1
|
Ritchie DL, Smith C. Pathological spectrum of sporadic Creutzfeldt-Jakob disease. Pathology 2025; 57:196-206. [PMID: 39665904 DOI: 10.1016/j.pathol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 12/13/2024]
Abstract
Human prion diseases are a rare group of transmissible neurodegenerative conditions which are classified according to their aetiology as sporadic, genetic or acquired forms. Creutzfeldt-Jakob disease (CJD) is the most common form of human prion disease, with the sporadic form accounting for ∼85% of all reported cases. While advances have been made in the development of clinical tools and biomarkers in the diagnosis of prion disease, allowing greater diagnostic certainty for surveillance purposes, definitive diagnosis requires neuropathological examination of the brain at postmortem. Since the 1990s, efforts have been made to develop a classification system for sporadic CJD (sCJD) based on observed differences in the clinical features and the pathological phenotype (the nature and degree of spongiform vacuolation, neuronal loss, astrogliosis and misfolded prion protein accumulation in the brain), also referred to as the 'histotype'. Six major clinicopathological subtypes of sCJD are internationally recognised, largely correlating with the combination of the two distinct types of the protease-resistant prion protein (PrPres type 1 or 2) and the methionine (M)/valine (V) polymorphism at codon 129 of the prion protein gene (PRNP): MM1/MV1, MM2-cortical, MM2-thalamic, MV2, VV1 and VV2. This classification system has been extended to recognise sCJD cases demonstrating both mixed PrPres types or mixed histotypes in the brain of the same individual, as well as including atypical or novel pathological phenotypes. In this review, we will provide an up-to-date overview of the current classification of sCJD based on the prominent neuropathological features. In addition, with levels of infectivity at their highest in the brain, we will also discuss the additional precautions that are recommended when handling and examining postmortem tissues from patients with suspected prion disease.
Collapse
Affiliation(s)
- Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom; Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Kunii M, Kishida H, Tada M, Okamoto M, Asano K, Nakamura H, Takahashi K, Hashiguchi S, Kubota S, Okubo M, Takeuchi H, Ueda N, Satoh K, Kitamoto T, Doi H, Tanaka F. A case report of an individual with Creutzfeldt-Jakob disease characterized by prolonged isolated thalamic lesions and rare MM2-cortical-type pathology. BMC Neurol 2024; 24:456. [PMID: 39578797 PMCID: PMC11583669 DOI: 10.1186/s12883-024-03958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Diffusion-weighted magnetic resonance imaging (DWI) is essential for diagnosing Creutzfeldt-Jakob disease (CJD). Thalamic lesions are rarely detected by DWI in sporadic CJD (sCJD) cases with methionine homozygosity at polymorphic codon 129 (129MM) of the prion protein (PrP) gene. Here, we describe an unusual sCJD case, characterized by prolonged isolated thalamic diffusion hyperintensities and atypical brain pathology, in combination with the 129MM genotype. CASE PRESENTATION A 72-year-old Japanese man developed a mild unsteady gait that had persisted for 1 year. DWI revealed isolated thalamic diffusion hyperintensities. Over the following 4 years, his condition progressed to include ataxia and cognitive decline. Repeated cerebrospinal fluid tests were negative for 14-3-3 protein, total tau protein, and real-time quaking-induced conversion assay. Electroencephalography did not show periodic sharp wave complexes or generalized periodic discharges. Despite these findings, thalamic DWI abnormalities persisted and evolved to include cortical lesions in the later stage of the disease. Genetic testing confirmed a 129MM genotype with no pathogenic PrP gene variants. Brain autopsy identified type 2 pathogenic PrP and the absence of the M2-thalamic prion strain, suggesting an MM2-cortical (MM2C)-subtype of sCJD. Histopathology revealed small vacuoles (sv) and patchy-perivacuolar PrP deposits without large vacuoles (lv). Patchy-perivacuolar deposits are a characteristic feature of the MM2C (lv) subtype and indicate MM2C (lv) pathology. Thus, this case was classified as a rare MM2C (sv + lv) subtype. No PrP protein staining was observed in the thalamus, despite spongiform changes with small vacuoles. CONCLUSIONS This case underscores the diagnostic challenges of atypical CJD with isolated thalamic abnormalities on DWI. Despite negative cerebrospinal fluid findings and clinical diagnostic criteria, persistent DWI abnormalities and evolving clinical symptoms continued to raise suspicion of CJD. A definitive diagnosis, being the MM2C (sv + lv) subtype of sCJD, was confirmed upon pathological examination. Even when atypical findings, such as isolated thalamic abnormalities, are observed and various tests are negative, if suspicion of CJD cannot be ruled out, it is important to confirm the diagnosis and pathological subtypes via postmortem analysis.
Collapse
Affiliation(s)
- Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Mitsuo Okamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keiichiro Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masaki Okubo
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
- National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
3
|
Myskiw J, Bailey-Elkin BA, Avery K, Barria MA, Ritchie DL, Cohen ML, Appleby BS, Booth SA. Characterization of variably protease-sensitive prionopathy by capillary electrophoresis. Sci Rep 2024; 14:27867. [PMID: 39537719 PMCID: PMC11561330 DOI: 10.1038/s41598-024-79217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Variably Protease Sensitive Prionopathy (VPSPr) is a rare human prion disease that, like Creutzfeldt-Jakob disease (CJD), results in the deposition of abnormally folded prion protein aggregates in the brain and is ultimately fatal. Neuropathology and clinical features of VPSPr are heterogeneous. However, the key discriminating feature is the relative sensitivity of the pathological prion protein to proteinase digestion compared to that typically seen in other human prion cases. Three major fragments of 23, 17 and 7 kDa are characteristic of the disease following digestion with proteinase K. We recently reported the utility of the highly adaptive and reproducible ProteinSimple™ capillary electrophoresis (CE) system to perform protein separation of PK digested prion protein in CJD. Consequently, we explored capillary-based electrophoresis (CE) technology as a sensitive method to detect and characterize VPSPr in a cohort of 29 cases. The unique 7 kDa fragment has high intensity, particularly in cases with the codon 129 VV genotype, but can be missed by regular Western blotting due to the small size. However, this fragment is readily detected by CE in all cases. In addition, the flexibility of CE produced highly reproducible, semi-quantitative data for determining relative proteinase K sensitivity and epitope mapping of representative cases from each codon 129 genotype (VV, MV and MM).
Collapse
Affiliation(s)
- Jennifer Myskiw
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ben A Bailey-Elkin
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Kristen Avery
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Marcelo A Barria
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Diane L Ritchie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark L Cohen
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brian S Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie A Booth
- Mycobacteriology, Vector-borne and Prion Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Myskiw J, Lamoureux L, Peterson A, Knox D, Jansen GH, Coulthart MB, Booth SA. Development of an Automated Capillary Immunoassay to Detect Prion Glycotypes in Creutzfeldt-Jakob Disease. J Transl Med 2023; 103:100029. [PMID: 36925197 DOI: 10.1016/j.labinv.2022.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 01/11/2023] Open
Abstract
Creutzfeldt-Jakob disease (CJD) comprises a group of transmissible neurodegenerative diseases with vast phenotypic diversity. Sporadic CJD heterogeneity is predominantly influenced by the genotype at codon 129 of the prion-encoding gene and the molecular weight of PrPSc fragments after protease digestion, resulting in a classification of 6 subtypes of CJD (MM1, MM2, MV1, MV2, VV1, and VV2). The majority of cases with CJD can be distinguished using this classification system. However, a number of reported CJD cases are phenotypically unique from others within their same subtype, such as variably protease-sensitive prionopathies, or exist as a mixture of subtypes within the same patient. Western blotting of brain tissue, along with the genotyping of codon 129 of the prion-encoding gene, is considered the "gold standard" for the biochemical characterization of CJD. Western blotting requires a significant amount of prion protein for detection, is labor-intensive, and is also associated with high interassay variability. In addition to these limitations, a growing body of research suggests that unique subtypes of CJD are often undetected or misdiagnosed using standard diagnostic western blotting protocols. Consequently, we successfully optimized and developed a capillary-based western assay using the JESS Simple Western (ProteinSimple) to detect and characterize prion proteins from patients with CJD. We found that this novel assay consistently differentiated CJD type 1 and type 2 cases with a limit of detection 10 to 100× higher than traditional western blotting. Cases with CJD in which type 1 and type 2 coexist within the same brain region can be detected using type 1-specific and type 2-specific antibodies, and we found that there was remarkable specificity for the detection of cases with variably protease-sensitive prionopathy. The assay presented displays outstanding sensitivity, allowing for the preservation of valuable samples and enhancing current detection methods.
Collapse
Affiliation(s)
- Jennifer Myskiw
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lise Lamoureux
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Anne Peterson
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - David Knox
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Gerard H Jansen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael B Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Stephanie A Booth
- One Health Division, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
The cognitive phenotypes of Creutzfeldt-Jakob disease: comparison with secondary metabolic encephalopathy. Neurol Sci 2022; 43:3703-3716. [DOI: 10.1007/s10072-021-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
|
6
|
Phenotypic diversity of genetic Creutzfeldt-Jakob disease: a histo-molecular-based classification. Acta Neuropathol 2021; 142:707-728. [PMID: 34324063 PMCID: PMC8423680 DOI: 10.1007/s00401-021-02350-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
The current classification of sporadic Creutzfeldt–Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size (“i”) between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a “thickened” synaptic pattern in E200K carriers, cerebellar “stripe-like linear granular deposits” in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M”i”). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.
Collapse
|
7
|
Bistaffa E, Marín-Moreno A, Espinosa JC, De Luca CMG, Cazzaniga FA, Portaleone SM, Celauro L, Legname G, Giaccone G, Torres JM, Moda F. PMCA-generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice. eLife 2021; 10:65311. [PMID: 33851575 PMCID: PMC8064759 DOI: 10.7554/elife.65311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA). Methods: In this work, we have challenged PMCA-generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology. Results: All inoculated mice developed mild spongiform changes, astroglial activation, and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate. Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious. Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer’s Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (SPEEDY) to FM; by the Spanish Ministerio de Economía y Competitividad (grant AGL2016-78054-R [AEI/FEDER, UE]) to JMT and JCE; AM-M was supported by a fellowship from the INIA (FPI-SGIT-2015-02).
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Sara Maria Portaleone
- ASST Santi Paolo e Carlo, Department of Health Sciences, Otolaryngology Unit, Università Degli Studi di Milano, Milan, Italy
| | - Luigi Celauro
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| |
Collapse
|
8
|
Shintaku M, Nakamura T, Kaneda D, Shinde A, Kusaka H, Takeuchi A, Kitamoto T. Genetic Creutzfeldt-Jakob disease-M232R with the cooccurrence of multiple prion strains, M1 + M2C + M2T: Report of an autopsy case. Neuropathology 2021; 41:206-213. [PMID: 33586250 DOI: 10.1111/neup.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Genetic Creutzfeldt-Jakob disease (gCJD) with a methionine to arginine substitution at codon 232 of the prion protein gene (gCJD-M232R) is rare and has only been reported in Japan. We report an autopsy case of gCJD-M232R showing alleles of codon 129 that were homozygous for methionine and the presence of multiple strains of the protease-resistant, abnormal isoform of prion protein (PrPSc ), M1 + M2C + M2T. The patient, a 54-year-old Japanese man, died after a clinical course of 21 months characterized by slowly progressive dementia and sleep disturbance. At autopsy, the neuropil of the cerebral neocortex showed a widespread and severe spongiform change. Grape-like clusters of large confluent vacuoles were admixed with fine vacuoles. Neuronal loss was moderate, but reactive astrocytosis was mild. The dorsomedial nucleus of the thalamus and the inferior olivary nucleus showed moderate and severe neuronal loss, respectively. Many amyloid plaques were present in the cerebellar molecular layer. PrPSc deposition pattern was predominantly the synaptic type in the cerebrum and corresponded to the plaques in the cerebellum. Perivacuolar deposition was also seen. Western blot analysis of PrPSc revealed the predominance of type 2. Moreover, by employing Western blot analysis in combination with the protein misfolding cyclic amplification (PMCA) method, which selectively amplifies the minor M2T prion strain, we demonstrated the presence of M2T, in addition to M1 and M2C strains, in the brain of the patient. PMCA was a powerful method for demonstrating the presence of the M2T strain, although the amount is often small and the transmission is difficult.
Collapse
Affiliation(s)
| | | | - Daita Kaneda
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi, Japan
| | - Akiyo Shinde
- Department of Neurology, Tenri Hospital, Tenri, Japan
| | - Hirofumi Kusaka
- Department of Neurology, Tanabe Neurosurgical Hospital, Fujiidera, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Ward A, Hollister JR, McNally K, Ritchie DL, Zanusso G, Priola SA. Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes. Acta Neuropathol Commun 2020; 8:83. [PMID: 32517816 PMCID: PMC7285538 DOI: 10.1186/s40478-020-00958-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype.
Collapse
|
11
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
12
|
Wang Z, Yuan J, Shen P, Abskharon R, Lang Y, Dang J, Adornato A, Xu L, Chen J, Feng J, Moudjou M, Kitamoto T, Lee HG, Kim YS, Langeveld J, Appleby B, Ma J, Kong Q, Petersen RB, Zou WQ, Cui L. In Vitro Seeding Activity of Glycoform-Deficient Prions from Variably Protease-Sensitive Prionopathy and Familial CJD Associated with PrP V180I Mutation. Mol Neurobiol 2019; 56:5456-5469. [PMID: 30612334 PMCID: PMC6614145 DOI: 10.1007/s12035-018-1459-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/17/2018] [Indexed: 12/05/2022]
Abstract
Both sporadic variably protease-sensitive prionopathy (VPSPr) and familial Creutzfeldt-Jakob disease linked to the prion protein (PrP) V180I mutation (fCJDV180I) have been found to share a unique pathological prion protein (PrPSc) that lacks the protease-resistant PrPSc glycosylated at residue 181 because two of four PrP glycoforms are apparently not converted into the PrPSc from their cellular PrP (PrPC). To investigate the seeding activity of these unique PrPSc molecules, we conducted in vitro prion conversion experiments using serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays with different PrPC substrates. We observed that the seeding of PrPSc from VPSPr or fCJDV180I in the sPMCA reaction containing normal human or humanized transgenic (Tg) mouse brain homogenates generated PrPSc molecules that unexpectedly exhibited a dominant diglycosylated PrP isoform along with PrP monoglycosylated at residue 181. The efficiency of PrPSc amplification was significantly higher in non-CJDMM than in non-CJDVV human brain homogenate, whereas it was higher in normal TgVV than in TgMM mouse brain homogenate. PrPC from the mixture of normal TgMM and Tg mouse brain expressing PrPV180I mutation (Tg180) but not TgV180I alone was converted into PrPSc by seeding with the VPSPr or fCJDV180I. The RT-QuIC seeding activity of PrPSc from VPSPr and fCJDV180I was significantly lower than that of sCJD. Our results suggest that the formation of glycoform-selective prions may be associated with an unidentified factor in the affected brain and the glycoform-deficiency of PrPSc does not affect the glycoforms of in vitro newly amplified PrPSc.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pingping Shen
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Romany Abskharon
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Johnny Dang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alise Adornato
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ling Xu
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jiafeng Chen
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | | | - Tetsuyuki Kitamoto
- Center for Prion Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hyoung-Gon Lee
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Yong-Sun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Houtribweg 39, Lelystad, the Netherlands
| | - Brian Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Foundation Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA.
| | - Wen-Quan Zou
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China. .,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China.
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
13
|
Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene. Biochem Biophys Res Commun 2018; 496:1055-1061. [PMID: 29382530 DOI: 10.1016/j.bbrc.2018.01.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 11/22/2022]
Abstract
Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrPres at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrPres in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrPres were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease.
Collapse
|
14
|
Townley RA, Dawson ET, Drubach DA. Heterozygous genotype at codon 129 correlates with prolonged disease course in Heidenhain variant sporadic CJD: case report. Neurocase 2018; 24:54-58. [PMID: 29436943 DOI: 10.1080/13554794.2018.1439067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapid and fatal neurodegenerative disease defined by misfolded prion proteins accumulating in the brain. A minority of cases initially present with posterior cortical atrophy (PCA) phenotype, also known as Heidenhain variant or visual variant CJD. This case provides further evidence of sCJD presenting as PCA. The case also provides evidence for early DWI changes and cortical atrophy over 30 months before neurologic decline and subsequent death. The prolonged disease course correlates with prion protein codon 129 heterozygosity and coexistence of multiple prion strains.
Collapse
Affiliation(s)
- Ryan A Townley
- a Department of Neurology , Mayo Clinic , Rochester , MN , USA
| | - Elliot T Dawson
- a Department of Neurology , Mayo Clinic , Rochester , MN , USA
| | | |
Collapse
|
15
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
16
|
Batlle C, Iglesias V, Navarro S, Ventura S. Prion-like proteins and their computational identification in proteomes. Expert Rev Proteomics 2017; 14:335-350. [DOI: 10.1080/14789450.2017.1304214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Iwasaki Y, Mori K, Ito M, Mimuro M, Kitamoto T, Yoshida M. An autopsied case of MM1 + MM2-cortical with thalamic-type sporadic Creutzfeldt-Jakob disease presenting with hyperintensities on diffusion-weighted MRI before clinical onset. Neuropathology 2016; 37:78-85. [PMID: 27436355 DOI: 10.1111/neup.12327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 11/27/2022]
Abstract
A 78-year-old Japanese man presented with rapidly progressive dementia and gait disturbances. Eight months before the onset of clinical symptoms, diffusion-weighted magnetic resonance imaging (DWI) demonstrated hyperintensities in the right temporal, right parietal and left medial occipital cortices. Two weeks after symptom onset, DWI showed extensive hyperintensity in the bilateral cerebral cortex, with regions of higher brightness that existed prior to symptom onset still present. Four weeks after clinical onset, periodic sharp wave complexes were identified on an electroencephalogram. Myoclonus was observed 8 weeks after clinical onset. The patient reached an akinetic mutism state and died 5 months after onset. Neuropathological examination showed widespread cerebral neocortical involvement of fine vacuole-type spongiform changes with large confluent vacuole-type spongiform changes. Spongiform degeneration with neuron loss and hypertrophic astrocytosis was also observed in the striatum and medial thalamus. The inferior olivary nucleus showed severe neuron loss with hypertrophic astrocytosis. Prion protein (PrP) immunostaining showed widespread synaptic-type PrP deposition with perivacuolar-type PrP deposition in the cerebral neocortex. Mild to moderate PrP deposition was also observed extensively in the basal ganglia, thalamus, cerebellum and brainstem, but it was not apparent in the inferior olivary nucleus. PrP gene analysis showed no mutations, and polymorphic codon 129 showed methionine homozygosity. Western blot analysis of protease-resistant PrP showed both type 1 scrapie type PrP (PrPSc ) and type 2 PrPSc . Based on the relationship between the neuroimaging and pathological findings, we speculated that cerebral cortical lesions with large confluent vacuoles and type 2 PrPSc would show higher brightness and continuous hyperintensity on DWI than those with fine vacuoles and type 1 PrPSc . We believe the present patient had a combined form of MM1 + MM2-cortical with thalamic-type sporadic Creutzfeldt-Jakob disease (sCJD), which suggests a broader spectrum of sCJD clinicopathological findings.
Collapse
Affiliation(s)
- Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Maya Mimuro
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
18
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Kabir ME, Safar JG. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion 2015; 8:111-6. [PMID: 24401672 PMCID: PMC7030914 DOI: 10.4161/pri.27661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.
Collapse
|
20
|
Kobayashi A, Iwasaki Y, Otsuka H, Yamada M, Yoshida M, Matsuura Y, Mohri S, Kitamoto T. Deciphering the pathogenesis of sporadic Creutzfeldt-Jakob disease with codon 129 M/V and type 2 abnormal prion protein. Acta Neuropathol Commun 2013; 1:74. [PMID: 24252157 PMCID: PMC3833290 DOI: 10.1186/2051-5960-1-74] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/12/2022] Open
Abstract
Background Sporadic Creutzfeldt-Jakob disease is classified according to the genotype at polymorphic codon 129 (M or V) of the prion protein (PrP) gene and the type (1 or 2) of abnormal isoform of PrP (PrPSc) in the brain. The most complicated entity in the current classification system is MV2, since it shows wide phenotypic variations, i.e., MV2 cortical form (MV2C), MV2 with kuru plaques (MV2K), or a mixed form (MV2K + C). To resolve their complicated pathogenesis, we performed a comprehensive analysis of the three MV2 subgroups based on histopathological, molecular, and transmission properties. Results In histopathological and molecular analyses, MV2C showed close similarity to MM2 cortical form (MM2C) and could be easily discriminated from the other MV2 subgroups. By contrast, MV2K and MV2K + C showed the same molecular type and the same transmission type, and the sole difference between MV2K and MV2K + C was the presence of cortical pathology characteristic of MV2C/MM2C. The remarkable molecular feature of MV2K or MV2K + C was a mixture of type 2 PrPSc and intermediate type PrPSc, which shows intermediate electrophoretic mobility between types 1 and 2 PrPSc. Modeling experiments using PrP-humanized mice indicated that MV2K contains a mixture of intermediate type PrPSc with the 129M genotype (Mi PrPSc) and type 2 PrPSc with the 129V genotype (V2 PrPSc) that originated from V2 PrPSc, whereas MV2C + K may also contain type 2 PrPSc with the 129M genotype and cortical pathology (M2C PrPSc) that lacks infectivity to the PrP-humanized mice in addition to Mi and V2 PrPSc. Conclusions Taken together, the present study suggests that the phenotypic heterogeneity of MV2 stems from their different PrPSc origin(s).
Collapse
|
21
|
Haldiman T, Kim C, Cohen Y, Chen W, Blevins J, Qing L, Cohen ML, Langeveld J, Telling GC, Kong Q, Safar JG. Co-existence of distinct prion types enables conformational evolution of human PrPSc by competitive selection. J Biol Chem 2013; 288:29846-61. [PMID: 23974118 DOI: 10.1074/jbc.m113.500108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrP(Sc)). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrP(Sc) particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrP(Sc) particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrP(C) substrate, the dominant PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrP(Sc) is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers.
Collapse
|
22
|
Head MW. Human prion diseases: Molecular, cellular and population biology. Neuropathology 2013; 33:221-36. [DOI: 10.1111/neup.12016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Mark W. Head
- National CJD Research & Surveillance Unit; Centre for Clinical Brain Sciences; School of Clinical Sciences; The University of Edinburgh; Edinburgh; UK
| |
Collapse
|
23
|
Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 2012; 11:618-28. [PMID: 22710755 DOI: 10.1016/s1474-4422(12)70063-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human prion diseases can be sporadic, inherited, or acquired by infection. Distinct clinical and pathological characteristics separate sporadic diseases into three phenotypes: Creutzfeldt-Jakob disease (CJD), fatal insomnia, and variably protease-sensitive prionopathy. CJD accounts for more than 90% of all cases of sporadic prion disease; it is commonly categorised into five subtypes that can be distinguished according to leading clinical signs, histological lesions, and molecular traits of the pathogenic prion protein. Three subtypes affect prominently cognitive functions whereas the other two impair cerebellar motor activities. An accurate and timely diagnosis depends on careful clinical examination and early performance and interpretation of diagnostic tests, including electroencephalography, quantitative assessment of the surrogate markers 14-3-3, tau, and of the prion protein in the CSF, and neuroimaging. The reliability of CSF tests is improved when these tests are interpreted alongside neuroimaging data.
Collapse
Affiliation(s)
- Gianfranco Puoti
- Division of Neurology, Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Head MW, Ironside JW. Review: Creutzfeldt-Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol Appl Neurobiol 2012; 38:296-310. [PMID: 22394291 DOI: 10.1111/j.1365-2990.2012.01265.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human transmissible spongiform encephalopathies or human prion diseases are one of the most intensively investigated groups of rare human neurodegenerative conditions. They are generally held to be unique in terms of their complex epidemiology and phenotypic variability, but they may also serve as a paradigm with which other more common protein misfolding disorders might be compared and contrasted. The clinico-pathological phenotype of human prion diseases appears to depend on a complex interaction between the prion protein genotype of the affected individual and the physico-chemical properties of the neurotoxic and transmissible agent, thought to comprise of misfolded prion protein. A major focus of research in recent years has been to define the phenotypic heterogeneity of the recognized human prion diseases, correlate this with molecular-genetic features and then determine whether this molecular-genetic classification of human prion disease defines the biological properties of the agent as determined by animal transmission studies. This review seeks to survey the field as it currently stands, summarize what has been learned, and explore what remains to be investigated in order to obtain a more complete scientific understanding of prion diseases and to protect public health.
Collapse
Affiliation(s)
- M W Head
- National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
25
|
Jansen C, Parchi P, Capellari S, Ibrahim-Verbaas CA, Schuur M, Strammiello R, Corrado P, Bishop MT, van Gool WA, Verbeek MM, Baas F, van Saane W, Spliet WGM, Jansen GH, van Duijn CM, Rozemuller AJM. Human prion diseases in the Netherlands (1998-2009): clinical, genetic and molecular aspects. PLoS One 2012; 7:e36333. [PMID: 22558438 PMCID: PMC3340342 DOI: 10.1371/journal.pone.0036333] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/01/2012] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are rare and fatal neurodegenerative disorders that can be sporadic, inherited or acquired by infection. Based on a national surveillance program in the Netherlands we describe here the clinical, neuropathological, genetic and molecular characteristics of 162 patients with neuropathologically confirmed prion disease over a 12-year period (1998–2009). Since 1998, there has been a relatively stable mortality of Creutzfeldt-Jakob disease (CJD) in the Netherlands, ranging from 0.63 to 1.53 per million inhabitants per annum. Genetic analysis of the codon 129 methionine/valine (M/V) polymorphism in all patients with sporadic CJD (sCJD) showed a trend for under-representation of VV cases (7.0%), compared with sCJD cohorts in other Western countries, whereas the MV genotype was relatively over-represented (22,4%). Combined PrPSc and histopathological typing identified all sCJD subtypes known to date, except for the VV1 subtype. In particular, a “pure" phenotype was demonstrated in 60.1% of patients, whereas a mixed phenotype was detected in 39.9% of all sCJD cases. The relative excess of MV cases was largely accounted for by a relatively high incidence of the MV 2K subtype. Genetic analysis of the prion protein gene (PRNP) was performed in 161 patients and showed a mutation in 9 of them (5.6%), including one FFI and four GSS cases. Iatrogenic CJD was a rare phenomenon (3.1%), mainly associated with dura mater grafts. Three patients were diagnosed with new variant CJD (1.9%) and one with variably protease-sensitive prionopathy (VPSPr). Post-mortem examination revealed an alternative diagnosis in 156 patients, most commonly Alzheimer's disease (21.2%) or vascular causes of dementia (19.9%). The mortality rates of sCJD in the Netherlands are similar to those in other European countries, whereas iatrogenic and genetic cases are relatively rare. The unusual incidence of the VV2 sCJD subtype compared to that reported to date in other Western countries deserves further investigation.
Collapse
Affiliation(s)
- Casper Jansen
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Head MW, Ironside JW. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease. Rev Med Virol 2012; 22:214-29. [DOI: 10.1002/rmv.725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Mark W. Head
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| | - James W. Ironside
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| |
Collapse
|
27
|
Murayama S. [Seed, aggregation and propagation of abnormal proteins could explain neurodegeneration?]. Rinsho Shinkeigaku 2012; 51:1097-9. [PMID: 22277493 DOI: 10.5692/clinicalneurol.51.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Braak proposed propagation staging paradigm of Lewy- related alpha-synucleinopathy, which starts from medulla oblongata and extends rostrally to neocortex. Since this propagation shares that of bovine spongiformic encephalopathy, alpha- synuclein- prionopathy hypothesis was presented and augumented by pathological reports of Lewy body pathology in fetal tansplants of midbrain to patients with Parkinson disease (PD). The prionopathy hypothesis expanded to include tau and TDP- 43, is now receiving considerable attention world wide. Laterality of clinical symptoms can be explained with this hypothesis in PD, amyotrophic lateral sclerosis- TDP43, frontotemoral lobar degeneration- semantic dementia- TDP43 and tauopathy including corticobasal degeneration and argyrophilic grain dementia. Major cons of prionopathy hypothesis is how to explain cell to cell transmission of intracellular amyloid- like proteins. Several clinical and experimental data are now accumulated to answer this question. The difference in speed of spread between prion disease and neurodegenerative disease could be explained by aggregation size of abnormal proteins. The hypothesis could also explain glinoneuronal interaction, which is receiving another hot topic of neurodeneration. We propose that seed, aggregation propagation of abnormal protein should form one factor of clinical progression of neurodegenerative diseases and can be a therapeutic targets in future research.
Collapse
Affiliation(s)
- Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research)
| |
Collapse
|
28
|
Creutzfeldt-Jakob disease with the M232R mutation in the prion protein gene in two cases showing different disease courses: a clinicopathological study. J Neurol Sci 2012; 312:108-16. [PMID: 21983261 DOI: 10.1016/j.jns.2011.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/12/2011] [Accepted: 08/04/2011] [Indexed: 01/16/2023]
Abstract
We report two autopsy cases of Creutzfeldt-Jakob disease (CJD) with the M232R mutation of the prion protein (PrP) gene that exhibited different clinicopathological features (age at death, 64/54 years; disease duration, 13/26 months). Both cases showed myoclonus, hyperintensity on diffusion-weighted MRI, and increased 14-3-3 protein in the cerebrospinal fluid. The initial sign in each case was memory disturbance and abnormal pharyngeal sensation, respectively. In the first case, the disease progressed rapidly with akinetic mutism developing 6 months after onset, while it occurred 23 months after onset in the second case. Pathologically, both cases had severe neuronal loss with gliosis and spongiform change in the cerebral cortex, basal ganglia, and cerebellum. PrP deposition was the diffuse synaptic type in the first case, but the second case had both diffuse synaptic and perivacuolar types. PrP(sc) immunoblotting revealed a type 1 band pattern in the first case, but both types 1 and 2 in the second case. Based on these findings, together with the results in previous CJD cases with M232R, we noted the possibility that the presence of type 2 PrP(sc) may be associated with both morphological features of PrP deposition and slow disease progression in this genetic prion disease.
Collapse
|
29
|
Abstract
Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis ( 1, 2) . At each fibril end, β-sheets provide a template for recruiting and converting monomers ( 3) . Various amyloid fibrils often occur in the same individual, yet whether distinct protein aggregates aid or inhibit the assembly of heterologous proteins is unclear. In prion disease, different amyloid-like prion aggregate structures, or strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences ( 4-7) . Here we focus on the interactions reported to occur when two pre-existing amyloids or two distinct prion strains occur together in the central nervous system.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology, University of California San Diego, La Jolla, CA, USA. red b-sheets aligne
| | | | | |
Collapse
|