atrophy that typically started in the peripapillary and paracentral areas with foveal sparing. Two patients exhibited a different phenotype: 1 revealed an occult retinopathy, and the patient with RRM2B-associated retinopathy showed no foveal sparing, no severe peripapillary involvement, and substantial photoreceptor atrophy before loss of the retinal pigment epithelium. Two patients with type 1 disease showed additional characteristics of mild macular telangiectasia type 2. Patients with type 1 and mild type 2 or 3 disease demonstrated good visual acuity and no symptoms associated with the retinopathy. In contrast, patients with advanced type 2 or 3 disease often reported vision problems in dim light conditions, reduced visual acuity, or both. Short-wavelength autofluorescence usually revealed a distinct pattern, and near-infrared autofluorescence may be severely reduced in type 3 disease. The retinal phenotype was key to suspecting mitochondrial disease in 11 patients, whereas 12 patients were diagnosed before retinal examination. CONCLUSIONS Different types of mitochondrial retinopathy show characteristic features. Even in absence of visual symptoms, their recognition may facilitate the often challenging and delayed diagnosis of mitochondrial disease, in particular in patients with mild or nebulous multisystem disease.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christina von Landenberg
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carla Gliem
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Department of Epileptology, Life & Brain Center, University Hospital Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Richard Caswell
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, United Kingdom
| | - Victoria Nesbitt
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Nuffield Department of Women's & Reproductive Health, The Churchill Hospital, Oxford, United Kingdom
| | - Cornelia Kornblum
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
Oh JK, Lima de Carvalho JR, Nuzbrokh Y, Ryu J, Chemudupati T, Mahajan VB, Sparrow JR, Tsang SH. Retinal Manifestations of Mitochondrial Oxidative Phosphorylation Disorders. Invest Ophthalmol Vis Sci 2021; 61:12. [PMID: 33049060 PMCID: PMC7571321 DOI: 10.1167/iovs.61.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this paper was to discuss manifestations of primary mitochondrial dysfunctions and whether the retinal pigment epithelium or the photoreceptors are preferentially affected. Methods A retrospective analysis was performed of patients with clinically and laboratory confirmed diagnoses of maternally inherited diabetes and deafness (MIDD) or Kearns–Sayre syndrome (KSS). Patients underwent full ophthalmic examination, full-field electroretinogram, and multimodal imaging studies, including short-wavelength autofluorescence, spectral domain-optical coherence tomography, and color fundus photography. Results A total of five patients with MIDD and four patients with KSS were evaluated at two tertiary referral centers. Mean age at initial evaluation was 50.3 years old. Nascent outer retinal tubulations corresponding with faint foci of autofluorescence were observed in two patients with MIDD. Characteristic features of this cohort included a foveal sparing phenotype observed in 13 of 18 eyes (72%), global absence of intraretinal pigment migration, and preserved retinal function on full-field electroretinogram testing in 12 of 16 eyes (75%). One patient diagnosed with MIDD presented with an unusual pattern of atrophy surrounding the parapapillary region and one patient with KSS presented with an atypical choroideremia-like phenotype. Conclusions MIDD and KSS are phenotypically heterogeneous disorders. Several features of disease suggest that primary mitochondrial dysfunction may first affect the retinal pigment epithelium followed by secondary photoreceptor loss. Similarities between primary mitochondrial degenerations and retinal disorders, such as age-related macular degeneration may suggest a primary role of mitochondria in the pathogenesis of these oligogenic disorders.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,State University of New York at Downstate Medical Center, Brooklyn, New York, United States
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Yan Nuzbrokh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States
| | - Joseph Ryu
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States
| | - Teja Chemudupati
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Janet R Sparrow
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Stargardt disease is the most common inherited macular dystrophy but has a wide clinical spectrum, and several inherited macular dystrophies have phenotypic similarities that can make clinical diagnosis challenging. This review seeks to highlight key clinical and multimodal imaging features to aid clinicians in accurate diagnosis. RECENT FINDINGS Multimodal imaging has provided additional information to aid in the diagnosis of Stargardt disease and its masquerades. These data from multimodal imaging are important to correlate with findings from clinical examination to help support the clinical diagnosis or guide molecular investigations. SUMMARY This review highlights the key similarities and differences, in history, clinical examination and multimodal imaging, to help distinguish between Stargardt disease and other macular dystrophies. These findings can help direct a focused molecular analysis for accurate diagnosis, which is critical in the era of gene and stem cell therapies.
Collapse
Affiliation(s)
- Aaron M Ricca
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
9
|
Müller PL, Liefers B, Treis T, Rodrigues FG, Olvera-Barrios A, Paul B, Dhingra N, Lotery A, Bailey C, Taylor P, Sánchez CI, Tufail A. Reliability of Retinal Pathology Quantification in Age-Related Macular Degeneration: Implications for Clinical Trials and Machine Learning Applications. Transl Vis Sci Technol 2021; 10:4. [PMID: 34003938 PMCID: PMC7938003 DOI: 10.1167/tvst.10.3.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the interreader agreement for grading of retinal alterations in age-related macular degeneration (AMD) using a reading center setting. Methods In this cross-sectional case series, spectral-domain optical coherence tomography (OCT; Topcon 3D OCT, Tokyo, Japan) scans of 112 eyes of 112 patients with neovascular AMD (56 treatment naive, 56 after three anti-vascular endothelial growth factor injections) were analyzed by four independent readers. Imaging features specific for AMD were annotated using a novel custom-built annotation platform. Dice score, Bland-Altman plots, coefficients of repeatability, coefficients of variation, and intraclass correlation coefficients were assessed. Results Loss of ellipsoid zone, pigment epithelium detachment, subretinal fluid, and drusen were the most abundant features in our cohort. Subretinal fluid, intraretinal fluid, hypertransmission, descent of the outer plexiform layer, and pigment epithelium detachment showed highest interreader agreement, while detection and measures of loss of ellipsoid zone and retinal pigment epithelium were more variable. The agreement on the size and location of the respective annotation was more consistent throughout all features. Conclusions The interreader agreement depended on the respective OCT-based feature. A selection of reliable features might provide suitable surrogate markers for disease progression and possible treatment effects focusing on different disease stages. Translational Relevance This might give opportunities for a more time- and cost-effective patient assessment and improved decision making as well as have implications for clinical trials and training machine learning algorithms.
Collapse
Affiliation(s)
- Philipp L. Müller
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Bart Liefers
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim Treis
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Filipa Gomes Rodrigues
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Abraham Olvera-Barrios
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Bobby Paul
- Barking, Havering and Redbridge University Hospitals NHS Trust, Romford, UK
| | | | - Andrew Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clare Bailey
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Paul Taylor
- Institute of Health Informatics, University College London, London, UK
| | - Clarisa I. Sánchez
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|