1
|
van Galen DJM, Martins Costa A, Siche-Pantel F, Kemper R, Rochow N, Brandani M, Halfwerk FR, Arens J. Artificial Placenta and Artificial Womb Technologies for Lung and Kidney Failure: A Holistic Perspective. ASAIO J 2025:00002480-990000000-00688. [PMID: 40279540 DOI: 10.1097/mat.0000000000002443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025] Open
Abstract
Preterm birth remains the leading cause of mortality among neonates. Despite improvements in neonatal intensive care over the years, current treatments for lung and kidney failure are highly invasive, associated with lifelong disability, and limit family integration. Artificial womb and artificial placenta technologies offer a promising alternative by providing more tailored and less invasive neonatal care. Although these technologies share some similarities, artificial womb and artificial placenta technologies differ significantly in terms of treatment initiation, treatment environment, and the potential to support family-centered care. Moreover, even though acute kidney injury is common in neonatal extracorporeal membrane oxygenation (ECMO) patients, current artificial placenta and artificial womb devices lack renal support functionality. Most artificial womb and artificial placenta studies focus on the technical feasibility of these technologies based on in-vivo animal tests. However, translation toward envisioned use of these devices in preterm neonates remains mostly underexposed. A comprehensive stakeholder analysis, including parents and caregivers, is critical to the development of socially acceptable artificial placenta and artificial womb systems. This state-of-the-art review provides an overview of conventional neonatal lung and kidney treatments, delineates the differences between artificial womb and placenta technologies, and addresses the technological and ethical challenges in advancing these technologies toward potential clinical implementation.
Collapse
Affiliation(s)
- Danny J M van Galen
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
| | - Ana Martins Costa
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
| | - Franziska Siche-Pantel
- Policy and Advocacy Department, European Foundation for the Care of Newborn Infants (EFCNI), Munich, Germany
| | - Ruth Kemper
- Policy and Advocacy Department, European Foundation for the Care of Newborn Infants (EFCNI), Munich, Germany
| | - Niels Rochow
- Department of Pediatrics, Paracelsus Medical University, Nuremberg, Germany
- Department of Pediatrics, University Medicine Rostock, Rostock, Germany
| | - Maria Brandani
- Department of Pediatrics, Paracelsus Medical University, Nuremberg, Germany
| | - Frank R Halfwerk
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
- Department of Cardio-Thoracic Surgery, Thorax Centrum Twente, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jutta Arens
- From the Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
2
|
De Bie FR, Binion CC, Antiel RM. Artificial womb technology - A more physiologic solution to treating extreme prematurity. Eur J Obstet Gynecol Reprod Biol X 2025; 25:100359. [PMID: 39817031 PMCID: PMC11732160 DOI: 10.1016/j.eurox.2024.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Treatment of extreme premature infants (EPI) is limited by developmental immaturity primarily of the lung. A paradigm shift towards a more physiologic treatment of EPI as fetal neonates or fetonates, by keeping them in a womb-like environment to allow continued organ maturation, is the rationale for artificial womb technology. In this review, we discuss the artificial placenta and womb technology, it's rationale, the history of its development, the most recent preclinical models described in the literature and finally pertinent ethical considerations.
Collapse
Affiliation(s)
| | - Chase C. Binion
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
3
|
Ikeda H, Watanabe S, Sato S, Fee EL, Carter SWD, Kumagai Y, Takahashi T, Kawamura S, Hanita T, Illanes SE, Choolani MA, Saito M, Kikuchi A, Kemp MW, Usuda H. Upregulation of hepatic nuclear receptors in extremely preterm ovine fetuses undergoing artificial placenta therapy. J Matern Fetal Neonatal Med 2024; 37:2301651. [PMID: 38195120 DOI: 10.1080/14767058.2023.2301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE Extremely preterm infants have low Nuclear Receptor (NR) expression in their developing hepatobiliary systems, as they rely on the placenta and maternal liver for compensation. NRs play a crucial role in detoxification and the elimination of both endogenous and xenobiotic substances by regulating key genes encoding specific proteins. In this study, we utilized an Artificial Placenta Therapy (APT) platform to examine the liver tissue expression of NRs of extremely preterm ovine fetuses. This fetal model, resembling a "knockout placenta," lacks placental and maternal support, while maintaining a healthy extrauterine survival. METHODS Six ovine fetuses at 95 ± 1 d gestational age (GA; term = ∼150 d)/∼600 g delivery weight were maintained on an APT platform for a period of 120 h (APT Group). Six age-matched, in utero control fetuses were delivered at 99-100 d GA (Control Group). Fetal liver tissue samples and blood samples were collected at delivery from both groups and assessed mRNA expression of NRs and target transporters involved in the hepatobiliary transport system using quantitative PCR. Data were tested for group differences with ANOVA (p < .05 deemed significant). RESULTS mRNA expression of NRs was identified in both the placenta and the extremely preterm ovine fetal liver. The expression of HNF4α, LRH1, LXR, ESR1, PXR, CAR, and PPARα/γ were significantly elevated in the liver of the APT Group compared to the Control Group. Moreover, target transporters NTCP, OATP1B3, BSEP, and MRP4 were upregulated, whereas MRP2 and MRP3 were unchanged. Although there was no evidence of liver necrosis or apoptotic changes histologically, there was an impact in the fetal liver of the ATP group at the tissue level with a significant increase in TNFα mRNA, a cytokine involved in liver inflammation, and blood elevation of transaminases. CONCLUSION A number of NRs in the fetal liver were significantly upregulated after loss of placental-maternal support. However, the expression of target transporter genes appeared to be insufficient to compensate role of the placenta and maternal liver and avoid fetal liver damage, potentially due to insufficient excretion of organic anions.
Collapse
Affiliation(s)
- Hideyuki Ikeda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Australia
| | - Sean W D Carter
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sebastian E Illanes
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Mahesh A Choolani
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Atsuo Kikuchi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, Australia
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
4
|
van Haren JS, Delbressine FLM, Monincx M, Hoveling T, Meijer N, Bangaru C, Sterk J, van der Woude DAA, Oei SG, van der Hout-van der Jagt MB. From intra- to extra-uterine: early phase design of a transfer to extra-uterine life support through medical simulation. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1371447. [PMID: 39229370 PMCID: PMC11368740 DOI: 10.3389/fmedt.2024.1371447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Extra-uterine life support technology could provide a more physiologic alternative for the treatment of extremely premature infants, as it allows further fetal growth and development ex utero. Animal studies have been carried out which involved placing fetuses in a liquid-filled incubator, with oxygen supplied through an oxygenator connected to the umbilical vessels. Hence, by delaying lung exposure to air, further lung development and maturation can take place. This medical intervention requires adjustments to current obstetric procedures to maintain liquid-filled lungs through a so-called transfer procedure. Methods Our objective was to develop obstetric device prototypes that allow clinicians to simulate this birth procedure to safely transfer the infant from the mother's uterus to an extra-uterine life support system. To facilitate a user-centered design, implementation of medical simulation during early phase design of the prototype development was used. First, the requirements for the procedure and devices were established, by reviewing the literature and through interviewing direct stakeholders. The initial transfer device prototypes were tested on maternal and fetal manikins in participatory simulations with clinicians. Results & discussion Through analysis of recordings of the simulations, the prototypes were evaluated on effectiveness, safety and usability with latent conditions being identified and improved. This medical simulation-based design process resulted in the development of a set of surgical prototypes and allowed for knowledge building on obstetric care in an extra-uterine life support context.
Collapse
Affiliation(s)
- J. S. van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
| | - F. L. M. Delbressine
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. Monincx
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - T. Hoveling
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - N. Meijer
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
| | - C. Bangaru
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J. Sterk
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - D. A. A. van der Woude
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Obstetrics & Gynecology, Amphia Hospital, Breda, Netherlands
| | - S. G. Oei
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. B. van der Hout-van der Jagt
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
5
|
Cavolo A, Pizzolato D. Ethical reflections on organizing the first human trial of artificial womb technologies. Prenat Diagn 2024; 44:336-342. [PMID: 38204186 DOI: 10.1002/pd.6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
OBJECTIVE To investigate how to protect participants in the artificial womb technology (AWT) human trials. METHOD We compared randomized controlled trials and single arm trials to understand which trial design best balances the interests of science and participants. We also compared AWT trials with comparable settings to understand how to protect participants. RESULTS Randomized trials might fail in reaching a sizeable sample, which could pointlessly expose participants to risks. Furthermore, parents who choose to participate in the trial might expect to receive AWT. Failed expectations might distress parents and hinder the therapeutic relationship. The trial is divided into two steps. First, delivery into AWT involves two participants: the mother and the fetus. As AWT requires a C-section, the procedure cannot be carried out without the mother's consent regardless of fetal benefit. Treatment in AWT, involves one participant: the infant. As for any other invasive intervention, the AWT trial should be suspended if harmful. CONCLUSIONS A single arm trial could prevent some of the methodological and ethical challenges of the randomized trials. Moreover, better decisional tools should be developed to help parents decide whether to participate in the AWT trial. For example, using visual aids or showing the AWT.
Collapse
Affiliation(s)
- Alice Cavolo
- Institute of Biomedical Ethics and History of Medicine (IBME), University of Zurich, Zurich, Switzerland
- Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium
| | - Daniel Pizzolato
- Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium
- European Network of Research Ethics Committees, Bonn, Germany
| |
Collapse
|
6
|
van Haren JS, Delbressine FLM, Schoberer M, te Pas AB, van Laar JOEH, Oei SG, van der Hout-van der Jagt MB. Transferring an extremely premature infant to an extra-uterine life support system: a prospective view on the obstetric procedure. Front Pediatr 2024; 12:1360111. [PMID: 38425664 PMCID: PMC10902175 DOI: 10.3389/fped.2024.1360111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
To improve care for extremely premature infants, the development of an extrauterine environment for newborn development is being researched, known as Artificial Placenta and Artificial Womb (APAW) technology. APAW facilitates extended development in a liquid-filled incubator with oxygen and nutrient supply through an oxygenator connected to the umbilical vessels. This setup is intended to provide the optimal environment for further development, allowing further lung maturation by delaying gas exposure to oxygen. This innovative treatment necessitates interventions in obstetric procedures to transfer an infant from the native to an artificial womb, while preventing fetal-to-neonatal transition. In this narrative review we analyze relevant fetal physiology literature, provide an overview of insights from APAW studies, and identify considerations for the obstetric procedure from the native uterus to an APAW system. Lastly, this review provides suggestions to improve sterility, fetal and maternal well-being, and the prevention of neonatal transition.
Collapse
Affiliation(s)
- Juliette S. van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
| | | | - Mark Schoberer
- Institute for Applied Medical Engineering and Clinic for Neonatology, University Hospital Aachen, Aachen, Germany
| | - Arjan B. te Pas
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Judith O. E. H. van Laar
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - S. Guid Oei
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. Beatrijs van der Hout-van der Jagt
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
7
|
Verrips M, van Haren JS, Oei SG, Moser A, der Hout-van der Jagt MBV. Clinical aspects of umbilical cord cannulation during transfer from the uterus to a liquid-based perinatal life support system for extremely premature infants a qualitative generic study. PLoS One 2023; 18:e0290659. [PMID: 38127930 PMCID: PMC10734990 DOI: 10.1371/journal.pone.0290659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/13/2023] [Indexed: 12/23/2023] Open
Abstract
A liquid-based perinatal life support system (PLS) for extremely premature infants (born before 28 week of gestational age) envisions a connection between the infant's native umbilical cord and an artificial placenta system through cannulation. This system mimics a natural mothers' womb to achieve better organ maturations. The objective of this study is to gain insight into the clinical focus points of umbilical cord cannulation and how cannulation should be addressed in extremely premature infants during the transfer from the uterus to an in-utero simulating liquid-based PLS system. We performed an explorative qualitative study. Twelve medical specialists with knowledge of vessel cannulation participated. We collected data through twelve interviews and two focus group discussions. Data were analyzed using inductive content and constant comparison analysis via open and axial coding. Results were derived on the following topics: (1) cannulation technique, (2) cannula fixation, (3) local and systemic anticoagulation, and (4) vasospasm. A side-entry technique is preferred as this may decrease wall damage, stabilizes the vessel better and ensures continuous blood flow. Sutures, especially via an automatic microsurgery instrument, are favored above glue, stents, or balloons as these may be firmer and faster. Medication possibilities for both vasospasm and anticoagulation should function locally since there were uncertainties regarding the systemic effects. According to the findings of this research, the needed umbilical cord cannulation method should include minimal wall damage, improved vascular stability, blood flow maintenance, a strong fixation connection, and local anticoagulation effect.
Collapse
Affiliation(s)
- M. Verrips
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, the Netherlands
| | - J. S van Haren
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, the Netherlands
- Faculty of Industrial Design, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - S. G Oei
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, the Netherlands
| | - A Moser
- Department of Family Practice, Maastricht University, Maastricht, the Netherlands
| | - M. B. Van der Hout-van der Jagt
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, the Netherlands
- Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
8
|
Kukora SK, Mychaliska GB, Weiss EM. Ethical challenges in first-in-human trials of the artificial placenta and artificial womb: not all technologies are created equally, ethically. J Perinatol 2023; 43:1337-1342. [PMID: 37400494 DOI: 10.1038/s41372-023-01713-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Artificial placenta and artificial womb technologies to support extremely premature neonates are advancing toward clinical testing in humans. Currently, no recommendations exist comparing these approaches to guide study design and optimal enrollment eligibility adhering to principles of research ethics. In this paper, we will explore how scientific differences between the artificial placenta and artificial womb approaches create unique ethical challenges to designing first-in-human trials of safety and provide recommendations to guide ethical study design for initial human translation.
Collapse
Affiliation(s)
- Stephanie K Kukora
- Division of Neonatology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.
- Children's Mercy Bioethics Center, Children's Mercy Hospital, Kansas City, MO, USA.
| | - George B Mychaliska
- Department of Surgery, Section of Pediatric Surgery, Fetal Diagnosis and Treatment Center, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
| | - Elliott Mark Weiss
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
9
|
Usuda H, Watanabe S, T H, Saito M, Sato S, Ikeda H, Kumagai Y, Choolani MC, Kemp MW. Artificial placenta technology: History, potential and perception. Placenta 2023; 141:10-17. [PMID: 37743742 DOI: 10.1016/j.placenta.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
As presently conceptualised, the artificial placenta (AP) is an experimental life support platform for extremely preterm infants (i.e. 400-600 g; 21-23+6 weeks of gestation) born at the border of viability. It is based around the oxygenation of the periviable fetus using gas-exchangers connected to the fetal vasculature. In this system, the lung remains fluid-filled and the fetus remains in a quiescent state. The AP has been in development for some sixty years. Over this time, animal experimental models have evolved iteratively from employing external pump-driven systems used to support comparatively mature fetuses (generally goats or sheep) to platforms driven by the fetal heart and used successfully to maintain extremely premature fetuses weighing around 600 g. Simultaneously, sizable advances in neonatal and obstetric care mean that the nature of a potential candidate patient for this therapy, and thus the threshold success level for justifying its adoption, have both changed markedly since this approach was first conceived. Five landmark breakthroughs have occurred over the developmental history of the AP: i) the first human studies reported in the 1950's; ii) foundation animal studies reported in the 1960's; iii) the first extended use of AP technology combined with fetal pulmonary resuscitation reported in the 1990s; iv) the development of AP systems powered by the fetal heart reported in the 2000's; and v) the adaption of this technology to maintain extremely preterm fetuses (i.e. 500-600 g body weight) reported in the 2010's. Using this framework, the present paper will provide a review of the developmental history of this long-running experimental system and up-to-date assessment of the published field today. With the apparent acceleration of AP technology towards clinical application, there has been an increase in the attention paid to the field, along with some inaccurate commentary regarding its potential application and merits. Additionally, this paper will address several misrepresentations regarding the potential application of AP technology that serve to distract from the significant potential of this approach to greatly improve outcomes for extremely preterm infants born at or close to the present border of viability.
Collapse
Affiliation(s)
- H Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - S Watanabe
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hanita T
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - M Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - S Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - H Ikeda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Y Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - M C Choolani
- Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia
| | - M W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Usuda H, Ikeda H, Watanabe S, Sato S, Fee EL, Carter SWD, Kumagai Y, Saito Y, Takahashi T, Takahashi Y, Kawamura S, Hanita T, Saito M, Kikuchi A, Choolani MA, Yaegashi N, Kemp MW. Artificial placenta support of extremely preterm ovine fetuses at the border of viability for up to 336 hours with maintenance of systemic circulation but reduced somatic and organ growth. Front Physiol 2023; 14:1219185. [PMID: 37692998 PMCID: PMC10484719 DOI: 10.3389/fphys.2023.1219185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Artificial placenta therapy (APT) is an experimental life support system to improve outcomes for extremely preterm infants (EPI) less than 1,000 g by obviating the need for pulmonary gas exchange. There are presently no long-term survival data for EPI supported with APT. To address this, we aimed to maintain 95d-GA (GA; term-150d) sheep fetuses for up to 2 weeks using our APT system. Methods: Pregnant ewes (n = 6) carrying singleton fetuses underwent surgical delivery at 95d GA. Fetuses were adapted to APT and maintained for up to 2 weeks with constant monitoring of key physiological parameters and extensive time-course blood and urine sampling, and ultrasound assessments. Six age-matched in-utero fetuses served as controls. Data were tested for group differences with ANOVA. Results: Six APT Group fetuses (100%) were adapted to APT successfully. The mean BW at the initiation of APT was 656 ± 42 g. Mean survival was 250 ± 72 h (Max 336 h) with systemic circulation and key physiological parameters maintained mostly within normal ranges. APT fetuses had active movements and urine output constantly exceeded infusion volume over the experiment. At delivery, there were no differences in BW (with edema in three APT group animals), brain weight, or femur length between APT and in-utero Control animals. Organ weights and humerus lengths were significantly reduced in the APT group (p < 0.05). Albumin, IGF-1, and phosphorus were significantly decreased in the APT group (p < 0.05). No cases of positive blood culture were detected. Conclusion: We report the longest use of APT to maintain extremely preterm fetuses to date. Fetal systemic circulation was maintained without infection, but growth was abnormal. This achievement suggests a need to focus not only on cardiovascular stability and health but also on the optimization of fetal growth and organ development. This new challenge will need to be overcome prior to the clinical translation of this technology.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Erin L. Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
| | - Sean W. D. Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuya Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Atsuo Kikuchi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Mahesh A. Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nobuo Yaegashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Matthew W. Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, WA, Australia
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| |
Collapse
|
11
|
Shah NR, Mychaliska GB. The new frontier in ECLS: Artificial placenta and artificial womb for premature infants. Semin Pediatr Surg 2023; 32:151336. [PMID: 37866171 DOI: 10.1016/j.sempedsurg.2023.151336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Outcomes for extremely low gestational age newborns (ELGANs), defined as <28 weeks estimated gestational age (EGA), remain disproportionately poor. A radical paradigm shift in the treatment of prematurity is to recreate the fetal environment with extracorporeal support and provide an environment for organ maturation using an extracorporeal VV-ECLS artificial placenta (AP) or an AV-ECLS artificial womb (AW). In this article, we will review clinical indications, current approaches in development, ongoing challenges, remaining milestones and ethical considerations prior to clinical translation.
Collapse
Affiliation(s)
- Nikhil R Shah
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI, USA
| | - George B Mychaliska
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Sun J, Chong J, Zhang J, Ge L. Preterm pigs for preterm birth research: reasonably feasible. Front Physiol 2023; 14:1189422. [PMID: 37520824 PMCID: PMC10374951 DOI: 10.3389/fphys.2023.1189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Preterm birth will disrupt the pattern and course of organ development, which may result in morbidity and mortality of newborn infants. Large animal models are crucial resources for developing novel, credible, and effective treatments for preterm infants. This review summarizes the classification, definition, and prevalence of preterm birth, and analyzes the relationship between the predicted animal days and one human year in the most widely used animal models (mice, rats, rabbits, sheep, and pigs) for preterm birth studies. After that, the physiological characteristics of preterm pig models at different gestational ages are described in more detail, including birth weight, body temperature, brain development, cardiovascular system development, respiratory, digestive, and immune system development, kidney development, and blood constituents. Studies on postnatal development and adaptation of preterm pig models of different gestational ages will help to determine the physiological basis for survival and development of very preterm, middle preterm, and late preterm newborns, and will also aid in the study and accurate optimization of feeding conditions, diet- or drug-related interventions for preterm neonates. Finally, this review summarizes several accepted pediatric applications of preterm pig models in nutritional fortification, necrotizing enterocolitis, neonatal encephalopathy and hypothermia intervention, mechanical ventilation, and oxygen therapy for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jie Chong
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
13
|
Huang Z, Xiao T, Zhou W. Artificial womb: a paradigm shift for saving extremely premature infants. Chin Med J (Engl) 2023; Publish Ahead of Print:00029330-990000000-00638. [PMID: 37262033 DOI: 10.1097/cm9.0000000000002745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 06/03/2023] Open
Affiliation(s)
- Zhelan Huang
- Department of Neonatology, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Tiantian Xiao
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital, Fudan University, Shanghai 201102, China
| |
Collapse
|
14
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
15
|
An Artificial Placenta Experimental System in Sheep: Critical Issues for Successful Transition and Survival up to One Week. Biomedicines 2023; 11:biomedicines11030702. [PMID: 36979681 PMCID: PMC10044909 DOI: 10.3390/biomedicines11030702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Objective: To describe the development of an artificial placenta (AP) system in sheep with learning curve and main bottlenecks to allow survival up to one week. Methods: A total of 28 fetal sheep were transferred to an AP system at 110–115 days of gestation. The survival goal in the AP system was increased progressively in three consecutive study groups: 1–3 h (n = 8), 4–24 h (n = 10) and 48–168 h (n = 10). Duration of cannulation procedure, technical complications, pH, lactate, extracorporeal circulation (EC) circuit flows, fetal heart rate, and outcomes across experiments were compared. Results: There was a progressive reduction in cannulation complications (75%, 50% and 0%, p = 0.004), improvement in initial pH (7.20 ± 0.06, 7.31 ± 0.04 and 7.33 ± 0.02, p = 0.161), and increment in the rate of experiments reaching survival goal (25%, 70% and 80%, p = 0.045). In the first two groups, cannulation accidents, air bubbles in the extracorporeal circuit, and thrombotic complications were the most common cause of AP system failure. Conclusions: Achieving a reproducible experimental setting for an AP system is extremely challenging, time- and effort-consuming, and requires a highly multidisciplinary team. As a result of the learning curve, we achieved reproducible transition and survival up to 7 days. Extended survival requires improving instrumentation with custom-designed devices.
Collapse
|
16
|
Omecinski KS, Frankowski BJ, Federspiel WJ. Design and In Vitro Evaluation of an Artificial Placenta Made From Hollow Fiber Membranes. ASAIO J 2023; 69:e86-e92. [PMID: 36716073 PMCID: PMC9897463 DOI: 10.1097/mat.0000000000001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For infants born at the border of viability, care practices and morbimortality rates vary widely between centers. Trends show significant improvement, however, with increasing gestational age and weight. For periviable infants, the goal of critical care is to bridge patients to improved outcomes. Current practice involves ventilator therapy, resulting in chronic lung injuries. Research has turned to artificial uterine environments, where infants are submerged in an artificial amniotic fluid bath and provided respiratory assistance via an artificial placenta. We have developed the Preemie-Ox, a hollow fiber membrane bundle that provides pumpless respiratory support via umbilical cord cannulation. Computational fluid dynamics was used to design an oxygenator that could achieve a carbon dioxide removal rate of 12.2 ml/min, an outlet hemoglobin saturation of 100%, and a resistance of less than 71 mmHg/L/min at a blood flow rate of 165 ml/min. A prototype was utilized to evaluate in-vitro gas exchange, resistance, and plasma-free hemoglobin generation. In-vitro gas exchange was 4% higher than predicted results and no quantifiable plasma-free hemoglobin was produced.
Collapse
Affiliation(s)
- Katelin S Omecinski
- From the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J Frankowski
- From the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Federspiel
- From the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
de Coppi P, Loukogeorgakis S, Götherström C, David AL, Almeida-Porada G, Chan JKY, Deprest J, Wong KKY, Tam PKH. Regenerative medicine: prenatal approaches. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:643-653. [PMID: 35963269 PMCID: PMC10664288 DOI: 10.1016/s2352-4642(22)00192-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 10/15/2022]
Abstract
This two-paper Series focuses on recent advances and applications of regenerative medicine that could benefit paediatric patients. Innovations in genomic, stem-cell, and tissue-based technologies have created progress in disease modelling and new therapies for congenital and incurable paediatric diseases. Prenatal approaches present unique opportunities associated with substantial biotechnical, medical, and ethical obstacles. Maternal plasma fetal DNA analysis is increasingly adopted as a noninvasive prenatal screening or diagnostic test for chromosomal and monogenic disorders. The molecular basis for cell-free DNA detection stimulated the development of circulating tumour DNA testing for adult cancers. In-utero stem-cell, gene, gene-modified cell (and to a lesser extent, tissue-based) therapies have shown early clinical promise in a wide range of paediatric disorders. Fetal cells for postnatal treatment and artificial placenta for ex-utero fetal therapies are new frontiers in this exciting field.
Collapse
Affiliation(s)
- Paolo de Coppi
- Stem Cell and Regenerative Medicine Section, Department of Developmental Biology and Cancer Research and Teaching, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Stavros Loukogeorgakis
- Stem Cell and Regenerative Medicine Section, Department of Developmental Biology and Cancer Research and Teaching, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Womens Health, University College London, London, UK
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem NC, USA
| | - Jerry K Y Chan
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Jan Deprest
- Clinical Department of Obstetrics and Gynaecology, UZ Leuven, Leuven, Belgium
| | - Kenneth Kak Yuen Wong
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region, China
| | - Paul Kwong Hang Tam
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region, China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region, China.
| |
Collapse
|
18
|
Usuda H, Carter S, Takahashi T, Newnham JP, Fee EL, Jobe AH, Kemp MW. Perinatal care for the extremely preterm infant. Semin Fetal Neonatal Med 2022; 27:101334. [PMID: 35577715 DOI: 10.1016/j.siny.2022.101334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Being born preterm (prior to 37 weeks of completed gestation) is a leading cause of childhood death up to five years of age, and is responsible for the demise of around one million preterm infants each year. Rates of prematurity, which range from approximately 5 to 18% of births, are increasing in most countries. Babies born extremely preterm (less than 28 weeks' gestation) and in particular, in the periviable (200/7-256/7 weeks) period, are at the highest risk of death, or the development of long-term disabilities. The perinatal care of extremely preterm infants and their mothers raises a number of clinical, technical, and ethical challenges. Focusing on 'micropremmies', or those born in the periviable period, this paper provides an update regarding the aetiology and impacts of periviable preterm birth, advances in the antenatal, intrapartum, and acute post-natal management of these infants, and a review of counselling/support approaches for engaging with the infant's family. It concludes with an overview of emerging technology that may assist in improving outcomes for this at-risk population.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, 6009, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Sean Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, 6009, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, 6009, Australia; Perinatal Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, 6150, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, 980-8574, Japan.
| |
Collapse
|
19
|
Abstract
Despite improvements in survival over the past few decades, pulmonary immaturity and the use of mechanical ventilation have stunted reduction in short- and long-term morbidities for infants at the borderline of viability (22-24 weeks of gestation). It has long been suspected that the use of an artificial womb or artificial placenta to preserve native fetal physiology and maintain fluid- rather than air-filled lungs would help to improve outcomes for these infants. As such, several institutions have ongoing efforts to develop this technology, bringing the field of neonatology within sight of clinical trials. Prior to use in humans, several important ethical issues should be considered and discussed, including the moral status of these patients and the term used to describe them, whether neonate, fetus, or another term entirely. These determinations will guide when it is appropriate to use the technology and when it is permissible to withdraw this support, as well as how to ascribe parental rights and the legal status of these patients.
Collapse
Affiliation(s)
- Kelly M Werner
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, USA.
| | - Mark R Mercurio
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, USA; Program for Biomedical Ethics, Yale University School of Medicine, USA
| |
Collapse
|
20
|
van Willigen BG, van der Hout-van der Jagt MB, Huberts W, van de Vosse FN. A review study of fetal circulatory models to develop a digital twin of a fetus in a perinatal life support system. Front Pediatr 2022; 10:915846. [PMID: 36210952 PMCID: PMC9532745 DOI: 10.3389/fped.2022.915846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth is the main cause of neonatal deaths with increasing mortality and morbidity rates with decreasing GA at time of birth. Currently, premature infants are treated in neonatal intensive care units to support further development. However, the organs of, especially, extremely premature infants (born before 28 weeks of GA) are not mature enough to function optimally outside the womb. This is seen as the main cause of the high morbidity and mortality rates in this group. A liquid-filled incubator, a so-called PLS system, could potentially improve these numbers for extremely premature infants, since this system is designed to mimic the environment of the natural womb. To support the development and implementation of such a complex system and to interpret vital signals of the fetus during a PLS system operation, a digital twin is proposed. This mathematical model is connected with a manikin representing the digital and physical twin of the real-life PLS system. Before developing a digital twin of a fetus in a PLS system, its functional and technical requirements are defined and existing mathematical models are evaluated. METHOD AND RESULTS This review summarizes existing 0D and 1D fetal circulatory models that potentially could be (partly) adopted for integration in a digital twin of a fetus in a PLS system based on predefined requirements. The 0D models typically describe hemodynamics and/or oxygen transport during specific events, such as the transition from fetus to neonate. Furthermore, these models can be used to find hemodynamic differences between healthy and pathological physiological states. Rather than giving a global description of an entire cardiovascular system, some studies focus on specific organs or vessels. In order to analyze pressure and flow wave profiles in the cardiovascular system, transmission line or 1D models are used. As for now, these models do not include oxygen transport. CONCLUSION This study shows that none of the models identified in literature meet all the requirements relevant for a digital twin of a fetus in a PLS system. Nevertheless, it does show the potential to develop this digital twin by integrating (parts) of models into a single model.
Collapse
Affiliation(s)
- Bettine G van Willigen
- Cardiovascular Biomechanics, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
| | - M Beatrijs van der Hout-van der Jagt
- Cardiovascular Biomechanics, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands.,Signal Processing Systems, Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Wouter Huberts
- Cardiovascular Biomechanics, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frans N van de Vosse
- Cardiovascular Biomechanics, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
21
|
Usuda H, Saito M, Ikeda H, Sato S, Kumagai Y, Saito Y, Kawamura S, Hanita T, Sakai H, Kure S, Yaegashi N, Newnham JP, Kemp MW, Watanabe S. Assessment of synthetic red cell therapy for extremely preterm ovine fetuses maintained on an artificial placenta life-support platform. Artif Organs 2021; 46:653-665. [PMID: 34932228 DOI: 10.1111/aor.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Artificial placenta therapy (APT) is an experimental care strategy for extremely preterm infants born at 21-24 weeks' gestation. In our previous studies, blood taken from the maternal ewe was used as the basis of priming solutions for the artificial placenta circuit. However, the use of maternal blood as a priming solution is accompanied by several challenges. We explored the use of synthetic red cells (hemoglobin vesicles; HbV) as the basis of a priming solution for APT used to manage extremely early preterm ovine fetuses. METHODS Six ewes with singleton pregnancies at 95 d gestation (term = 150 d) were adapted to APT and maintained with constant monitoring of key vital parameters. The target maintenance period was 72 h in duration. A synthetic red cell solution consisting of HbV, sheep albumin and electrolytes was used as priming solutions for the APT circuit. Fetuses were evaluated on gross appearance, physiological parameters and bleeding after euthanasia. RESULTS Two out of six APT fetuses were successfully maintained for the targeted 72 h experimental period with controllable anemia (>10 g/dl) and methemoglobinemia (<10%) using an infusion of blood transfusion and nitroglycerin delivered >1 h after APT commencement, a sufficient period of time to cross-match blood products and screen for viral agents of concern. CONCLUSIONS Extremely preterm sheep fetuses were maintained for a period of up to 72 h using APT in combination with circuit priming using a synthetic red cell (HbV) preparation. Although significant further refinements are required, these findings demonstrated the potential clinical utility of synthetic blood products in the eventual clinical translation of artificial placenta technology to support extremely preterm infants.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Nara, Japan
| | - Shigeo Kure
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuo Yaegashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,Women and Infants Research Foundation, King Edward Memorial Hospital, Perth, Western Australia, Australia.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
22
|
Abstract
The field of fetal medicine has evolved significantly over the past several decades. Our ability to identify and treat the unborn patient has been shaped by advancements in imaging technology, genetic diagnosis, an improved understanding of fetal physiology, and the development and optimization of in utero surgical techniques. The future of the field will be shaped by medical innovators pushing for the continued refinement of minimally invasive surgical technique, the application of pioneering technologies such as robotic surgery and in utero stem cell and gene therapies, and the development of innovative ex utero fetal support systems.
Collapse
Affiliation(s)
- Eric Bergh
- Department of Obstetrics and Gynecology, The Fetal Center at Children's Memorial Hermann Hospital, University of Texas Health Science Center, McGovern Medical School, 6410 Fannin Street, Suite 700, Houston, TX 77030, USA.
| | - Cara Buskmiller
- Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Health Science Center, McGovern Medical School, 6410 Fannin Street, Suite 700, Houston, TX 77030, USA. https://twitter.com/CaraBuskmiller
| | - Anthony Johnson
- Department of Obstetrics and Gynecology, The Fetal Center at Children's Memorial Hermann Hospital, University of Texas Health Science Center, McGovern Medical School, 6410 Fannin Street, Suite 700, Houston, TX 77030, USA
| |
Collapse
|
23
|
THE ARTIFICIAL PLACENTA: SCI-FI OR REALITY? REVISTA MÉDICA CLÍNICA LAS CONDES 2021. [DOI: 10.1016/j.rmclc.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
De Bie FR, Davey MG, Larson AC, Deprest J, Flake AW. Artificial placenta and womb technology: Past, current, and future challenges towards clinical translation. Prenat Diagn 2020; 41:145-158. [PMID: 32875581 DOI: 10.1002/pd.5821] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/12/2023]
Abstract
Extreme prematurity remains a major cause of neonatal mortality and severe long-term morbidity. Current neonatal care is associated with significant morbidity due to iatrogenic injury and developmental immaturity of extreme premature infants. A more physiologic approach, replacing placental function and providing a womb-like environment, is the foundational principle of artificial placenta (AP) and womb (AW) technology. The concept has been studied during the past 60 years with limited success. However, recent technological advancements and a greater emphasis on mimicking utero-placental physiology have improved the success of experimental models, bringing the technology closer to clinical translation. Here, we review the rationale for and history of AP and AW technology, discuss the challenges that needed to be overcome, and compare recent successful models. We conclude by outlining some remaining challenges to be addressed on the path towards clinical translation and opportunities for future research.
Collapse
Affiliation(s)
- Felix R De Bie
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marcus G Davey
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abby C Larson
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jan Deprest
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Alan W Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|