1
|
Tain YL, Hsu CN. Maternal Dietary Strategies for Improving Offspring Cardiovascular-Kidney-Metabolic Health: A Scoping Review. Int J Mol Sci 2024; 25:9788. [PMID: 39337276 PMCID: PMC11432268 DOI: 10.3390/ijms25189788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary regulation has been recognized for its profound impact on human health. The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has given rise to cardiovascular-kidney-metabolic (CKM) syndrome, which constitutes a significant global health burden. Maternal dietary nutrients play a crucial role in fetal development, influencing various programmed processes. This review emphasizes the effects of different types of dietary interventions on each component of CKM syndrome in both preclinical and clinical settings. We also provide an overview of potential maternal dietary strategies, including amino acid supplementation, lipid-associated diets, micronutrients, gut microbiota-targeted diets, and plant polyphenols, aimed at preventing CKM syndrome in offspring. Additionally, we discuss the mechanisms mediated by nutrient-sensing signals that contribute to CKM programming. Altogether, we underscore the interaction between maternal dietary interventions and the risk of CKM syndrome in offspring, emphasizing the need for continued research to facilitate their clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Melatonin and Myo-Inositol: Supporting Reproduction from the Oocyte to Birth. Int J Mol Sci 2021; 22:ijms22168433. [PMID: 34445135 PMCID: PMC8395120 DOI: 10.3390/ijms22168433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Human pregnancy is a sequence of events finely tuned by several molecular interactions that come with a new birth. The precise interlocking of these events affecting the reproductive system guarantees safe embryo formation and fetal development. In this scenario, melatonin and myo-inositol seem to be pivotal not only in the physiology of the reproduction process, but also in the promotion of positive gestational outcomes. Evidence demonstrates that melatonin, beyond the role of circadian rhythm management, is a key controller of human reproductive functions. Similarly, as the most representative member of the inositol’s family, myo-inositol is essential in ensuring correct advancing of reproductive cellular events. The molecular crosstalk mediated by these two species is directly regulated by their availability in the human body. To date, biological implications of unbalanced amounts of melatonin and myo-inositol in each pregnancy step are growing the idea that these molecules actively contribute to reduce negative outcomes and improve the fertilization rate. Clinical data suggest that melatonin and myo-inositol may constitute an optimal dietary supplementation to sustain safe human gestation and a new potential way to prevent pregnancy-associated pathologies.
Collapse
|
3
|
Gambioli R, Forte G, Buzzaccarini G, Unfer V, Laganà AS. Myo-Inositol as a Key Supporter of Fertility and Physiological Gestation. Pharmaceuticals (Basel) 2021; 14:504. [PMID: 34070701 PMCID: PMC8227031 DOI: 10.3390/ph14060504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Pregnancy is a complex process, featuring several necessary changes in women's physiology. Most women undergo healthy pregnancies; even so, several women experience reduced fertility or pathologies related to the pregnancy. In the last years, researchers investigated several molecules as promoters of fertility. Among all, myo-inositol (myo-ins) represents a safe compound that proved useful in issues related to fertility and pregnancy. In fact, myo-ins participates in several signaling processes, including the pathways of insulin and gonadotropins, and, therefore, it is likely to positively affect fertility. In particular, several clinical trials demonstrate that its administration can have therapeutic effects in infertile women, and that it can also be useful as a preventive treatment during pregnancy. Particularly, myo-ins could prevent the onset of neural tube defects and the occurrence of gestational diabetes mellitus, promoting a trouble-free gestation. Due to the safety and efficiency of myo-ins, such a treatment may also substitute several pharmaceuticals, which are contraindicated in pregnancy.
Collapse
Affiliation(s)
| | - Gianpiero Forte
- R&D Department, Lo.Li. Pharma, 00156 Rome, Italy; (R.G.); (G.F.)
| | - Giovanni Buzzaccarini
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padua, 35128 Padua, Italy;
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy;
- System Biology Group Lab, 00161 Rome, Italy
| | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy;
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
4
|
Facchinetti F, Cavalli P, Copp AJ, D’Anna R, Kandaraki E, Greene NDE, Unfer V. An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert Opin Drug Metab Toxicol 2020; 16:1187-1198. [PMID: 32966143 PMCID: PMC7614183 DOI: 10.1080/17425255.2020.1828344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Obstetric history and maternal body composition and lifestyle may be associated with serious complications both for the mother, such as gestational diabetes mellitus (GDM), and for the fetus, including congenital malformations such as neural tube defects (NTDs). AREAS COVERED In view of the recent knowledge, changes in nutritional and physical activity habits ameliorate glycemic control during pregnancy and in turn improve maternal and neonatal health outcomes. Recently, a series of small clinical and experimental studies indicated that supplemenation with inositols, a family of insulin sensitizers, was associated with beneficial impact for both GDM and NTDs. EXPERT OPINION Herein, we discuss the most significant scientific evidence supporting myo-inositol administration as a prophylaxis for the above-mentioned conditions.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Nicholas D. E. Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
5
|
Menichini D, Alrais M, Liu C, Xia Y, Blackwell SC, Facchinetti F, Sibai BM, Longo M. Maternal Supplementation of Inositols, Fucoxanthin, and Hydroxytyrosol in Pregnant Murine Models of Hypertension. Am J Hypertens 2020; 33:652-659. [PMID: 32179885 DOI: 10.1093/ajh/hpaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Myoinositol (M) and D-chiro-inositol (D) are insulin sensitizer compounds, while fucoxanthin (F) and hydroxytyrosol (H) are antioxidant substances. We aim to investigate if the combination of these compounds, will improve the vascular responses in pregnant mouse models of hypertension: a genetic model, transgenic heterozygous mice lacking endothelial nitric oxide synthase gene (eNOS-/+); and environmental, wild-type (WT) mice. Those mouse models will allow a better understanding of the genetic/environmental contribution to hypertension in pregnancy. METHODS eNOS-/+ and WT female were fed high fat diet for 4 weeks, then at 7-8 weeks of age were mated with WT male. On gestational day (GD) 1, they were randomly allocated to receive MDFH treatment or water as control: eNOS-/+ MDFH (n = 13), eNOS-/+ (n = 13), WT-MDFH (n = 14), and WT (n = 20). Systolic blood pressure (SBP) was obtained at GD 18, then dams were sacrificed; fetuses and placentas collected, and 2 mm segments of carotid arteries isolated for vascular responses using the wire-myograph system. Responses to phenylephrine (PE), with/without the NOS inhibitor (N-nitro-l-arginine methyl ester (l-NAME)), and to acetylcholine (Ach) and sodium nitroprussiate (SNP) were performed. RESULTS SBP decreased in eNOS-/+ and WT dams after MDFH supplementation. In eNOS-/+, MDFH lower the contractile response to PE and l-NAME and improved Ach vasorelaxation. In WT dams, MDFH treatment did not affect PE response; MDFH treatment lowered the vascular PE response after incubation with l-NAME. No differences were seen in SNP relaxation in both models. CONCLUSIONS MDFH decreased SBP in both genetically and environmentally hypertensive dams and improved vascular responses mostly in the eNOS-/+ dams.
Collapse
Affiliation(s)
- Daniela Menichini
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- International Doctorate School in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mesk Alrais
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, UTHealth, Houston, Texas, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, UTHealth, Houston, Texas, USA
| | - Sean C Blackwell
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Fabio Facchinetti
- Unit of Obstetrics and Gynecology, Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Baha M Sibai
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Monica Longo
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
6
|
Michlin M, Argaev-Frenkel L, Weinstein-Fudim L, Ornoy A, Rosenzweig T. Maternal N-Acetyl Cysteine Intake Improved Glucose Tolerance in Obese Mice Offspring. Int J Mol Sci 2020; 21:E1981. [PMID: 32183232 PMCID: PMC7139991 DOI: 10.3390/ijms21061981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Exposure to certain environmental factors during the early stages of development was found to affect health in adulthood. Among other environmental factors, oxidative stress has been suggested to be involved in fetal programming, leading to elevated risk for metabolic disorders, including type 2 diabetes; however, the possibility that antioxidant consumption during early life may affect the development of diabetes has scarcely been studied. The aim of this study was to investigate the effects of N-acetyl-l-cysteine (NAC) given during pregnancy and lactation on the susceptibility of offspring to develop glucose intolerance at adulthood. C57bl6/J mice were given NAC during pregnancy and lactation. High fat diet (HFD) was given to offspring at an age of 6 weeks for an additional 9 weeks, till the end of the study. Isolated islets of NAC-treated offspring (6 weeks old, before HFD feeding) had an increased efficacy of glucose-stimulated insulin secretion and a higher resistance to oxidative damage. Following HFD feeding, glucose tolerance and insulin sensitivity of NAC-treated offspring were improved. In addition, islet diameter was lower in male offspring of NAC-treated mice compared to their HFD-fed littermates. NAC consumption during early life improves glucose tolerance in adulthood in mice.
Collapse
Affiliation(s)
- Michal Michlin
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel; (M.M.); (L.A.-F.)
| | - Lital Argaev-Frenkel
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel; (M.M.); (L.A.-F.)
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (L.W.-F.); (A.O.)
| | - Asher Ornoy
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (L.W.-F.); (A.O.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Tovit Rosenzweig
- Departments of Molecular Biology and Nutrition Sciences, Ariel University, Ariel 40700, Israel; (M.M.); (L.A.-F.)
| |
Collapse
|