1
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
2
|
Gall Trošelj K, Novak Kujundzic R, Ugarkovic D. Polycomb repressive complex's evolutionary conserved function: the role of EZH2 status and cellular background. Clin Epigenetics 2016; 8:55. [PMID: 27239242 PMCID: PMC4882774 DOI: 10.1186/s13148-016-0226-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
When assembled in multiprotein polycomb repressive complexes (PRCs), highly evolutionary conserved polycomb group (PcG) proteins epigenetically control gene activity. Although the composition of PRCs may vary considerably, it is well established that the embryonic ectoderm development (EED) 1, suppressor of zeste (SUZ) 12, and methyltransferase enhancer of zeste (EZH2)-containing complex, PRC2, which is abundant in highly proliferative cells (including cancer cells), establishes a repressive methylation mark on histone 3 (H3K27me3). From the perspective of molecular cancer pathogenesis, this effect, when directed towards a promoter of tumor suppressor genes, represents pro-tumorigenic effect. This mode of action was shown in several cancer models. However, EZH2 function extends beyond this scenario. The highly specific cellular background, related to the origin of cell and numerous external stimuli during a given time-window, may be the trigger for EZH2 interaction with other proteins, not necessarily histones. This is particularly relevant for cancer. This review provides a critical overview of the evolutional importance of PRC and discusses several important aspects of EZH2 functioning within PRC. The review also deals with mutational studies on EZH2. Due to the existence of several protein (and messenger RNA (mRNA)) isoforms, these mutations were stratified, using the protein sequence which is considered canonical. This approach showed that there is an urgent need for the uniformed positioning of currently known EZH2 mutations (somatic-in tumors, as well as germline mutations in the Weaver's syndrome). Finally, we discuss EZH2 function with respect to amount of trimethylated H3K27, in a specific cellular milieu, through presenting the most recent data related to EZH2-H3K27m3 relationship in cancer. All these points are significant in considering EZH2 as a therapeutic target.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- />Division of Molecular Medicine, Laboratory for Epigenomics, Rudjer Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| | - Renata Novak Kujundzic
- />Division of Molecular Medicine, Laboratory for Epigenomics, Rudjer Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| | - Djurdjica Ugarkovic
- />Division of Molecular Biology, Laboratory for Evolutionary Genetics, Rudjer Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| |
Collapse
|
3
|
Puig-Butille JA, Escámez MJ, Garcia-Garcia F, Tell-Marti G, Fabra À, Martínez-Santamaría L, Badenas C, Aguilera P, Pevida M, Dopazo J, del Río M, Puig S. Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer. Oncotarget 2014; 5:1439-51. [PMID: 24742402 PMCID: PMC4039222 DOI: 10.18632/oncotarget.1444] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022] Open
Abstract
Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer. To this end we set-up primary skin cell co-cultures from siblings of melanoma prone-families that were later analyzed using the expression array approach. As a result, we found that 1535 transcripts were deregulated in CDKN2A mutated cells, with over-expression of immunity-related genes (HLA-DPB1, CLEC2B, IFI44, IFI44L, IFI27, IFIT1, IFIT2, SP110 and IFNK) and down-regulation of genes playing a role in the Notch signaling pathway. 3570 transcripts were deregulated in MC1R variant carriers. In particular, genes related to oxidative stress and DNA damage pathways were up-regulated as well as genes associated with neurodegenerative diseases such as Parkinson's, Alzheimer and Huntington. Finally, we observed that the expression signatures indentified in phenotypically normal cells carrying CDKN2A mutations or MC1R variants are maintained in skin cancer tumors (melanoma and squamous cell carcinoma). These results indicate that transcriptome deregulation represents an early event critical for skin cancer development.
Collapse
Affiliation(s)
- Joan Anton Puig-Butille
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - María José Escámez
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Francisco Garcia-Garcia
- Functional Genomics Node, National Institute of Bioinformatics, CIPF Valencia, Spain
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gemma Tell-Marti
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
| | - Àngels Fabra
- Biological Clues of the Invasive and Metastatic Phenotype Group. Molecular Oncology Lab, IDIBELL, Barcelona, Spain
| | - Lucía Martínez-Santamaría
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Celia Badenas
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Paula Aguilera
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Marta Pevida
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Tissue Engineering Unit. Centro Comunitario de Sangre y Tejidos del Principado de Asturias (CCST), Oviedo, Spain
| | - Joaquín Dopazo
- Functional Genomics Node, National Institute of Bioinformatics, CIPF Valencia, Spain
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Marcela del Río
- Regenerative Medicine Unit. Epithelial Biomedicine Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Bioengineering. Universidad Carlos III (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Susana Puig
- Melanoma Unit, Hospital Clinic & IDIBAPS (Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
4
|
Xiao Z, Jiang Q, Willette-Brown J, Hu Y. Mouse model resembling human lung cancer. Oncotarget 2013; 4:810-1. [PMID: 23868856 PMCID: PMC3757237 DOI: 10.18632/oncotarget.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022] Open
|
5
|
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63. J Skin Cancer 2013; 2013:632028. [PMID: 23710361 PMCID: PMC3655637 DOI: 10.1155/2013/632028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.
Collapse
|
6
|
Lu H, Lu Q, Zheng Y, Li Q. Notch signaling promotes the corneal epithelium wound healing. Mol Vis 2012; 18:403-11. [PMID: 22355251 PMCID: PMC3283215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/06/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Notch signaling pathway plays crucial roles in regulation of cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. This study was designed to test the effects of enhanced Notch activity on corneal epithelium homeostasis and wound healing using the transgenic mice that overexpressed an activated Notch1 (NICD) in cornea epithelium. METHODS The studies were performed on R26(fN1-ICD) transgenic mice that carry a NICD cDNA (cDNA) whose expression is prevented by a "Lox-STOP-Lox" cassette. When this transgenic mouse is bred to a mouse strain carrying a Cre recombinase expression cassette driven by a tissue-specific keratin 14 (K14) promoter, the floxed "STOP" cassette is excised and NICD is expressed in the cornea epithelium. The expression level of NICD and its downstream target genes, hairy and enhancer of split 1 (Hes1) and hairy/enhancer-of-split related with YRPW motif 1 (Hey1), in the transgenic corneal epithelium was examined by quantitative PCR (qPCR). The phenotypes and morphology of the transgenic corneal epithelium were compared with that of wild type (WT) controls. The proliferation rate of the epithelial cells was assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation and the differentiation statues were examined by K14, tumor protein p63 (p63), K12, and zona occludens 1 (ZO-1) immunoreactivity at either normal developmental condition or after corneal epithelial debridement. The corneal epithelial response to wound healing was studied by fluorescent staining and Richardson's staining macroscopically and by H&E staining at microscope level at 0, 6, 12, 18, and 24 h post injury. RESULTS Although overexpression of NICD in cornea epithelium led to upregulation of its downstream targets, i.e., Hes1 and Hey1, this did not alter corneal epithelial cell proliferation and differentiation. However, wound healing induced Notch activity and overexpression of NICD promoted corneal epithelial wound healing, which was in agreement with more rapid early proliferation response in NICD transgenic mice than in the wild type control mice. CONCLUSIONS These findings further demonstrate the functional role of Notch signaling in corneal epithelium wound healing response.
Collapse
Affiliation(s)
- Huayi Lu
- Department of Ophthalmology and Visual Sciences, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY,Second Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY
| | - Yajuan Zheng
- Second Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
7
|
Li Q, Sambandam SAT, Lu HJ, Thomson A, Kim SH, Lu H, Xin Y, Lu Q. 14-3-3σ and p63 play opposing roles in epidermal tumorigenesis. Carcinogenesis 2011; 32:1782-8. [PMID: 21926108 DOI: 10.1093/carcin/bgr207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
14-3-3σ plays a regulatory role in epidermal epithelial differentiation and loss of 14-3-3σ leads to increased proliferation and impaired differentiation. A tumor suppressor function for 14-3-3σ has been proposed based on the fact that some epithelial-derived tumors lose 14-3-3σ expression. p63, a p53 family member, is a master regulator of epidermal epithelial proliferation and differentiation and is necessary for the epidermal development. The function of p63 in tumorigenesis is still controversial and poorly defined as multiple isoforms have been found to play either collaborative or opposing roles. By using 'repeated epilation' heterozygous (Er/+) mice containing a dominant-negative 14-3-3σ mutation, the functional relationship of p63 with 14-3-3σ in epidermal proliferation, differentiation and tumorigenesis was investigated. It was found that p63, particularly the ΔNp63α isoform, was strongly expressed in 14-3-3σ-deficient keratinocytes and knockdown of p63 remarkably inhibited proliferation in these cells. To study the functional roles of 14-3-3σ and p63 in epidermal tumorigenesis, we adopted a 7,12-dimethylbenzanthracene/12-O-tetradecanoyl-phorbol-13-acetate (DMBA/TPA) two-stage tumorigenesis procedure to induce formation of skin papillomas and squamous cell carcinomas in Er/+ mice and identified strong p63 expression in resultant tumors. The loss of one allele of p63 caused by the generation of Er/+/p63(+/-) double compound mice decreased the sensitivity to DMBA-/TPA-induced tumorigenesis as compared with Er/+ mice. This study shows that p63 and 14-3-3σ play opposing roles in the development of skin tumors and that the accumulation of p63 is essential for Ras/14-3-3σ mutation-induced papilloma formation and squamous cell carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Qiutang Li
- James Graham Brown Cancer Center, University of Louisville School of Medicine, 301 East Muhammad Ali Boulevard, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|