1
|
Sodsook W, Kobayashi Y, Kamimoto H, Niki Y, Yokoo K, Chantarawaratit PO, Moriyama K. Roles of B-cell lymphoma 6 in orthodontic tooth movement of rat molars. Eur J Orthod 2025; 47:cjaf006. [PMID: 39917993 DOI: 10.1093/ejo/cjaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
INTRODUCTION B-cell lymphoma 6 (Bcl6) inhibits osteoclast differentiation in vitro; however, its role in orthodontic tooth movement (OTM) remains unclear. This study aimed to investigate the role of Bcl6 in OTM of rat molars. MATERIALS AND METHODS OTM was performed on the maxillary first molars of male rats using nickel-titanium coil springs (25 gf) for 14 days with or without local injection of FX1 (50 mg/kg), a Bcl6 inhibitor (n = 10 per group). Micro-computed tomography (CT) images were used to analyse OTM distance and bone morphometric parameters. Immunohistochemistry (IHC) determined Bcl6 expression and tartrate-resistant acid phosphatase staining (TRAP) staining assessed osteoclast differentiation. TRAP staining, and reverse transcription-quantitative polymerase chain reaction determined the effect of FX1 (1 μM) on in vitro rat osteoclast differentiation. The effect of FX1 on cell proliferation and Smad4 expression in periodontal ligament (PDL) cells was determined. RESULTS Administration of FX1 significantly increased OTM distance and decreased the bone/tissue volume compared with vehicle treatment. IHC staining showed that the vehicle-OTM group had higher expression of Bcl6 than the FX1-OTM group. The number of osteoclasts on the compression side was significantly higher in the FX1-OTM group than that in the vehicle-OTM group. FX1 enhanced osteoclast differentiation and expression of Nfatc1, Dc-stamp, and Ctsk mRNA in osteoclasts in vitro. FX1 significantly promotes PDL cell proliferation in vivo and in vitro. LIMITATIONS We evaluated only 14 days of OTM. CONCLUSIONS Bcl6 may play an important role in OTM via modulation of osteoclast differentiation and PDL cell proliferation.
Collapse
Affiliation(s)
- Wasupol Sodsook
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathum Wan, Bangkok, Thailand
- Institute of Science Tokyo and Chulalongkorn University International Joint Degree Doctor of Philosophy Program in Orthodontics
| | - Yukiho Kobayashi
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Kamimoto
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Yuki Niki
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Koji Yokoo
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Pintu-On Chantarawaratit
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathum Wan, Bangkok, Thailand
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Huang W, Wu H, Zheng B, Liu Y. The effects of luteolin on orthodontic tooth movement and relapse. Am J Orthod Dentofacial Orthop 2025; 167:232-241. [PMID: 39503670 DOI: 10.1016/j.ajodo.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Luteolin is a natural flavonoid compound that widely exists in human food. Studies have demonstrated luteolin has powerful anti-inflammatory properties and can affect bone remodeling in an inflammatory environment. This study aimed to investigate the effect of luteolin on orthodontic tooth movement (OTM) and relapse after OTM. METHODS Male Sprague Dawley rats were randomly divided into 3 groups (n = 8): OTM, 50 mg/kg/d luteolin, and 100 mg/kg/d luteolin. Then, 50 g of orthodontic force was applied to all animals. A saline solution or corresponding concentration of luteolin was given orally. For the OTM experiment, after 14 days of force application, rats were killed, the maxilla was dissected, and then microcomputed tomography, histologic staining, and western blotting were performed. For the relapse experiment, the spring was removed, and a silicone impression was made to record the relapse status. RESULTS Compared with the OTM alone group, systemic administration of luteolin inhibited OTM and tooth relapse (P <0.05). Increased bone volume, reduced osteoclast activity, and a decrease in osteoclastogenesis-related protein expression were observed in luteolin-treated groups. These effects may be attributed to the inhibition of the nuclear factor-kappa B pathway. CONCLUSIONS Luteolin can significantly inhibit OTM and relapse after OTM. Thus, luteolin is a prospective candidate for enhancing tooth anchorage and preventing relapse in orthodontic treatment.
Collapse
Affiliation(s)
- Wenkai Huang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China
| | - Haopeng Wu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang, Liaoning Province, China.
| |
Collapse
|
3
|
Khorramdelazad H, Bagherzadeh K, Rahimi A, Darehkordi A, Najafi A, Karimi M, Khoshmirsafa M, Hassanshahi G, Safari E, Falak R. A1, an innovative fluorinated CXCR4 inhibitor, redefines the therapeutic landscape in colorectal cancer. Cancer Cell Int 2025; 25:5. [PMID: 39757159 DOI: 10.1186/s12935-024-03584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a globally prevalent malignancy, primarily affecting the colon and rectum, characterized by uncontrolled cellular changes in the intestinal wall lining. Recent evidence underlines the significant role of the CXCL12/CXCR4 axis in the development of CRC, suggesting that inhibiting this pathway could be a promising therapeutic approach. This study focuses on investigating the potential of N, N''-thiocarbonylbis (N'-(3,4-dimethyl phenyl)-2,2,2-trifluoroacetimidamide) (A1), a novel fluorinated CXCR4 inhibitor, through a comprehensive analysis encompassing in silico, in vitro, and in vivo studies. METHODS The molecular dynamic simulation method was employed to compute A1 binding affinity and energy for the CXCR4 receptor compared to AMD3100. In vitro experiments utilized the CT-26 mouse CRC cell line to compare the inhibitory effects of A1 and AMD3100 on tumor cell proliferation and migration. Following the development of the CRC animal model in BALB/c mice, immune system responses within the tumor microenvironment (TME) were evaluated. Flow cytometry and real-time PCR (RT-PCR) were used to measure the effects of AMD3100 and A1 on regulatory T-cell (Treg) infiltration and the expression of CXCR4, vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF), interleukin-10 (IL-10), and tumor growth factor-beta (TGF-β) genes in tumor tissue. Additionally, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) techniques were employed to assess VEGF, IL-10, and TGF-β tissue levels at the protein level. RESULTS Molecular dynamic simulation studies with molecular mechanics Poisson-Boltsman surface area (MM-PBSA) analysis revealed that A1 exhibits significantly lower binding energy for the CXCR4 receptor than AMD3100. A1 effectively inhibited the proliferation of CT-26 cells, significantly reduced tumor cell migration, attenuated Treg infiltration, and suppressed IL-10 and TGF-β expression at both mRNA and protein levels in vivo. Notably, A1 outperformed AMD3100 in reducing tumor size and increasing survival rate in treated animals, with minimal side effects. CONCLUSION These findings emphasize the potential of A1 as a favorable anti-tumor small molecule in CRC. Further validation through rigorous preclinical and clinical studies may position A1 as a promising alternative to AMD3100 in human cancers.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Darehkordi
- Department of Chemistry, Faculty of Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Centre, Institute of Basics Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Bilici Geçer R, Zengin ÖS, Karip BZ, Boran T, Çikler E, Özhan G, Dursun D. Effects of coenzyme Q 10 on orthodontic tooth movement and alveolar bone remodeling in rats. Clin Oral Investig 2024; 28:486. [PMID: 39145807 DOI: 10.1007/s00784-024-05881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVES To evaluate the effects of coenzyme Q10 (CoQ10) on alveolar bone remodeling and orthodontic tooth movement (OTM). MATERIALS AND METHODS An orthodontic appliance was placed in 42 female Sprague‒Dawley rats were divided into two groups: the orthodontic force (OF) group (n = 21) and the OF + CoQ10 (CoQ10) treatment group (n = 21). Each group was divided into 3 subgroups, and the rats were sacrificed on days 3, 7 and 14. The rats in CoQ10 and OF groups were administered 100 mg/kg b.w./day CoQ10 (in 1 mL/b.w. soybean oil) and 1 mL b.w./day soybean oil, respectively, by orogastric gavage. The OTM was measured at the end of the experiment. The osteoclast, osteoblast and capillary numbers; vascular endothelial growth factor (VEGF), receptor activator nuclear kappa B ligand (RANKL) and osteoprotegrin (OPG) levels in tissue; and total antioxidant status (TAS) and total oxidant status (TOS) in blood were determined. RESULTS Compared with the OF group, the CoQ10 treatment group exhibited decreased orthodontic tooth movement and osteoclast and capillary numbers. Indeed, the levels of VEGF and RANKL decreased, while the levels of OPG increased except on day 7. Additionally, the CoQ10 treatment group exhibited lower TOS and higher TAS on days 7 and 14 (p < 0.05). Histological findings showed that the morphology of osteoblasts changed in the CoQ10 group; however, there was no significant difference in the number of osteoblasts between the groups (p > 0.05). CONCLUSION Due to its effect on oxidative stress and inflammation, CoQ10 regulates bone remodeling by inhibiting osteoclast differentiation, promoting osteoblast differentiation and reducing the amount of OTM. CLINICAL RELEVANCE Considering that OTM may be slowed with the use of CoQ10, topics such as orthodontic treatment duration, orthodontic force activation and appointment frequency should be considered in treatment planning. It is predicted that the use of CoQ10 will support the effectiveness of treatment in clinical applications such as preventing relapse in orthodontic treatment by regulating bone modulation and anchorage methods that suppress/optimize unwanted tooth movement.
Collapse
Affiliation(s)
- Rumeysa Bilici Geçer
- Department of Orthodontics, Hamidiye Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey
| | - Özge Sultan Zengin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Betül Zehra Karip
- Department of Histology and Embryology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Çikler
- Department of Histology and Embryology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Derya Dursun
- Department of Orthodontics, Hamidiye Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
5
|
Rintanalert D, Ishida Y, Huang ACS, Hatano-Sato K, Li K, Chantarawaratit PO, Usumi-Fujita R, Hosomichi J, Ono T. SDF-1 involvement in orthodontic tooth movement after tooth extraction. Sci Rep 2024; 14:5048. [PMID: 38424199 PMCID: PMC10904391 DOI: 10.1038/s41598-024-55632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
The stromal cell-derived factor 1 (SDF-1)/chemokine receptor type 4 (CXCR4) axis plays a key role in alveolar bone metabolism during orthodontic tooth movement (OTM). Herein, the effects of the SDF-1/CXCR4 axis on the regional acceleratory phenomenon (RAP) in OTM velocity and on changes in the surrounding periodontium after adjacent tooth extraction in rats were investigated. Six-week-old male Wistar/ST rats underwent left maxillary first molar (M1) extraction and mesial OTM of the left maxillary second molar (M2) with a 10-g force closed-coil spring. Phosphate-buffered saline, immunoglobulin G (IgG) isotype control antibody, or anti-SDF-1 neutralizing monoclonal antibody were injected at the M1 and M2 interproximal areas (10 μg/0.1 mL) for the first three days. Analyses were performed after 1, 3, and 7 days (n = 7). The results demonstrated a significant increase in SDF-1 expression from day 1, which was effectively blocked via anti-SDF-1 neutralizing monoclonal antibody injection. On day 3, the M2 OTM distance and the number of positively stained osteoclasts significantly reduced alongside a reduction in inflammatory markers in the experimental group. Our results demonstrated that serial local injection of the anti-SDF-1 neutralizing monoclonal antibody reduces M2 OTM, osteoclast accumulation, and localized inflammatory responses in an OTM model with tooth extraction-induced RAP.
Collapse
Affiliation(s)
- Duangtawan Rintanalert
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Albert Chun-Shuo Huang
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kasumi Hatano-Sato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kai Li
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Pintu-On Chantarawaratit
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
6
|
The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines 2022; 11:biomedicines11010033. [PMID: 36672541 PMCID: PMC9855775 DOI: 10.3390/biomedicines11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures and hip fractures, which cause great harm to patients. Meanwhile, osteoporosis is mainly treated with anti-osteoporosis drugs that have side effects. Therefore, the development of new treatment modalities has a significant clinical impact. Sympathetic nerves play an important role in various physiological activities and the regulation of osteoporosis as well. Therefore, the role of sympathetic nerves in osteoporosis was reviewed, aiming to provide information for future targeting of sympathetic nerves in osteoporosis.
Collapse
|
7
|
Extracellular vesicles secreted by human periodontal ligament induced osteoclast differentiation by transporting miR-28 to osteoclast precursor cells and further promoted orthodontic tooth movement. Int Immunopharmacol 2022; 113:109388. [DOI: 10.1016/j.intimp.2022.109388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
|
8
|
[68Ga]Ga-Pentixafor and Sodium [18F]Fluoride PET Can Non-Invasively Identify and Monitor the Dynamics of Orthodontic Tooth Movement in Mouse Model. Cells 2022; 11:cells11192949. [PMID: 36230911 PMCID: PMC9562206 DOI: 10.3390/cells11192949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The cellular and molecular mechanisms of orthodontic tooth movement (OTM) are not yet fully understood, partly due to the lack of dynamical datasets within the same subject. Inflammation and calcification are two main processes during OTM. Given the high sensitivity and specificity of [68Ga]Ga-Pentixafor and Sodium [18F]Fluoride (Na[18F]F) for inflammation and calcification, respectively, the aim of this study is to assess their ability to identify and monitor the dynamics of OTM in an established mouse model. To monitor the processes during OTM in real time, animals were scanned using a small animal PET/CT during week 1, 3, and 5 post-implantation, with [68Ga]Ga-Pentixafor and Na[18F]F. Both tracers showed an increased uptake in the region of interest compared to the control. For [68Ga]Ga-Pentixafor, an increased uptake was observed within the 5-week trial, suggesting the continuous presence of inflammatory markers. Na[18F]F showed an increased uptake during the trial, indicating an intensification of bone remodelling. Interim and end-of-experiment histological assessments visualised increased amounts of chemokine receptor CXCR4 and TRAP-positive cells in the periodontal ligament on the compression side. This approach establishes the first in vivo model for periodontal remodelling during OTM, which efficiently detects and monitors the intricate dynamics of periodontal ligament.
Collapse
|