1
|
Brandenburg JT, Chen WC, Boua PR, Govender MA, Agongo G, Micklesfield LK, Sorgho H, Tollman S, Asiki G, Mashinya F, Hazelhurst S, Morris AP, Fabian J, Ramsay M. Genetic association and transferability for urinary albumin-creatinine ratio as a marker of kidney disease in four Sub-Saharan African populations and non-continental individuals of African ancestry. Front Genet 2024; 15:1372042. [PMID: 38812969 PMCID: PMC11134365 DOI: 10.3389/fgene.2024.1372042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
Background Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. Methods Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. Results Two genome-wide significant (P < 5 × 10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. Conclusion This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes.
Collapse
Affiliation(s)
- Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Palwende Romuald Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | - Godfred Agongo
- Navrongo Health Research Centre, Navrongo, Ghana
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Lisa K. Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Stephen Tollman
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Felistas Mashinya
- Department of Pathology and Medical Sciences, School of Healthcare Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - June Fabian
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Brandenburg JT, Chen WC, Boua PR, Govender MA, Agongo G, Micklesfield LK, Sorgho H, Tollman S, Asiki G, Mashinya F, Hazelhurst S, Morris AP, Fabian J, Ramsay M. Genetic Association and Transferability for Urinary Albumin-Creatinine Ratio as a Marker of Kidney Disease in four Sub-Saharan African Populations and non-continental Individuals of African Ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301398. [PMID: 38293229 PMCID: PMC10827237 DOI: 10.1101/2024.01.17.24301398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney function in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations.
Collapse
|
3
|
Kim HR, Jin HS, Eom YB. Identification of Genetic Markers Linked to The Activity of Indoleamine 2,3-Dioxygenase and Kidney Function. Metabolites 2023; 13:metabo13040541. [PMID: 37110199 PMCID: PMC10144659 DOI: 10.3390/metabo13040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme belonging to the kynurenine pathway. IDO activity has been suggested as a potential biomarker for early diagnosis of chronic kidney disease (CKD). The aim of this study was to perform coincident association analysis to gain genetic insights into the correlation between IDO activity and CKD. This study evaluated the association between IDO activity and CKD using the Korea Association REsource (KARE) cohort. Logistic and linear regression were used to analyze CKD and quantitative phenotypes such as IDO and estimated glomerular filtration rate (eGFR). Our results identified 10 single nucleotide polymorphisms (SNPs) that were coincidently associated with both IDO and CKD (p < 0.001). Among them, rs6550842, rs77624055, and rs35651150 were selected as potential candidates after excluding SNPs with insufficient evidence for having an association with IDO or CKD. Further expression quantitative trait loci (eQTL) analysis for variants at selected loci showed that rs6550842 and rs35651150 significantly affected the expression of NKIRAS1 and SH2D4A genes in human tissues, respectively. Additionally, we highlighted that the NKIRAS1 and BMP6 genes were correlated with IDO activity and CKD through signaling pathways associated with inflammation. Our data suggest that NKIRAS1, SH2D4A, and BMP6 were potential causative genes affecting IDO activity and CKD through integrated analysis. Identifying these genes could aid in early detection and treatment by predicting the risk of CKD associated with IDO activity.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Chungnam, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea
| |
Collapse
|
4
|
Shailender G, Patanla K, Malla RR. ShRNA-mediated matrix metalloproteinase-2 gene silencing protects normal cells and sensitizes cancer cells against ionizing-radiation induced damage. J Cell Biochem 2019; 121:1332-1352. [PMID: 31489968 DOI: 10.1002/jcb.29369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Ionizing radiation (IR) affects healthy tissues during the treatment of cancer radiation therapy and other nuclear and radiological accidents. Some natural compounds showed nonspecific radioprotective activity with severe side effects. The present study is aimed to develop potent and specific radioprotective short hairpin RNA (shRNA), which selectively protects normal cells from IR by specifically targeting matrix metalloproteinases (MMP-2). RESULTS IR reduced the viability of human normal dermal fibroblasts (HDFs) in a dose-response manner. It enhanced the expression of MMP-2 at 10 Gy. Plasmid MMP-2shRNA (pMMP-2) reduced the IR (10 Gy) induced cytotoxicity analyzed by lactate dehydrogenase (LDH) assay, normalized IR induced cellular and morphological changes with enhanced the clonogenicity in 48 hours at 2 µg/mL. It reduced the ROS generation, released HDFs from G2 /M arrest and rescued from apoptosis analyzed by DCFDA dye, cell cycle analysis by PI stain and annexin V assay, respectively. pMMP-2 also modulates the expression of EGFR and reduced IR induced expression of DNA damage response protein, ATM and increased the expression of repair proteins, KU70/KU80, and RAD51. In addition, decreased the expression of cell cycle regulatory proteins cyclin-dependent kinases (CDK1) and Cyclin B as well as proapoptotic proteins BAX, caspase-3, and Cytochrome-C and increased the expression of survival protein, Bcl-2. In contrary pMMP-2 decreased the LDH activity, survival fraction and blocked G2 /M phase of cell cycle and increased apoptosis in MCF-7 cells. In addition, decreased the expression of EGFR, proapoptotic BAX and DNA repair proteins ATM, KU70/80 and RAD51, increased expression of cyclinB as well as CDK1. CONCLUSION Results conclude that pMMP-2 protected HDFs from IR and sensitized the MCF-7 cells. Therefore, pMMP-2 can be employed for better treatment of radiation accidents and during the treatment of radiotherapy.
Collapse
Affiliation(s)
- Gugalavath Shailender
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| | - Kiranmayi Patanla
- Department of Biotechnology, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| |
Collapse
|
5
|
Hoffmann JM, Grünberg JR, Church C, Elias I, Palsdottir V, Jansson JO, Bosch F, Hammarstedt A, Hedjazifar S, Smith U. BMP4 Gene Therapy in Mature Mice Reduces BAT Activation but Protects from Obesity by Browning Subcutaneous Adipose Tissue. Cell Rep 2018; 20:1038-1049. [PMID: 28768190 DOI: 10.1016/j.celrep.2017.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023] Open
Abstract
We examined the effect of Bone Morphogenetic Protein 4 (BMP4) on energy expenditure in adult mature mice by targeting the liver with adeno-associated viral (AAV) BMP4 vectors to increase circulating levels. We verified the direct effect of BMP4 in inducing a brown oxidative phenotype in differentiating preadipocytes in vitro. AAV-BMP4-treated mice display marked browning of subcutaneous adipocytes, with increased mitochondria and Uncoupling Protein 1 (UCP1). These mice are protected from obesity on a high-fat diet and have increased whole-body energy expenditure, improved insulin sensitivity, reduced liver fat, and reduced adipose tissue inflammation. On a control diet, they show unchanged body weight but improved insulin sensitivity. In contrast, AAV-BMP4-treated mice showed beiging of BAT with reduced UCP1, increased lipids, and reduced hormone-sensitive lipase (HSL). Thus, BMP4 exerts different effects on WAT and BAT, but the overall effect is to enhance insulin sensitivity and whole-body energy expenditure by browning subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Jenny M Hoffmann
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - John R Grünberg
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 1TN, UK
| | - Christopher Church
- Cardiovascular and Metabolic Disease, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08029 Madrid, Spain
| | - Vilborg Palsdottir
- Department of Physiology/Endocrinology, the Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - John-Olov Jansson
- Department of Physiology/Endocrinology, the Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08029 Madrid, Spain
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Shahram Hedjazifar
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
6
|
The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep 2017; 7:17279. [PMID: 29222527 PMCID: PMC5722906 DOI: 10.1038/s41598-017-17490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.
Collapse
|
7
|
Yu X, Gu P, Huang Z, Fang X, Jiang Y, Luo Q, Li X, Zhu X, Zhan M, Wang J, Fan L, Chen R, Yu J, Gu Y, Liang A, Yi X. Reduced expression of BMP3 contributes to the development of pulmonary fibrosis and predicts the unfavorable prognosis in IIP patients. Oncotarget 2017; 8:80531-80544. [PMID: 29113323 PMCID: PMC5655218 DOI: 10.18632/oncotarget.20083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and idiopathic nonspecific interstitial pneumonia (INSIP) are two related diseases involving varying degrees of pulmonary fibrosis with no effective cure. Bone morphogenetic protein 3 (BMP3) is a member of the transforming growth factor-β (TGF-β) super-family, which has not been implicated in pulmonary fibrosis previously. In this study, we aimed to investigate the potential role of BMP3 playing in pulmonary fibrosis from clinical diagnosis to molecular signaling regulation. RNA sequencing was performed to explore the potential biomarker of IIP patients. The expression of BMP3 was evaluated in 83 cases of IPF and INSIP by immunohistochemistry. The function of BMP3 was investigated in both fibroblast cells and a bleomycin-induced murine pulmonary fibrosis model. The clinical relevance of BMP3 expression were analyzed in 47 IIP patients, which were included in 83 cases and possess more than five-year follow-up data. Both RNA-sequencing and immunohistochemistry staining revealed that BMP3 was significantly down-regulated in lung tissues of patients with IPF and INSIP. Consistently, lower expression of BMP3 also was found in pulmonary fibrotic tissues of bleomycin-induced mice model. Up-regulation of BMP3 prevented pulmonary fibrosis processing through inhibiting cellular proliferation of fibroblasts as well as TGF-β1 signal transduction. Finally, the relatively higher expression of BMP3 in IPF patients was associated with less/worse mortality. Intravenous injection of recombinant BMP3. Taken together, our results suggested that the low expression level of BMP3 may indicate the unfavorable prognosis of IPF patients, targeting BMP3 may represent a novel potential therapeutic method for pulmonary fibrosis management.
Collapse
Affiliation(s)
- Xiaoting Yu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Pan Gu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ziling Huang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xia Fang
- Department of Biotherapy, Tongji Hosptial, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying Jiang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Qun Luo
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xia Li
- Department of Respiratory, Shanghai Pulmonary Hospital, Tongji Universiy School of Medicine, Shanghai 200433, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Mengna Zhan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lichao Fan
- Department of Respiratory, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Rongchang Chen
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Juehua Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yingying Gu
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Aibin Liang
- Department of Biotherapy, Tongji Hosptial, Tongji University School of Medicine, Shanghai 200065, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
8
|
Ultra structural changes occurring in duct ectasia and periductal mastitis and their significance in etiopathogenesis. PLoS One 2017; 12:e0173216. [PMID: 28273122 PMCID: PMC5342207 DOI: 10.1371/journal.pone.0173216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/07/2017] [Indexed: 01/24/2023] Open
Abstract
Introduction Duct ectasia (DE) and periductal mastitis (PDM) are the most common benign breast conditions seen in women. The etiopathogenesis of these entities is still not clear and most of the theories regarding the causation are based on the histological features as seen on light microscopy. The ultramicroscopic features associated with these conditions that may give more insight to the etiopathogenesis are unknown. Aim To study the ultrastructural changes occurring in mammary duct cones in patients with DE and PDM using Transmission Electron Microscopic (TEM). Method Major ducts removed by radical duct excision from 21 patients with final histopathological diagnosis of DE and PDM were subjected to TEM study with 2 normal duct samples as controls. Results The TEM features of DE were denudation of the epithelial cells with focal loss of microvilli, widening of the inter-epithelial junctions with focal disruption of the T bars, periductal collagenisation without inflammation, and features suggestive of Epithelial Mesenchymal Transition (EMT). PDM features are intact epithelial lining with proliferative epithelium and periductal collagenisation with inflammation. Conclusions Based on the TEM findings, we suggest that DE and PDM are two different entities. EMT a novel finding observed in DE in this study.
Collapse
|
9
|
Muñoz-Félix JM, González-Núñez M, Martínez-Salgado C, López-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 2015; 156:44-58. [PMID: 26493350 DOI: 10.1016/j.pharmthera.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of renal fibrosis in chronic kidney disease (CKD) remains as a challenge. More than 10% of the population of developed countries suffer from CKD. Proliferation and activation of myofibroblasts and accumulation of extracellular matrix proteins are the main features of kidney fibrosis, a process in which a large number of cytokines are involved. Targeting cytokines responsible for kidney fibrosis development might be an important strategy to face the problem of CKD. The increasing knowledge of the signaling pathway network of the transforming growth factor beta (TGF-β) superfamily members, such as the profibrotic cytokine TGF-β1 or the bone morphogenetic proteins (BMPs), and their involvement in the regulation of kidney fibrosis, has stimulated numerous research teams to look for potential strategies to inhibit profibrotic cytokines or to enhance the anti-fibrotic actions of other cytokines. The consequence of all these studies is a better understanding of all these canonical (Smad-mediated) and non-canonical signaling pathways. In addition, the different receptors involved for signaling of each cytokine, the different combinations of type I-type II receptors, and the presence and function of co-receptors that can influence the biological response have been also described. However, are these studies leading to suitable strategies to block the appearance and progression of kidney fibrosis? In this review, we offer a critical perspective analyzing the achievements using the most important strategies developed up till now: TGF-β antibodies, chemical inhibitors of TGF-β receptors, miRNAs and signaling pathways and BMP agonists with a potential role as therapeutic molecules against kidney fibrosis.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María González-Núñez
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
10
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
11
|
Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. FIBROGENESIS & TISSUE REPAIR 2014; 7:15. [PMID: 25285155 PMCID: PMC4185272 DOI: 10.1186/1755-1536-7-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
Although kidney transplantation has been an important means for the treatment of patients with end stage of renal disease, the long-term survival rate of the renal allograft remains a challenge. The cause of late renal allograft loss, once known as chronic allograft nephropathy, has been renamed “interstitial fibrosis and tubular atrophy” (IF/TA) to reflect the histologic pattern seen on biopsy. The mechanisms leading to IF/TA in the transplanted kidney include inflammation, activation of renal fibroblasts, and deposition of extracellular matrix proteins. Identifying the mediators and factors that trigger IF/TA may be useful in early diagnosis and development of novel therapeutic strategies for improving long-term renal allograft survival and patient outcomes. In this review, we highlight the recent advances in our understanding of IF/TA from three aspects: pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China ; Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Middle House 301, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
12
|
Long J, Badal SS, Wang Y, Chang BHJ, Rodriguez A, Danesh FR. MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney. J Biol Chem 2013; 288:36202-14. [PMID: 24163368 DOI: 10.1074/jbc.m113.498634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) contribute to a myriad of kidney diseases. However, the regulatory role of miRNAs on the key molecules implicated in kidney fibrosis remains poorly understood. Bone morphogenetic protein-7 (BMP-7) and its related BMP-6 have recently emerged as key regulators of kidney fibrosis. Using the established unilateral ureteral obstruction (UUO) model of kidney fibrosis as our experimental model, we examined the regulatory role of miRNAs on BMP-7/6 signaling. By analyzing the potential miRNAs that target BMP-7/6 in silica, we identified miR-22 as a potent miRNA targeting BMP-7/6. We found that expression levels of BMP-7/6 were significantly elevated in the kidneys of the miR-22 null mouse. Importantly, mice with targeted deletion of miR-22 exhibited attenuated renal fibrosis in the UUO model. Consistent with these in vivo observations, primary renal fibroblast isolated from miR-22-deficient UUO mice demonstrated a significant increase in BMP-7/6 expression and their downstream targets. This phenotype could be rescued when cells were transfected with miR-22 mimics. Interestingly, we found that miR-22 and BMP-7/6 are in a regulatory feedback circuit, whereby not only miR-22 inhibits BMP-7/6, but miR-22 by itself is induced by BMP-7/6. Finally, we identified two BMP-responsive elements in the proximal region of miR-22 promoter. These findings identify miR-22 as a critical miRNA that contributes to renal fibrosis on the basis of its pivotal role on BMP signaling cascade.
Collapse
Affiliation(s)
- Jianyin Long
- From the Nephrology Section, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|