1
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
2
|
Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. Front Immunol 2022; 13:863568. [PMID: 35514965 PMCID: PMC9067128 DOI: 10.3389/fimmu.2022.863568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
This review focuses on current clinical and immunological aspects of cerebral malaria induced by Plasmodium falciparum infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-driven pathophysiological aspects within the central nervous system are summarized, giving first rational insights into encouraging studies with immune-modulating adjunctive therapies that protect from symptomatic cerebral participation of Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, Klinik Floridsdorf, Wien, Austria
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Mo Y, Yue E, Shi N, Liu K. The protective effects of curcumin in cerebral ischemia and reperfusion injury through PKC-θ signaling. Cell Cycle 2021; 20:550-560. [PMID: 33618616 DOI: 10.1080/15384101.2021.1889188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ischemic stroke is a common cerebrovascular disease with the main cause considered to be cerebral ischemia and reperfusion (I/R), which exerts irreparable injury on nerve cells. Thus, the development of neuroprotective drugs is an urgent concern. Curcumin, a known antioxidant, has been found to have neuroprotective effects. To determine the protective mechanism of curcumin in ischemic stroke, oxygen and glucose deprivation/reoxygenation (OGD/R) was used to treat PC12 cells to mimic the cerebral I/R cell model. Curcumin (20 μM) was applied to OGD/R PC12 cells, followed by Ca2+ concentration, transepithelial electrical resistance (TEER), and cell permeability measurements. The results showed that OGD/R injury induced a decrease in TEER and increases in Ca2+ concentration and cell permeability. In contrast, curcumin alleviated these effects. The protein kinase C θ (PKC-θ) was associated with the protective function of curcumin in the OGD/R cell model. Moreover, the middle cerebral artery occlusion and reperfusion model (MCAO/R) was applied to simulate the I/R rat model. Our results demonstrated that curcumin could reverse the MCAO/R-induced increase in Ca2+ concentration and blood-brain barrier (BBB) disruption. Our study demonstrates the mechanisms by which curcumin exhibited a protective function against cerebral I/R through PKC-θ signaling by reducing BBB dysfunction.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Erli Yue
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nan Shi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kangyong Liu
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
4
|
Palomo J, Quesniaux VFJ, Togbe D, Reverchon F, Ryffel B. Unravelling the roles of innate lymphoid cells in cerebral malaria pathogenesis. Parasite Immunol 2019; 40. [PMID: 29117626 DOI: 10.1111/pim.12502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Cerebral malaria (CM) is one complication of Plasmodium parasite infection that can lead to strong inflammatory immune responses in the central nervous system (CNS), accompanied by lung inflammation and anaemia. Here, we focus on the role of the innate immune response in experimental cerebral malaria (ECM) caused by blood-stage murine Plasmodium berghei ANKA infection. While T cells are important for ECM pathogenesis, the role of innate lymphoid cells (ILCs) is only emerging. The role of ILCs and non-lymphoid cells, such as neutrophils and platelets, contributing to the host immune response and leading to ECM and human cerebral malaria (HCM) is reviewed.
Collapse
Affiliation(s)
- J Palomo
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France.,Division of Rheumatology, Departments of Internal Medicine Specialties and of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - V F J Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France
| | - D Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France.,Artimmune SAS, Orléans, France
| | - F Reverchon
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France
| | - B Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France.,IDM, Medical School, University of Cape Town, Cape Town, Republic of South Africa
| |
Collapse
|
5
|
MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proc Natl Acad Sci U S A 2018; 115:E12024-E12033. [PMID: 30514812 DOI: 10.1073/pnas.1812909115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.
Collapse
|
6
|
Genetic analysis of cerebral malaria in the mouse model infected with Plasmodium berghei. Mamm Genome 2018; 29:488-506. [DOI: 10.1007/s00335-018-9752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
|
7
|
IL-33 receptor ST2 regulates the cognitive impairments associated with experimental cerebral malaria. PLoS Pathog 2017; 13:e1006322. [PMID: 28448579 PMCID: PMC5407765 DOI: 10.1371/journal.ppat.1006322] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/28/2017] [Indexed: 01/16/2023] Open
Abstract
Cerebral malaria (CM) is associated with a high mortality rate and long-term neurocognitive impairment in survivors. The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA)-infection reproduces several of these features. We reported recently increased levels of IL-33 protein in brain undergoing ECM and the involvement of IL-33/ST2 pathway in ECM development. Here we show that PbA-infection induced early short term and spatial memory defects, prior to blood brain barrier (BBB) disruption, in wild-type mice, while ST2-deficient mice did not develop cognitive defects. PbA-induced neuroinflammation was reduced in ST2-deficient mice with low Ifng, Tnfa, Il1b, Il6, CXCL9, CXCL10 and Cd8a expression, associated with an absence of neurogenesis defects in hippocampus. PbA-infection triggered a dramatic increase of IL-33 expression by oligodendrocytes, through ST2 pathway. In vitro, IL-33/ST2 pathway induced microglia expression of IL-1β which in turn stimulated IL-33 expression by oligodendrocytes. These results highlight the IL-33/ST2 pathway ability to orchestrate microglia and oligodendrocytes responses at an early stage of PbA-infection, with an amplification loop between IL-1β and IL-33, responsible for an exacerbated neuroinflammation context and associated neurological and cognitive defects. The cerebral complication of malaria caused by Plasmodium falciparum infection, is associated with long-term neurological sequelae in survivors. The mechanisms involved in neurocognitive impairments during cerebral malaria development are still unknown. We reported recently the essential role of IL-33/ST2 pathway in experimental cerebral malaria (ECM) development. In this study we investigated the capacity of IL-33, highly expressed in oligodendrocytes, to promote ECM-associated neurological and cognitive damages. We found that IL-33/ST2 pathway through glial cells is involved in neurocognitive impairments, associated with exacerbated neuroinflammation, and altered neurogenesis. Interestingly, the implication of glial cells with a high level of IL-33 production in neurocognitive disorders, occurs at an early stage of ECM development, prior to blood brain barrier permeabilization. We propose the link between microglial IL-1β and oligodendrocytes IL-33 production in neurological symptoms associated with ECM.
Collapse
|
8
|
Hasegawa C, Inagaki A, Yamada G, Morita K, Kitamura I, Ariyoshi K. Steroid Pulse Therapy May Mitigate Prolonged Neurological Manifestations after Eradication of Severe Plasmodium falciparum Parasitemia. Intern Med 2016; 55:3393-3398. [PMID: 27853090 PMCID: PMC5173515 DOI: 10.2169/internalmedicine.55.7069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 58-year-old Japanese man with a high parasitemia of Plasmodium falciparum, returning from Uganda, was admitted to our hospital since his consciousness level rapidly deteriorated after the initial dose of mefloquine. Despite the parasitemia was cleared by quinine by day 7, the coma remained unchanged and diffuse leukoencephalopathy was detected on magnetic resonance image. Steroid pulse therapy was initiated on day 8. Subsequently, the neurological manifestations improved and he was discharged on day 73 without any sequelae. Pathogenesis of P. falciparum causing cerebral malaria is diverse and complex. If neurological symptoms unusually prolong, steroid may be an effective treatment option.
Collapse
Affiliation(s)
- Chihiro Hasegawa
- Department of Infectious Disease, Nagoya City East Medical Center, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Luckhart S, Pakpour N, Giulivi C. Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol 2015. [PMID: 26210301 DOI: 10.1016/j.coi.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria parasite-host interactions are complex and have confounded available drugs and the development of vaccines. Further, we now appreciate that interventions for malaria elimination and eradication must include therapeutics with intrinsic transmission blocking activity to treat the patient and prevent disease spread. Studies over the past 15 years have revealed significant conservation in the response to infection in mosquito and human hosts. More recently, we have recognized that conserved cell signaling cascades in mosquitoes and humans dictate infection outcome through the regulation of mitochondrial function and biogenesis, which feed back to host immunity, basic intermediary metabolism, and stress responses. These responses - reflected clearly in the primeval insect host - provide fertile ground for innovative strategies for both treatment and transmission blocking.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, and Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis CA 95616, United States
| |
Collapse
|
10
|
Abstract
Activating as well as inhibitory circuits tightly regulate T-cell activation thresholds and effector differentiation processes enabling proper immune response outcomes. Recently, an additional molecular link between T-cell receptor signalling and CD4⁺ Th17 cell skewing has been reported, namely that protein kinase C (PKC) θ critically regulates Th17/Th1 phenotypic differentiation and plasticity in CD4⁺ T-cells by selectively acting as a 'reprogramming element' that suppresses Th1-typical genes during Th17-mediated immune activation in order to stabilize a Th17 cell phenotype.
Collapse
|
11
|
Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria. PLoS One 2015; 10:e0119633. [PMID: 25775137 PMCID: PMC4361544 DOI: 10.1371/journal.pone.0119633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 02/01/2015] [Indexed: 11/19/2022] Open
Abstract
Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.
Collapse
|
12
|
Besnard AG, Guabiraba R, Niedbala W, Palomo J, Reverchon F, Shaw TN, Couper KN, Ryffel B, Liew FY. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog 2015; 11:e1004607. [PMID: 25659095 PMCID: PMC4450060 DOI: 10.1371/journal.ppat.1004607] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022] Open
Abstract
Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs.
Collapse
Affiliation(s)
- Anne-Gaelle Besnard
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Rodrigo Guabiraba
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- INRA, UMR1282, Infectiologie et Santé publique, Nouzilly, France
| | - Wanda Niedbala
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Palomo
- CNRS-UMR7355, Orleans, France and Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Flora Reverchon
- CNRS-UMR7355, Orleans, France and Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
| | - Tovah N. Shaw
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Kevin N. Couper
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Bernhard Ryffel
- CNRS-UMR7355, Orleans, France and Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondeboasch, Republic of South Africa
| | - Foo Y. Liew
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|
14
|
Palomo J, Fauconnier M, Coquard L, Gilles M, Meme S, Szeremeta F, Fick L, Franetich JF, Jacobs M, Togbe D, Beloeil JC, Mazier D, Ryffel B, Quesniaux VF. Type I interferons contribute to experimental cerebral malaria development in response to sporozoite or blood-stagePlasmodium bergheiANKA. Eur J Immunol 2013; 43:2683-95. [DOI: 10.1002/eji.201343327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Jennifer Palomo
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Mathilde Fauconnier
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Laurie Coquard
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Maïlys Gilles
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Sandra Meme
- CNRS, Centre de Biophysique Moléculaire; Orléans France
| | | | - Lizette Fick
- Institute of Infectious Disease and Molecular Medicine; Cape Town South Africa
| | - Jean-François Franetich
- Université Pierre et Marie Curie-Paris 6, UMR S945; Paris France
- Institut National de la Santé et de la Recherche Médicale U945; Paris France
- Groupe Hospitalier Pitié-Salpêtrière Service Parasitologie-Mycologie; Paris France
| | - Muazzam Jacobs
- Institute of Infectious Disease and Molecular Medicine; Cape Town South Africa
| | | | | | - Dominique Mazier
- Université Pierre et Marie Curie-Paris 6, UMR S945; Paris France
- Institut National de la Santé et de la Recherche Médicale U945; Paris France
- Groupe Hospitalier Pitié-Salpêtrière Service Parasitologie-Mycologie; Paris France
| | - Bernhard Ryffel
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
- Institute of Infectious Disease and Molecular Medicine; Cape Town South Africa
| | - Valerie F.J. Quesniaux
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| |
Collapse
|
15
|
Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends Parasitol 2013; 29:346-58. [PMID: 23742967 DOI: 10.1016/j.pt.2013.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an increasingly reported, often lethal, and incompletely understood complication of malaria. We discuss and compare the pathogenesis of MA-ARDS in patients and in different murine models, including recent models without cerebral involvement, and summarize the roles of different leukocyte subclasses, adhesion molecules, cytokines, and chemokines. In patients as well as in mice, severe edema and impaired gas exchange are associated with abundant inflammatory infiltrates consisting of mainly mononuclear cells and parasite sequestration, and the pathogenesis appears different from cerebral malaria (CM). Experimental anti-inflammatory interventions are successful in mice and remain to be validated in patients.
Collapse
|
16
|
Stable tumor vessel normalization with pO₂ increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment. J Mol Med (Berl) 2013; 91:883-99. [PMID: 23471434 PMCID: PMC3695680 DOI: 10.1007/s00109-013-0992-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/24/2012] [Accepted: 01/02/2013] [Indexed: 01/07/2023]
Abstract
Tumor hypoxia is a characteristic of cancer cell growth and invasion, promoting angiogenesis, which facilitates metastasis. Oxygen delivery remains impaired because tumor vessels are anarchic and leaky, contributing to tumor cell dissemination. Counteracting hypoxia by normalizing tumor vessels in order to improve drug and radio therapy efficacy and avoid cancer stem-like cell selection is a highly challenging issue. We show here that inositol trispyrophosphate (ITPP) treatment stably increases oxygen tension and blood flow in melanoma and breast cancer syngeneic models. It suppresses hypoxia-inducible factors (HIFs) and proangiogenic/glycolysis genes and proteins cascade. It selectively activates the tumor suppressor phosphatase and tensin homolog (PTEN) in vitro and in vivo at the endothelial cell (EC) level thus inhibiting PI3K and reducing tumor AKT phosphorylation. These mechanisms normalize tumor vessels by EC reorganization, maturation, pericytes attraction, and lowering progenitor cells recruitment in the tumor. It strongly reduces vascular leakage, tumor growth, drug resistance, and metastasis. ITPP treatment avoids cancer stem-like cell selection, multidrug resistance (MDR) activation and efficiently enhances chemotherapeutic drugs activity. These data show that counteracting tumor hypoxia by stably restoring healthy vasculature is achieved by ITPP treatment, which opens new therapeutic options overcoming hypoxia-related limitations of antiangiogenesis-restricted therapies. By achieving long-term vessels normalization, ITPP should provide the adjuvant treatment required in order to overcome the subtle definition of therapeutic windows for in vivo treatments aimed by the current strategies against angiogenesis-dependent tumors.
Collapse
|
17
|
Lacerda-Queiroz N, Rachid MA, Teixeira MM, Teixeira AL. The role of platelet-activating factor receptor (PAFR) in lung pathology during experimental malaria. Int J Parasitol 2012; 43:11-5. [PMID: 23260771 DOI: 10.1016/j.ijpara.2012.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/28/2012] [Accepted: 11/19/2012] [Indexed: 01/07/2023]
Abstract
Malaria-associated lung pathology has been a neglected area in the study of malaria complications. Platelet-activating factor (PAF) is an inflammatory mediator involved in lung inflammation. Using mice lacking the PAF receptor (PAFR(-/-)) we investigated the relevance of signaling through the PAFR for the lung inflammatory process triggered by Plasmodium berghei ANKA (PbA) strain infection. In PAFR(-/-) mice, pulmonary inflammation was markedly reduced as demonstrated by histology, production of certain pro-inflammatory mediators, accumulation of macrophage and CD8+ T cells in the lung parenchyma and the virtual absence of changes in vascular permeability. Therefore, PAFR activation is crucial in the pathogenesis of pulmonary damage associated with PbA infection in C57Bl/6 mice.
Collapse
Affiliation(s)
- Norinne Lacerda-Queiroz
- Laboratório de Imunofarmacologia/Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
18
|
Pfeifhofer-Obermair C, Thuille N, Baier G. Involvement of distinct PKC gene products in T cell functions. Front Immunol 2012; 3:220. [PMID: 22888329 PMCID: PMC3412260 DOI: 10.3389/fimmu.2012.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/08/2012] [Indexed: 01/07/2023] Open
Abstract
It is well established that members of the protein kinase C (PKC) family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the "flavor of PKC" in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Gottfried Baier
- Division of Cell Genetics, Department of Pharmacology and Genetics, Medical University Innsbruck, Innsbruck,Tyrol, Austria
| |
Collapse
|
19
|
Chao D, He X, Yang Y, Bazzy-Asaad A, Lazarus LH, Balboni G, Kim DH, Xia Y. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp Neurol 2012; 236:228-39. [PMID: 22609332 DOI: 10.1016/j.expneurol.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/11/2012] [Accepted: 05/09/2012] [Indexed: 01/17/2023]
Abstract
Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex.
Collapse
Affiliation(s)
- Dongman Chao
- The Third Medical College of Soochow University, Changzhou, Jiangsu 213003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Fauconnier M, Palomo J, Bourigault ML, Meme S, Szeremeta F, Beloeil JC, Danneels A, Charron S, Rihet P, Ryffel B, Quesniaux VFJ. IL-12Rβ2 Is Essential for the Development of Experimental Cerebral Malaria. THE JOURNAL OF IMMUNOLOGY 2012; 188:1905-14. [DOI: 10.4049/jimmunol.1101978] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Platelet-activating factor receptor is essential for the development of experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:246-55. [PMID: 22079430 DOI: 10.1016/j.ajpath.2011.09.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/31/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Cerebral malaria is a severe form of the disease that may result, in part, from an overt inflammatory response during infection by Plasmodium falciparum. The understanding of the pathogenesis of cerebral malaria may aid in the development of better therapeutic strategies for patients. The immune response in cerebral malaria involves elevation of circulating levels of cytokines and chemokines associated with leukocyte accumulation and breakdown of the blood-brain barrier in the central nervous system. Platelet-activating factor (PAF) is a mediator of inflammation shown to orchestrate inflammatory processes, including recruitment of leukocytes and increase of vascular permeability. Using mice lacking the PAF receptor (PAFR(-/-)), we investigated the relevance of this molecule for the outcome and the neuroinflammatory process triggered by P. berghei ANKA, an experimental model of cerebral malaria. In PAFR(-/-) mice, lethality was markedly delayed and brain inflammation was significantly reduced, as demonstrated by histology, accumulation, and activation of CD8(+) T cells, changes in vascular permeability and activation of caspase-3 on endothelial cells and leukocytes. Similarly, treatment with the PAFR antagonist UK-74,505 delayed lethality. Taken together, the results suggest that PAFR signaling is crucial for the development of experimental cerebral malaria. Mechanistically, PAFR activation is crucial for the cascade of events leading to changes in vascular permeability, accumulation, and activation of CD8(+) T cells and apoptosis of leukocytes and endothelial cells.
Collapse
|
22
|
Saggu R, Faille D, Grau GE, Cozzone PJ, Viola A. In the eye of experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1104-9. [PMID: 21741941 DOI: 10.1016/j.ajpath.2011.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/21/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Cerebral malaria is the most severe complication of Plasmodium falciparum infection, accounting for 1 million deaths per year. We characterized the murine disease using in vivo magnetic resonance imaging (MRI) at 4.7 T, proving that ischemic edema is responsible for fatality. The aim of the present study was to identify early markers of experimental cerebral malaria using very high field conventional MRI (11.75 T). CBA/J mice infected with Plasmodium berghei ANKA were observed at an early stage of the disease, before the onset of detectable brain swelling and at the most acute stage of cerebral malaria. Herein, we report the first detection of damage to the optic and trigeminal nerves on T(2)-weighted MRI. The trigeminal nerves appeared hypointense, with significantly reduced diameter and cross-sectional area. The optic nerves were hypointense and often not visible. In addition, the internerve distance between the optic nerves was significantly and progressively reduced between the early and severest stages. Cranial nerve injury was the earliest anatomic hallmark of the disease, visible before brain edema became detectable. Thus, cranial nerve damage may manifest in neurologic signs, which may assist in the early recognition of cerebral malaria.
Collapse
Affiliation(s)
- Raman Saggu
- Center for Magnetic Resonance in Biology and Medicine, UMR CNRS 6612, University of the Mediterranean, Marseille, France
| | | | | | | | | |
Collapse
|