1
|
Leong E, Pang Z, Stadnyk AW, Lin TJ. Calcineurin Aα Contributes to IgE-Dependent Mast-Cell Mediator Secretion in Allergic Inflammation. J Innate Immun 2021; 14:320-334. [PMID: 34839285 PMCID: PMC9274814 DOI: 10.1159/000520040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/26/2021] [Indexed: 11/19/2022] Open
Abstract
Mast cells (MCs) are key mediators of allergic inflammation through the activation of cross-linked immunoglobulin E (IgE) bound to the high-affinity IgE receptor (FcϵRI) on the cell surface, leading to the release of biologically potent mediators, either from preformed granules or newly synthesized. Pharmacological inhibitors have been developed to target a key signaling protein phosphatase in this pathway, calcineurin, yet there is a lack of genetic and definitive evidence for the various isoforms of calcineurin subunits in FcϵRI-mediated responses. In this study, we hypothesized that deficiency in the calcineurin Aα isoform will result in a decreased allergic immune response by the MCs. In a model of passive cutaneous anaphylaxis, there was a reduction in vascular permeability in MC-deficient mouse tissues reconstituted with calcineurin subunit A (CnAα) gene-knockout (CnAα<sup>−/−</sup>) MCs, and in vitro experiments identified a significant reduction in release of preformed mediators from granules. Furthermore, released levels of de novo synthesized cytokines were reduced upon FcϵRI activation of CnAα<sup>−/−</sup> MCs in vitro. Characterizing the mechanisms associated with this deficit response, we found a significant impairment of nuclear factor of kappa light polypeptide gene enhancer in B cell phosphorylation and impaired nuclear factor kappa-light-chain-enhancer of activated B-cell inhibitor alpha (NF-κB) activation. Thus, we concluded that CnAα contributes to the release of preformed mediators and newly synthesized mediators from FcϵRI-mediated activation of MCs, and this regulation includes NF-κB signaling.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada,
| | - Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Stadnyk
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Isaac Walton Killam Health Centre, Halifax, Nova Scotia, Canada.,Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Isaac Walton Killam Health Centre, Halifax, Nova Scotia, Canada.,Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Sidoli M, Reed CB, Scapin C, Paez P, Cavener DR, Kaufman RJ, D'Antonio M, Feltri ML, Wrabetz L. Calcineurin Activity Is Increased in Charcot-Marie-Tooth 1B Demyelinating Neuropathy. J Neurosci 2021; 41:4536-4548. [PMID: 33879538 PMCID: PMC8152608 DOI: 10.1523/jneurosci.2384-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Schwann cells produce a considerable amount of lipids and proteins to form myelin in the PNS. For this reason, the quality control of myelin proteins is crucial to ensure proper myelin synthesis. Deletion of serine 63 from P0 (P0S63del) protein in myelin forming Schwann cells causes Charcot-Marie-Tooth type 1B neuropathy in humans and mice. Misfolded P0S63del accumulates in the ER of Schwann cells where it elicits the unfolded protein response (UPR). PERK is the UPR transducer that attenuates global translation and reduces ER stress by phosphorylating the translation initiation factor eIF2alpha. Paradoxically, Perk ablation in P0S63del Schwann cells (S63del/PerkSCKO ) reduced the level of P-eIF2alpha, leaving UPR markers upregulated, yet unexpectedly improved S63del myelin defects in vivo We therefore investigated the hypothesis that PERK may interfere with signals outside of the UPR and specifically with calcineurin/NFATc4 pro-myelinating pathway. Using mouse genetics including females and males in our experimental setting, we show that PERK and calcineurin interact in P0S63del nerves and that calcineurin activity and NFATc4 nuclear localization are increased in S63del Schwann cells, without altering EGR2/KROX20 expression. Moreover, genetic manipulation of the calcineurin subunits appears to be either protective or toxic in S63del in a context-dependent manner, suggesting that Schwann cells are highly sensitive to alterations of calcineurin activity.SIGNIFICANCE STATEMENT Our work shows a novel activity and function for calcineurin in Schwann cells in the context of ER stress. Schwann cells expressing the S63del mutation in P0 protein induce the unfolded protein response and upregulate calcineurin activity. Calcineurin interacts with the ER stress transducer PERK, but the relationship between the UPR and calcineurin in Schwann cells is unclear. Here we propose a protective role for calcineurin in S63del neuropathy, although Schwann cells appear to be very sensitive to its regulation. The paper uncovers a new important role for calcineurin in a demyelinating diseases.
Collapse
Affiliation(s)
- Mariapaola Sidoli
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, California 94305
| | - Chelsey B Reed
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milan 20132, Italy
| | - Pablo Paez
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Douglas R Cavener
- Department of Biology, Center for Cellular Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milan 20132, Italy
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
3
|
Sánchez-Solano A, Corral N, Segura-Covarrubias G, Guzmán-Hernández ML, Arechiga-Figueroa I, Cruz-Rangel S, Pérez-Cornejo P, Arreola J. Regulation of the Ca 2+-activated chloride channel Anoctamin-1 (TMEM16A) by Ca 2+-induced interaction with FKBP12 and calcineurin. Cell Calcium 2020; 89:102211. [PMID: 32422433 DOI: 10.1016/j.ceca.2020.102211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
Chloride fluxes through the calcium-gated chloride channel Anoctamin-1 (TMEM16A) control blood pressure, secretion of saliva, mucin, insulin, and melatonin, gastrointestinal motility, sperm capacitation and motility, and pain sensation. Calcium activates a myriad of regulatory proteins but how these proteins affect TMEM16A activity is unresolved. Here we show by co-immunoprecipitation that increasing intracellular calcium with ionomycin or by activating sphingosine-1-phosphate receptors, induces coupling of calcium/calmodulin-dependent phosphatase calcineurin and prolyl isomerase FK506-binding protein 12 (FKBP12) to TMEM16A in HEK-293 cells. Application of drugs that target either calcineurin (cyclosporine A) or FKBP12 (tacrolimus known as FK506 and sirolimus known as rapamycin) caused a decrease in TMEM16A activity. In addition, FK506 and BAPTA-AM prevented co-immunoprecipitation between FKBP12 and TMEM16A. FK506 rendered the channel insensitive to cyclosporine A without altering its apparent calcium sensitivity whereas zero intracellular calcium blocked the effect of FK506. Rapamycin decreased TMEM16A activity in cells pre-treated with cyclosporine A or FK506. These results suggest the formation of a TMEM16A-FKBP12-calcineurin complex that regulates channel function. We conclude that upon a cytosolic calcium increase the TMEM16A-FKPB12-calcineurin trimers are assembled. Such hetero-oligomerization enhances TMEM16A channel activity but is not mandatory for activation by calcium.
Collapse
Affiliation(s)
- Alfredo Sánchez-Solano
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - Nancy Corral
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - María Luisa Guzmán-Hernández
- Cátedra CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Ivan Arechiga-Figueroa
- Cátedra CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico.
| |
Collapse
|
4
|
Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol 2017; 103:121-136. [PMID: 28007541 PMCID: PMC5778886 DOI: 10.1016/j.yjmcc.2016.12.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein phosphorylation and calcium signaling cascades, where it provides an essential nodal point for coordination between these two fundamental modes of intracellular communication. In excitatory cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to failure. How does a calcium activated enzyme function in the calcium-rich environment of the continuously contracting heart without pathological consequences? This review will discuss the wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms calcineurin uses to find and act on appropriate substrates in the appropriate location while potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in calcineurin activity may facilitate integration with other essential but conflicting processes, allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin activity that can culminate in heart failure.
Collapse
Affiliation(s)
- Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago,Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chie, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
5
|
Williams CR, Wynne BM, Walker M, Hoover RS, Gooch JL. Compensatory renal hypertrophy following uninephrectomy is calcineurin-independent. J Cell Mol Med 2014; 18:2361-6. [PMID: 25287476 PMCID: PMC4302641 DOI: 10.1111/jcmm.12438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Calcineurin is a calcium-dependent phosphatase that is involved in many cellular processes including hypertrophy. Inhibition or genetic loss of calcineurin blocks pathological cardiac hypertrophy and diabetic renal hypertrophy. However, calcineurin does not appear to be involved in physiological cardiac hypertrophy induced by exercise. The role of calcineurin in a compensatory, non-pathological model of renal hypertrophy has not been tested. Therefore, in this study, we examined activation of calcineurin and the effect of calcineurin inhibition or knockout on compensatory hypertrophy following uninephrectomy (UNX). UNX induces ∼15% increase in the size of the remaining kidney; the data show no change in the generation of reactive oxygen species (ROS), Nox4 or transforming growth factor-β expression confirming the model as one of compensatory hypertrophy. Next, analyses of the remaining kidney reveal that total calcineurin activity is increased, and, to a lesser extent, transcriptional activity of the calcineurin substrate nuclear factor of activated T cell is up-regulated following UNX. However, inhibition of calcineurin with cyclosporine failed to prevent compensatory renal hypertrophy. Likewise, hypertrophy was comparable to WT in mice lacking either isoform of the catalytic subunit of calcineurin (CnAα−/− or CnAβ−/−). In conclusion, similar to its role in the heart, calcineurin is required for pathological but not compensatory renal hypertrophy. This separation of signalling pathways could therefore help further define key factors necessary for pathological hypertrophy including diabetic nephropathy.
Collapse
Affiliation(s)
- Clintoria R Williams
- Atlanta Veterans Administration Medical Center, Decatur, GA, USA; Department of Medicine/Division of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Madsen K, Reddy RN, Price SR, Williams CR, Gooch JL. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice. PLoS One 2013; 8:e62503. [PMID: 23638102 PMCID: PMC3640044 DOI: 10.1371/journal.pone.0062503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/22/2013] [Indexed: 01/26/2023] Open
Abstract
Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα−/− mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα−/− mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα−/− mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα−/− mice and the advances that are now possible with the use of adult, rescued knockout animals.
Collapse
Affiliation(s)
- Kirsten Madsen
- Department of Medicine/Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Ramesh N. Reddy
- Department of Medicine/Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - S. Russ Price
- Department of Medicine/Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Clintoria R. Williams
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States of America
- Department of Medicine/Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jennifer L. Gooch
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States of America
- Department of Medicine/Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Organ transplantation is the state of the art for treating end-stage organ failure. Over 25000 organ transplants are performed in the USA each year. Survival rates following transplantation are now approaching 90% for 1 year and 75% for 5 years. Central to this success was the introduction of drugs that suppress the immune system and prevent rejection. The most commonly used class of immunosuppressing drugs are calcineurin inhibitors (CNIs). Calcineurin is a ubiquitous enzyme that is important for T-cell function. With more people taking CNIs for longer and longer periods of time the consequences of calcineurin inhibition on other organ systems - particularly the kidney - have become a growing concern. Virtually all people who take a CNI will develop some degree of kidney toxicity and up to 10% will progress to kidney failure. In the past 15 years, research into calcineurin action has identified distinct actions of the two main isoforms of the catalytic subunit of the enzyme. The α-isoform is required for kidney function whereas the β-isoform has a predominant role in the immune system. This review will discuss the current state of knowledge about calcineurin isoforms and how these new insights may reshape post-transplant immunosuppression.
Collapse
|