1
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Leinweber ME, Walter C, Assadian A, Kopecky C, Domenig O, Kovarik JJ, Hofmann AG. Angiotensin Dysregulation in Patients with Arterial Aneurysms. Int J Mol Sci 2025; 26:1502. [PMID: 40003968 PMCID: PMC11855860 DOI: 10.3390/ijms26041502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Besides playing a critical role in maintaining cardiovascular homeostasis, the renin-angiotensin-aldosterone system (RAS) has been strongly implicated in (aortic) aneurysm pathogenesis. This study aims to investigate systemic and local levels of angiotensin (Ang) and its metabolites in patients with arterial aneurysms, predominantly abdominal aortic aneurysms, using advanced biochemical profiling techniques to provide new insights into the involvement of RAS in aneurysm genesis. A prospective, single-center study was conducted between October 2023 and July 2024. Serum Ang metabolite levels were measured using RAS Fingerprint technology. Aortic tissue samples were analyzed for local RAS activity, including Ang levels and enzyme activity. Additionally, pre- and postoperative serum samples were obtained in a select group of patients. In total, 37 aneurysm patients and 56 controls were included. Aneurysm patients exhibited higher systemic levels of nearly all Ang metabolites compared to controls, with significant differences in Ang I (p = 0.002), Ang II (p = 0.047), Ang 1-5 (p = 0.004), and Renin (p = 0.014) in patients without pharmacological RAS interference. Aneurysm patients receiving ACE inhibitors showed lower serum concentrations in ACE2 activity (p = 0.042) and increased Ang IV levels (p = 0.049) compared to controls. Postoperative measurements indicated different dynamics regarding angiotensin metabolite changes in patients with or without ACE inhibition. This study provides the first comprehensive characterization of RAS profiles in aneurysm patients. These findings add to the body of evidence regarding associations between of RAS and the pathogenesis of arterial aneurysms.
Collapse
Affiliation(s)
| | - Corinna Walter
- Department of Vascular and Endovascular Surgery, Clinic Ottakring, 1160 Vienna, Austria
| | - Afshin Assadian
- Department of Vascular and Endovascular Surgery, Clinic Ottakring, 1160 Vienna, Austria
| | - Chantal Kopecky
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Johannes Josef Kovarik
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Amun Georg Hofmann
- Department of Vascular and Endovascular Surgery, Clinic Ottakring, 1160 Vienna, Austria
| |
Collapse
|
3
|
Zhu J, Meganathan I, MacAruthur R, Kassiri Z. Inflammation in Abdominal Aortic Aneurysm: Cause or Comorbidity? Can J Cardiol 2024; 40:2378-2391. [PMID: 39181326 DOI: 10.1016/j.cjca.2024.08.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Aortic aneurysm is a potentially deadly disease. It is chronic degeneration of the aortic wall that involves an inflammatory response and the immune system, aberrant remodelling of the extracellular matrix, and maladaptive transformation of the aortic cells. This review article focuses on the role of the inflammatory cells in abdominal aortic aneurysm. Studies in human aneurysmal specimens and animal models have identified various inflammatory cell types that could contribute to formation or expansion of aneurysms. These include the commonly studied leukocytes (neutrophils and macrophages) as well as the less commonly explored natural killer cells, dendritic cells, T cells, and B cells. Despite the well-demonstrated contribution of inflammatory cells and the related signalling pathways to development and expansion of aneurysms, anti-inflammatory therapy approaches have demonstrated limitations and may require additional considerations such as a combinational approach in targeting multiple pathways for significant beneficial outcomes.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacAruthur
- Department of Cardiac Surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Benson TW, Pike MM, Spuzzillo A, Hicks SM, Ali S, Pham M, Mix DS, Brunner SI, Wadding-Lee C, Conrad KA, Russell HM, Jennings C, Coughlin TM, Aggarwal A, Lyden S, Mani K, Björck M, Wanhainen A, Bhandari R, Lipworth-Elliot L, Robinson-Cohen C, Caputo FJ, Shim S, Quesada O, Tourdot B, Edwards TL, Tranter M, Gardiner EE, Mackman N, Cameron SJ, Owens AP. Soluble glycoprotein VI predicts abdominal aortic aneurysm growth rate and is a novel therapeutic target. Blood 2024; 144:1663-1678. [PMID: 38900973 PMCID: PMC11522893 DOI: 10.1182/blood.2023021655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024] Open
Abstract
ABSTRACT A common feature in patients with abdominal aortic aneurysms (AAAs) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA-associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation affects the pathogenesis of AAA. Using RNA sequencing, we identified that the platelet-associated transcripts are significantly enriched in the ILT compared with the adjacent aneurysm wall and healthy control aortas. We found that the platelet-specific receptor glycoprotein VI (GPVI) is among the top enriched genes in AAA ILT and is increased on the platelet surface of patients with AAAs. Examination of a specific indicator of platelet activity, soluble GPVI (sGPVI), in 2 independent cohorts of patients with AAAs is highly predictive of an AAA diagnosis and associates more strongly with aneurysm growth rate than D-dimer in humans. Finally, intervention with the anti-GPVI antibody (JAQ1) in mice with established aneurysms blunted the progression of AAA in 2 independent mouse models. In conclusion, we show that the levels of sGPVI in humans can predict a diagnosis of AAA and AAA growth rate, which may be critical in the identification of high-risk patients. We also identify GPVI as a novel platelet-specific AAA therapeutic target, with minimal risk of adverse bleeding complications, for which none currently exists.
Collapse
Affiliation(s)
- Tyler W. Benson
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mindy M. Pike
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Anthony Spuzzillo
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Sarah M. Hicks
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sidra Ali
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael Pham
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Seth I. Brunner
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Caris Wadding-Lee
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Kelsey A. Conrad
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Hannah M. Russell
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Courtney Jennings
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Taylor M. Coughlin
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sean Lyden
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Martin Björck
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Rohan Bhandari
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Loren Lipworth-Elliot
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Francis J. Caputo
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sharon Shim
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Odayme Quesada
- Women’s Heart Center, The Christ Hospital Heart and Vascular Institute, Cincinnati, OH
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH
| | - Benjamin Tourdot
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Todd L. Edwards
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Scott J. Cameron
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Hematology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
5
|
Williamson AE, Liyanage S, Hassanshahi M, Dona MSI, Toledo-Flores D, Tran DXA, Dimasi C, Schwarz N, Fernando S, Salagaras T, Long A, Kazenwadel J, Harvey NL, Drummond GR, Vinh A, Chandrakanthan V, Misra A, Neufeld Z, Tan JTM, Martelotto L, Polo JM, Bonder CS, Pinto AR, Sharma S, Nicholls SJ, Bursill CA, Psaltis PJ. Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta. Nat Commun 2024; 15:7097. [PMID: 39154007 PMCID: PMC11330468 DOI: 10.1038/s41467-024-51637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.
Collapse
Affiliation(s)
- Anna E Williamson
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sanuri Liyanage
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Malathi S I Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Deborah Toledo-Flores
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Dang X A Tran
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Catherine Dimasi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nisha Schwarz
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sanuja Fernando
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thalia Salagaras
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Aaron Long
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Vashe Chandrakanthan
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Ashish Misra
- Faculty of Medicine and Health, University of Sydney and Heart Research Institute, Newtown, NSW, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Alexander R Pinto
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Shiwani Sharma
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC, Australia
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Fujii T, Yamawaki-Ogata A, Terazawa S, Narita Y, Mutsuga M. Administration of an antibody against apoptosis inhibitor of macrophage prevents aortic aneurysm progression in mice. Sci Rep 2024; 14:15878. [PMID: 38982113 PMCID: PMC11233551 DOI: 10.1038/s41598-024-66791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Apoptosis inhibitor of macrophage (AIM) is known to induce apoptosis resistance in macrophages and to exacerbate chronic inflammation, leading to arteriosclerosis. The role of AIM in aortic aneurysm (AA) remains unknown. This study examined the effects of an anti-AIM antibody in preventing AA formation and progression. In apolipoprotein E-deficient mice, AA was induced by subcutaneous angiotensin II infusion. Mice were randomly divided into two groups: (i) AIM group; weekly anti-murine AIM monoclonal antibody injection (n = 10), and (ii) IgG group; anti-murine IgG antibody injection as control (n = 14). The AIM group, compared with the IgG group, exhibited reduced AA enlargement (aortic diameter at 4 weeks: 2.1 vs. 2.7 mm, respectively, p = 0.012); decreased loss of elastic lamellae construction; reduced expression levels of IL-6, TNF-α, and MCP-1; decreased numbers of AIM-positive cells and inflammatory M1 macrophages (AIM: 1.4 vs. 8.0%, respectively, p = 0.004; M1 macrophages: 24.5 vs. 55.7%, respectively, p = 0.017); and higher expression of caspase-3 in the aortic wall (22.8 vs. 10.5%, respectively, p = 0.019). Our results suggest that administration of an anti-AIM antibody mitigated AA progression by alleviating inflammation and promoting M1 macrophage apoptosis.
Collapse
Affiliation(s)
- Taro Fujii
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Showa, Nagoya, Aichi, 466-8550, Japan
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Showa, Nagoya, Aichi, 466-8550, Japan
| | - Sachie Terazawa
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Showa, Nagoya, Aichi, 466-8550, Japan.
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Showa, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
7
|
Golledge J, Lu HS, Curci JA. Small AAAs: Recommendations for Rodent Model Research for the Identification of Novel Therapeutics. Arterioscler Thromb Vasc Biol 2024; 44:1467-1473. [PMID: 38924435 PMCID: PMC11384288 DOI: 10.1161/atvbaha.124.320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
CLINICAL PROBLEM Most abdominal aortic aneurysms (AAAs) are small with low rupture risk (<1%/y) when diagnosed but slowly expand to ≥55 mm and undergo surgical repair. Patients and clinicians require medications to limit AAA growth and rupture, but drugs effective in animal models have not translated to patients. RECOMMENDATIONS FOR INCREASING TRANSLATION FROM MOUSE MODELS Use models that simulate human AAA tissue pathology, growth patterns, and rupture; focus on the clinically relevant outcomes of growth and rupture; design studies with the rigor required of human clinical trials; monitor AAA growth using reproducible ultrasound; and perform studies in both males and females. SUMMARY OF STRENGTHS AND WEAKNESSES OF MOUSE MODELS The aortic adventitial elastase oral β-aminopropionitrile model has many strengths including simulating human AAA pathology and modeling prolonged aneurysm growth. The Ang II (angiotensin II) model performed less well as it better simulates acute aortic syndrome than AAA. The elastase plus TGFβ (transforming growth factor-β) blocking antibody model displays a high rupture rate, making prolonged monitoring of AAA growth not feasible. The elastase perfusion and calcium chloride models both display limited AAA growth.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Hong S. Lu
- Saha Cardiovascular Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Section of Vascular Surgery, Department of Surgery, Tennessee Valley Health System, VA Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
9
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
10
|
Yu ZP, Wang YK, Wang XY, Gong LN, Tan HL, Jiang MX, Wang LF, Yu GH, Deng KY, Xin HB. Smooth-Muscle-Cell-Specific Deletion of CD38 Protects Mice from AngII-Induced Abdominal Aortic Aneurysm through Inhibiting Vascular Remodeling. Int J Mol Sci 2024; 25:4356. [PMID: 38673941 PMCID: PMC11049988 DOI: 10.3390/ijms25084356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/genetics
- Angiotensin II
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Signal Transduction
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi-Kai Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Li-Na Gong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Mei-Xiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Guan-Hui Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
11
|
Gao JP, Zhang HP, Wei R, Guo W. A Novel Method for the Rat Model of Abdominal Aortic Aneurysm Induced by Retroperitoneal Implantation of an Osmotic Pump System With Lipopolysaccharide. Ann Vasc Surg 2024; 101:41-52. [PMID: 38154490 DOI: 10.1016/j.avsg.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Few methods can cocurrently mimic the pathological characteristics and nature history of human abdominal aortic aneurysms (AAAs), especially for the exist of the self-healing tendency of rodents. This study tested a novel method for the AAA rat model induced by retroperitoneal implantation of an osmotic pump system with lipopolysaccharide (LPS) based on the hypothesis that chronic inflammation of perivascular adipose tissue directly influenced the development and progression of AAAs. METHODS 20 male Sprague-Dawley rats (10-month-old) fed with the Paigen diet were randomly divided into 4 groups: the blank group ×2, the sham group ×4, the empty capsule group ×4, and the LPS capsule group ×10. The LPS capsule group received implantations of the ALZET® osmotic pump capsule with LPS (3.6 μg/day) parallel to the abdominal aorta through a retroperitoneal approach. Two weeks later, 6 rats were randomly selected from the LPS capsule group to form the anti-inflammatory group and received implantations of another osmotic pump capsule with interleukin (IL)-10 (75 ng/day) through the same approach. The changes in abdominal aortic diameter were observed by ultrasound every 2 weeks, and samples were harvested for histopathologic and immunohistochemical analysis 6 weeks later. RESULTS Within the 6 weeks after modeling, the LPS capsule group showed sustained and significant aortic dilatation (P < 0.01), while the anti-inflammatory group showed a rapid and obvious shrinkage 2 weeks after the IL-10 osmotic pump capsule implantation (P < 0.01). The LPS capsule group presented excellent pathological mimicking of human AAAs and showed severe medial degeneration with the least elastic content among the 5 groups at the end of the sixth week (P < 0.05). Notably, the anti-inflammatory group showed perfect medial preservation with the most elastic content (P < 0.05) and the highest elastin/collagen ratio (P < 0.01) at the end of the study. Matrix metalloproteinases (MMP) 2 and 9 and toll-like receptor 2 showed strong expression in the LPS capsule group at the end of the sixth week, which was significantly higher than that in the blank group and sham group. Interestingly, the anti-inflammatory group showed a slightly higher MMP9 expression than the LPS capsule group though there was no statistical difference between them. CONCLUSIONS This novel method for the rat AAA model induced by retroperitoneal implantation of an osmotic pump capsule with LPS can concurrently mimic the histological characteristics and natural history of human AAAs. Further studies were needed to improve the osmotic pump system.
Collapse
Affiliation(s)
- Jiang-Ping Gao
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Hong-Peng Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Ren Wei
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Li J, Liu Y, Wei Z, Cheng J, Wu Y. The occurrence and development of abdominal aortic aneurysm may be related to the energy metabolism disorder and local inflammation. Heliyon 2024; 10:e27912. [PMID: 38496900 PMCID: PMC10944252 DOI: 10.1016/j.heliyon.2024.e27912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background The cellular mechanism of the formation of abdominal aortic aneurysm (AAA) is very complicated. A series of sophisticated events eventually led to significant pathological changes in the anatomical structure and function of the arterial wall and they are still not clear nowadays. Methods We pooled publicly available GEO datasets (GSE57691 and GSE47472) to get a comprehensive comparisons between normal tissues and AAA tissues to try to reveal molecular mechanism underlying the disease. Total 63 AAA samples and 18 normal tissue samples were compared and we fond that there were 784 significantly different gene (DEGs, threshold set as adjusted P < 0.05 and Log FC < 1) were identified. At the same time, we validate the possible signaling factor expression of AAA by comparing the normal tissue of the human body with the AAA tissue. Results In the pathway enrichment, we found that FOXP3 related signaling pathways, inflammation-related cytokine signaling pathways, interleukin-8-CXCR1 related signaling pathways and VEGFA and FGFR1 related signal pathway were significantly enrichmented. In Weighted gene co-expression network analysis (WGCNA), we found that the key hub genes were significantly related to lipid catabolic metabolism, which further verified the possibility that AAA might relate to energy metabolism disorders. Conclusion Based on the comprehensive analysis of previous high-throughput data and the validation of basic experiments, we found that the occurrence of AAA may be related to energy metabolism disorders and local inflammation.
Collapse
Affiliation(s)
- Jun Li
- Department of Endovascular and Vascular Surgery, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jie Cheng
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongfa Wu
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
13
|
Shu T, Zhou Y, Yan C. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection. Vascul Pharmacol 2024; 154:107278. [PMID: 38262506 PMCID: PMC10939884 DOI: 10.1016/j.vph.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Aortic aneurysm (AA) and dissection (AD) are aortic diseases caused primarily by medial layer degeneration and perivascular inflammation. They are lethal when the rupture happens. Vascular smooth muscle cells (SMCs) play critical roles in the pathogenesis of medial degeneration, characterized by SMC loss and elastin fiber degradation. Many molecular pathways, including cyclic nucleotide signaling, have been reported in regulating vascular SMC functions, matrix remodeling, and vascular structure integrity. Intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are second messengers that mediate intracellular signaling transduction through activating effectors, such as protein kinase A (PKA) and PKG, respectively. cAMP and cGMP are synthesized by adenylyl cyclase (AC) and guanylyl cyclase (GC), respectively, and degraded by cyclic nucleotide phosphodiesterases (PDEs). In this review, we will discuss the roles and mechanisms of cAMP/cGMP signaling and PDEs in AA/AD formation and progression and the potential of PDE inhibitors in AA/AD, whether they are beneficial or detrimental. We also performed database analysis and summarized the results showing PDEs with significant expression changes under AA/AD, which should provide rationales for future research on PDEs in AA/AD.
Collapse
Affiliation(s)
- Ting Shu
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States
| | - Yitian Zhou
- Peking Union Medical College, MD Program, Beijing, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States.
| |
Collapse
|
14
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
15
|
Du P, Hou Y, Su C, Gao J, Yang Y, Zhang J, Cui X, Tang J. The future for the therapeutics of abdominal aortic aneurysm: engineered nanoparticles drug delivery for abdominal aortic aneurysm. Front Bioeng Biotechnol 2024; 11:1324406. [PMID: 38249799 PMCID: PMC10796665 DOI: 10.3389/fbioe.2023.1324406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease with a high mortality rate. Several screening and diagnostic methods have been developed for AAA early diagnosis. Open surgery and endovascular aortic repair (EVAR) are clinically available for patients who meet the indications for surgery. However, for non-surgical patients, limited drugs exist to inhibit or reverse the progression of aneurysms due to the complex pathogenesis and biological structure of AAA, failing to accumulate precisely on the lesion to achieve sufficient concentrations. The recently developed nanotechnology offers a new strategy to address this problem by developing drug-carrying nanoparticles with enhanced water solubility and targeting capacity, prolonged duration, and reduced side effects. Despite the rising popularity, limited literature is available to highlight the progression of the field. Herein, in this review, we first discuss the pathogenesis of AAA, the methods of diagnosis and treatment that have been applied clinically, followed by the review of research progressions of constructing different drug-loaded nanoparticles for AAA treatment using engineered nanoparticles. In addition, the feasibility of extracellular vesicles (EVs) and EVs-based nanotechnology for AAA treatment in recent years are highlighted, together with the future perspective. We hope this review will provide a clear picture for the scientists and clinicians to find a new solution for AAA clinical management.
Collapse
Affiliation(s)
- Pengchong Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yachen Hou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Chang Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jiamin Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
16
|
Loick P, Mohammad GH, Cassimjee I, Chandrashekar A, Lapolla P, Carrington A, Vera-Aviles M, Handa A, Lee R, Lakhal-Littleton S. Protective Role for Smooth Muscle Cell Hepcidin in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2023; 43:713-725. [PMID: 36951059 PMCID: PMC10125116 DOI: 10.1161/atvbaha.123.319224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Hepcidin is a liver-derived hormone that controls systemic iron homeostasis, by inhibiting the iron exporter ferroportin in the gut and spleen, respective sites of iron absorption and recycling. Hepcidin is also expressed ectopically in the context of cardiovascular disease. However, the precise role of ectopic hepcidin in underlying pathophysiology is unknown. In patients with abdominal aortic aneurysm (AAA), hepcidin is markedly induced in smooth muscle cells (SMCs) of the aneurysm wall and inversely correlated with the expression of LCN2 (lipocalin-2), a protein implicated in AAA pathology. In addition, plasma hepcidin levels were inversely correlated with aneurysm growth, suggesting hepcidin has a potential disease-modifying role. METHODS To probe the role of SMC-derived hepcidin in the setting of AAA, we applied AngII (Angiotensin-II)-induced AAA model to mice harbouring an inducible, SMC-specific deletion of hepcidin. To determine whether SMC-derived hepcidin acted cell-autonomously, we also used mice harboring an inducible SMC-specific knock-in of hepcidin-resistant ferroportinC326Y. The involvement of LCN2 was established using a LCN2-neutralizing antibody. RESULTS Mice with SMC-specific deletion of hepcidin or knock-in of hepcidin-resistant ferroportinC326Y had a heightened AAA phenotype compared with controls. In both models, SMCs exhibited raised ferroportin expression and reduced iron retention, accompanied by failure to suppress LCN2, impaired autophagy in SMCs, and greater aortic neutrophil infiltration. Pretreatment with LCN2-neutralizing antibody restored autophagy, reduced neutrophil infiltration, and prevented the heightened AAA phenotype. Finally, plasma hepcidin levels were consistently lower in mice with SMC-specific deletion of hepcidin than in controls, indicating that SMC-derived hepcidin contributes to the circulating pool in AAA. CONCLUSIONS Hepcidin elevation in SMCs plays a protective role in the setting of AAA. These findings are the first demonstration of a protective rather than deleterious role for hepcidin in cardiovascular disease. They highlight the need to further explore the prognostic and therapeutic value of hepcidin outside disorders of iron homeostasis.
Collapse
Affiliation(s)
- Paul Loick
- Department of Anesthesiology, Intensive Care and Pain Medicine, Universitätsklinikum Münster, Germany (P. Loick)
| | - Goran Hamid Mohammad
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Ismail Cassimjee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Alison Carrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Mayra Vera-Aviles
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| |
Collapse
|
17
|
Jara ZP, Harford T, Singh KD, Desnoyer R, Kumar A, Srinivasan D, Karnik SS. Distinct Mechanisms of β-Arrestin-Biased Agonist and Blocker of AT1R in Preventing Aortic Aneurysm and Associated Mortality. Hypertension 2023; 80:385-402. [PMID: 36440576 PMCID: PMC9852074 DOI: 10.1161/hypertensionaha.122.19232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic aneurysm (AA) is a "silent killer" human disease with no effective treatment. Although the therapeutic potential of various pharmacological agents have been evaluated, there are no reports of β-arrestin-biased AT1R (angiotensin-II type-1 receptor) agonist (TRV027) used to prevent the progression of AA. METHODS We tested the hypothesis that TRV027 infusion in AngII (angiotensin II)-induced mouse model of AA prevents AA. High-fat-diet-fed ApoE (apolipoprotein E gene)-null mice were infused with AngII to induce AA and co-infused with TRV027 and a clinically used AT1R blocker Olmesartan to prevent AA. Aortas explanted from different ligand infusion groups were compared with assess different grades of AA or lack of AA. RESULTS AngII produced AA in ≈67% male mice with significant mortality associated with AA rupture. We observed ≈13% mortality due to aortic arch dissection without aneurysm in male mice. AngII-induced AA and mortality was prevented by co-infusion of TRV027 or Olmesartan, but through different mechanisms. In TRV027 co-infused mice aortic wall thickness, elastin content, new DNA, and protein synthesis were higher than untreated and Olmesartan co-infused mice. Co-infusion with both TRV027 and Olmesartan prevented endoplasmic reticulum stress, fibrosis, and vasomotor hyper responsiveness. CONCLUSIONS TRV027-engaged AT1R prevented AA and associated mortality by distinct molecular mechanisms compared with the AT1R blocker, Olmesartan. Developing novel β-arrestin-biased AT1R ligands may yield promising drugs to combat AA.
Collapse
Affiliation(s)
- Zaira Palomino Jara
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | - Terri Harford
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | | | - Russell Desnoyer
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | - Avinash Kumar
- Pathobiology Department, Lerner Research Institute, Cleveland Clinic
| | | | - Sadashiva S. Karnik
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
18
|
Wu H, Xie C, Wang R, Cheng J, Xu Q, Zhao H. Comparative analysis of thoracic and abdominal aortic aneurysms across the segment and species at the single-cell level. Front Pharmacol 2023; 13:1095757. [PMID: 36703732 PMCID: PMC9871934 DOI: 10.3389/fphar.2022.1095757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Aortic aneurysm is a life-threatening disease resulted from progressive dilatation of the aorta, which can be subdivided into thoracic and abdominal aortic aneurysms. Sustained subcutaneous angiotensin II infusion can induce aortic aneurysms in mice. However, the relevance of using angiotensin II induction model to study aneurysm disease and the degree of commonality between species remain elusive. Methods: We utilized scRNA-seq to infer aortic cell sub-structures and transcriptional profiles in clinical patient TAAs and AAAs, as well as mouse models of corresponding diseases (Ang II induction) and in healthy mouse aorta. Unbiased comparison between mice and humans explored the possible reasonability and utility of mouse Ang II-induced aortic aneurysm as a model for human aortic aneurysm diseases. Meanwhile, we performed comparative analysis of aortic aneurysms between TAA and AAA in both organisms. Results and Discussion: We demonstrated similarities and differences of changes in the components of human and mouse cell types, and our unbiased comparison between mouse and human identified well conserved subpopulations of SMCs and macrophages. Furthermore, the results of our comparative analyses suggested different biological functions and distinct potential pathogenic genes for thoracic and abdominal aortic aneurysms. MIF and SPP1 signaling networks participated in aortic aneurysm in both organisms. This study maps aortic aneurysm and offers opportunities for future researches to investigate the potential of subpopulations or marker genes as therapy targets.
Collapse
Affiliation(s)
- Hong Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Xie
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Qingbo Xu, ; Haige Zhao,
| | - Haige Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Qingbo Xu, ; Haige Zhao,
| |
Collapse
|
19
|
Lowis C, Ramara Winaya A, Kumari P, Rivera CF, Vlahos J, Hermantara R, Pratama MY, Ramkhelawon B. Mechanosignals in abdominal aortic aneurysms. Front Cardiovasc Med 2023; 9:1021934. [PMID: 36698932 PMCID: PMC9868277 DOI: 10.3389/fcvm.2022.1021934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Cumulative evidence has shown that mechanical and frictional forces exert distinct effects in the multi-cellular aortic layers and play a significant role in the development of abdominal aortic aneurysms (AAA). These mechanical cues collectively trigger signaling cascades relying on mechanosensory cellular hubs that regulate vascular remodeling programs leading to the exaggerated degradation of the extracellular matrix (ECM), culminating in lethal aortic rupture. In this review, we provide an update and summarize the current understanding of the mechanotransduction networks in different cell types during AAA development. We focus on different mechanosensors and stressors that accumulate in the AAA sac and the mechanotransduction cascades that contribute to inflammation, oxidative stress, remodeling, and ECM degradation. We provide perspectives on manipulating this mechano-machinery as a new direction for future research in AAA.
Collapse
Affiliation(s)
- Christiana Lowis
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Aurellia Ramara Winaya
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Puja Kumari
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Cristobal F. Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Rio Hermantara
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
20
|
Chou YT, Chen KW, Liu PY, Tsai KZ, Lin YP, Lin GM. Hepatic and Systemic Inflammation for Left Ventricular Mass in Physically Fit Adults: CHIEF Heart Study. Endocr Metab Immune Disord Drug Targets 2023; 23:977-983. [PMID: 36658706 DOI: 10.2174/1871530323666230119145010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Both low-grade systemic and hepatic inflammation could result in increased left ventricular mass (LVM) in the general population. However, the associations, which might be modified by exercise, have not been clarified in physically active young adults. METHODS The study included 2,004 military males aged 18-43 years in eastern Taiwan. Systemic and hepatic inflammation was defined by the upper tertiles of blood white blood cell (WBC) counts (7.51-11.00 x 103/μL) and serum alanine aminotransferase (ALT: 30-120 U/L), respectively. LVM indexed for the body height ≥49 g/m2.7 was defined as left ventricular hypertrophy (LVH) based on echocardiography. Multiple logistic regression analysis adjusting for age, smoking, alcohol intake, physical fitness, and metabolic syndrome was utilized to determine the associations. RESULTS As compared to the lower WBC/lower ALT group, there tended to have an increased risk of LVH with the higher WBC/lower ALT group, the lower WBC/higher ALT group, and the higher WBC/higher ALT group [odds ratios: 0.89 (95% confidence intervals (CI): 0.41-1.94), 1.90 (95% CI: 0.86-4.22) and 2.48 (95% CI: 1.04-5.92); p-value for trend = 0.01]. CONCLUSION Our study suggested that in physically active males, those with hepatic inflammation rather than low-grade systemic inflammation had a higher risk of LVH. Hepatic injury might be relevant to LVH as an early sign of end-organ damage regardless of physical fitness in young adults.
Collapse
Affiliation(s)
- Yi-Ting Chou
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Kai-Wen Chen
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
| | - Pang-Yen Liu
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Kun-Zhe Tsai
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Stomatology of Periodontology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yen-Po Lin
- Department of Critical Care Medicine, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Gen-Min Lin
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien City, Taiwan
- Department of Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
21
|
Kurose S, Matsubara Y, Yoshino S, Yoshiya K, Morisaki K, Furuyama T, Hoshino T, Yoshizumi T. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner. Physiol Rep 2023; 11:e15581. [PMID: 36708509 PMCID: PMC9884112 DOI: 10.14814/phy2.15581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/18/2023] Open
Abstract
Macrophages play crucial roles in abdominal aortic aneurysm (AAA) formation through the inflammatory response and extracellular matrix degradation; therefore, regulating macrophages may suppress AAA formation. Interleukin-38 (IL-38) is a member of the IL-1 family, which binds to IL-36 receptor (IL1RL2) and has an anti-inflammation effect. Because macrophages express IL1RL2, we hypothesized that IL-38 suppresses AAA formation by controlling macrophages. We assessed a C57BL6/J mouse angiotensin II-induced AAA model with or without IL-38 treatment. RAW 264.7 cells were cultured with tumor necrosis factor-α and treated with or without IL-38. Because p38 has important roles in inflammation, we assessed p38 phosphorylation in vitro and in vivo. To clarify whether the IL-38 effect depends on the p38 pathway, we used SB203580 to inhibit p38 phosphorylation. IL1RL2+ macrophage accumulation along with matrix metalloproteinase (MMP)-2 and -9 expression was observed in mouse AAA. IL-38 reduced the incidence of AAA formation along with reduced M1 macrophage accumulation and MMP-2 and -9 expression in the AAA wall. Macrophage activities including inducible nitric oxide, MMP-2, and MMP-9 production and spindle-shaped changes were significantly suppressed by IL-38. Furthermore, we revealed that inhibition of p38 phosphorylation diminished the effects of IL-38 on regulating macrophages to reduce AAA incidence, indicating the protective effects of IL-38 depend on the p38 pathway. IL-38 plays protective roles against AAA formation through regulation of macrophage accumulation in the aortic wall and modulating the inflammatory phenotype. Using IL-38 may be a novel therapy for AAA patients.
Collapse
Affiliation(s)
- Shun Kurose
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Matsubara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Yoshino
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiji Yoshiya
- Department of Kidney Center, Saiseikai Yahata General Hospital, Fukuoka, Japan
| | - Koichi Morisaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Daoud F, Arévalo Martínez M, Holst J, Holmberg J, Albinsson S, Swärd K. Role of smooth muscle YAP and TAZ in protection against phenotypic modulation, inflammation, and aneurysm development. Biochem Pharmacol 2022; 206:115307. [DOI: 10.1016/j.bcp.2022.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
23
|
Ling S, You Z, Li Y, Zhang J, Zhao S, He Y, Chen X. The role of γδ T17 cells in cardiovascular disease. J Leukoc Biol 2022; 112:1649-1661. [PMID: 36073777 DOI: 10.1002/jlb.3mr0822-761rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.
Collapse
Affiliation(s)
- Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| |
Collapse
|
24
|
Sun LY, Lyu YY, Zhang HY, Shen Z, Lin GQ, Geng N, Wang YL, Huang L, Feng ZH, Guo X, Lin N, Ding S, Yuan AC, Zhang L, Qian K, Pu J. Nuclear Receptor NR1D1 Regulates Abdominal Aortic Aneurysm Development by Targeting the Mitochondrial Tricarboxylic Acid Cycle Enzyme Aconitase-2. Circulation 2022; 146:1591-1609. [PMID: 35880522 PMCID: PMC9674448 DOI: 10.1161/circulationaha.121.057623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic disorder increases the risk of abdominal aortic aneurysm (AAA). NRs (nuclear receptors) have been increasingly recognized as important regulators of cell metabolism. However, the role of NRs in AAA development remains largely unknown. METHODS We analyzed the expression profile of the NR superfamily in AAA tissues and identified NR1D1 (NR subfamily 1 group D member 1) as the most highly upregulated NR in AAA tissues. To examine the role of NR1D1 in AAA formation, we used vascular smooth muscle cell (VSMC)-specific, endothelial cell-specific, and myeloid cell-specific conditional Nr1d1 knockout mice in both AngII (angiotensin II)- and CaPO4-induced AAA models. RESULTS Nr1d1 gene expression exhibited the highest fold change among all 49 NRs in AAA tissues, and NR1D1 protein was upregulated in both human and murine VSMCs from AAA tissues. The knockout of Nr1d1 in VSMCs but not endothelial cells and myeloid cells inhibited AAA formation in both AngII- and CaPO4-induced AAA models. Mechanistic studies identified ACO2 (aconitase-2), a key enzyme of the mitochondrial tricarboxylic acid cycle, as a direct target trans-repressed by NR1D1 that mediated the regulatory effects of NR1D1 on mitochondrial metabolism. NR1D1 deficiency restored the ACO2 dysregulation and mitochondrial dysfunction at the early stage of AngII infusion before AAA formation. Supplementation with αKG (α-ketoglutarate, a downstream metabolite of ACO2) was beneficial in preventing and treating AAA in mice in a manner that required NR1D1 in VSMCs. CONCLUSIONS Our data define a previously unrecognized role of nuclear receptor NR1D1 in AAA pathogenesis and an undescribed NR1D1-ACO2 axis involved in regulating mitochondrial metabolism in VSMCs. It is important that our findings suggest αKG supplementation as an effective therapeutic approach for AAA treatment.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Aorta, Abdominal/pathology
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Muscle, Smooth, Vascular/metabolism
- Citric Acid Cycle
- Myocytes, Smooth Muscle/metabolism
- Angiotensin II/adverse effects
- Mice, Knockout
- Aconitate Hydratase/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Ling-Yue Sun
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Yan Lyu
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Yuan Zhang
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Shen
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Guan-Qiao Lin
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Na Geng
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Li Wang
- Department of Vascular Surgery (Y.-L.W., L.Z.), Shanghai Jiao Tong University, Shanghai, China
| | - Lin Huang
- Renji Hospital, School of Medicine, School of Biomedical Engineering and Med-X Research Institute (L.H., K.Q.), Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Hao Feng
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Guo
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Song Ding
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - An-Cai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery (Y.-L.W., L.Z.), Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Renji Hospital, School of Medicine, School of Biomedical Engineering and Med-X Research Institute (L.H., K.Q.), Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Morgan S, Lee LH, Halu A, Nicolau JS, Higashi H, Ha AH, Wen JR, Daugherty A, Libby P, Cameron SJ, Mix D, Aikawa E, Owens AP, Singh SA, Aikawa M. Identifying novel mechanisms of abdominal aortic aneurysm via unbiased proteomics and systems biology. Front Cardiovasc Med 2022; 9:889994. [PMID: 35990960 PMCID: PMC9382335 DOI: 10.3389/fcvm.2022.889994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA), characterized by a continued expansion of the aorta, leads to rupture if not surgically repaired. Mice aid the study of disease progression and its underlying mechanisms since sequential studies of aneurysm development are not feasible in humans. The present study used unbiased proteomics and systems biology to understand the molecular relationship between the mouse models of AAA and the human disease. Methods and results Aortic tissues of developing and established aneurysms produced by either angiotensin II (AngII) infusion in Apoe -/- and Ldlr -/- mice or intraluminal elastase incubation in wildtype C57BL/6J mice were examined. Aortas were dissected free and separated into eight anatomical segments for proteomics in comparison to their appropriate controls. High-dimensional proteome cluster analyses identified site-specific protein signatures in the suprarenal segment for AngII-infused mice (159 for Apoe -/- and 158 for Ldlr -/-) and the infrarenal segment for elastase-incubated mice (173). Network analysis revealed a predominance of inflammatory and coagulation factors in developing aneurysms, and a predominance of fibrosis-related pathways in established aneurysms for both models. To further substantiate our discovery platform, proteomics was performed on human infrarenal aortic aneurysm tissues as well as aortic tissue collected from age-matched controls. Protein processing and inflammatory pathways, particularly neutrophil-associated inflammation, dominated the proteome of the human aneurysm abdominal tissue. Aneurysmal tissue from both mouse and human had inflammation, coagulation, and protein processing signatures, but differed in the prevalence of neutrophil-associated pathways, and erythrocyte and oxidative stress-dominated networks in the human aneurysms. Conclusions Identifying changes unique to each mouse model will help to contextualize model-specific findings. Focusing on shared proteins between mouse experimental models or between mouse and human tissues may help to better understand the mechanisms for AAA and establish molecular bases for novel therapies.
Collapse
Affiliation(s)
- Stephanie Morgan
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lang Ho Lee
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Arda Halu
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jessica S. Nicolau
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Hideyuki Higashi
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna H. Ha
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jennifer R. Wen
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Peter Libby
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Scott J. Cameron
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Doran Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Aikawa
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sasha A. Singh
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Gao H, Wang L, Ren J, Liu Y, Liang S, Zhang B, Sun X. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms. Gene 2022; 827:146472. [PMID: 35381314 DOI: 10.1016/j.gene.2022.146472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is potentially life threatening and characterized by immune-inflammatory cell infiltration and extracellular matrix degradation. Currently, pharmacotherapy mainly aims to control risk factors without reversion of the dilated aorta. This study analyzed the immune-inflammatory response and identified the immune-related hub genes of AAA. METHOD Gene Expression Omnibus datasets (GSE57691, GSE47472 and GSE7084) were downloaded. After identification of GSE57691 differentially expressed genes (DEGs), weighted gene co-expression network analysis of the DEGs was performed. Through enrichment analysis of each module and screening in Immunology Database and Analysis Portal, immune-related hub genes were identified via protein-protein interaction (PPI) network construction and lasso regression. CIBERSORT was utilized to analyze AAA immune infiltration. The correlations between the immune-related hub genes and infiltrating immune cells were investigated. Receiver operating characteristic (ROC) curve analysis was performed to determine immune-related hub gene cutoff values, which were validated in GSE47472 and GSE7084. RESULT In GSE57691, 1,018 DEGs were identified. Five modules were identified in the co-expression network. The blue and green modules were found to be related to immune-inflammatory responses, and 61 immune-related genes were identified. PPI and lasso regression analyses identified FOS, IL-6 and IL2RB as AAA immune-related hub genes. CIBERSORT analysis indicated significantly increased infiltration of naive B cells, memory activated CD4 T cells, follicular helper T cells, monocytes and M1 macrophages and significantly decreased infiltration of M2 macrophages in AAA compared with normal samples. IL2RB was more strongly associated with immune infiltration in AAA than were FOS and IL6. The IL2RB area under the ROC curve (AUC) value was > 0.9 in both the training and validation set, demonstrating its strong, stable diagnostic value in AAA. CONCLUSION AAA and normal samples had different immune infiltration statuses. IL2RB was identified as an immune-related hub gene and a potential hub gene with significant diagnostic value in AAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luchen Wang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol 2022; 107:108691. [DOI: 10.1016/j.intimp.2022.108691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
29
|
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics (Basel) 2022; 12:diagnostics12040871. [PMID: 35453919 PMCID: PMC9025866 DOI: 10.3390/diagnostics12040871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysm (AA) is a degenerative vascular disease that involves aortic dilatation, and, if untreated, it can lead to rupture. Despite its significant impact on the healthcare system, its multifactorial nature and elusive pathophysiology contribute to limited therapeutic interventions that prevent the progression of AA. Thus, further research into the mechanisms underlying AA is paramount. Adventitial fibroblasts are one of the key constituents of the aortic wall, and they play an essential role in maintaining vessel structure and function. However, adventitial fibroblasts remain understudied when compared with endothelial cells and smooth muscle cells. Adventitial fibroblasts facilitate the production of extracellular matrix (ECM), providing structural integrity. However, during biomechanical stress and/or injury, adventitial fibroblasts can be activated into myofibroblasts, which move to the site of injury and secrete collagen and cytokines, thereby enhancing the inflammatory response. The overactivation or persistence of myofibroblasts has been shown to initiate pathological vascular remodeling. Therefore, understanding the underlying mechanisms involved in the activation of fibroblasts and in regulating myofibroblast activation may provide a potential therapeutic target to prevent or delay the progression of AA. This review discusses mechanistic insights into myofibroblast activation and associated vascular remodeling, thus illustrating the contribution of fibroblasts to the pathogenesis of AA.
Collapse
Affiliation(s)
- Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
30
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
31
|
Hsu CY, Vo TTT, Lee CW, Chen YL, Lin WN, Cheng HC, Vo QC, Lee IT. Carbon monoxide releasing molecule-2 attenuates angiotensin II-induced IL-6/Jak2/Stat3-associated inflammation by inhibiting NADPH oxidase- and mitochondria-derived ROS in human aortic smooth muscle cells. Biochem Pharmacol 2022; 198:114978. [PMID: 35218740 DOI: 10.1016/j.bcp.2022.114978] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common inflammatory vascular disease. Angiotensin II (Ang II) involves in AAA progression by promoting the proliferation and migration of vascular smooth muscle cells, the degradation of extracellular matrices, and the generation of ROS to lead to vascular inflammation. Carbon monoxide releasing molecule-2 (CORM-2) is known to exert anti-inflammatory and antioxidant activities. However, it remains unclear whether CORM-2 can suppress Ang II-induced vascular inflammation to prevent AAA progression. Therefore, this study aimed to investigate the vasoprotective effects of CORM-2 against Ang II-induced inflammatory responses of human aortic smooth muscle cells (HASMCs) and the underlying mechanisms of those effects. The results showed that Ang II induced inflammatory responses of HASMCs via NADPH oxidase- and mitochondria-derived ROS/NF-κB/IL-6/Jak2/Stat3 pathway which was attenuated by the pretreatment with CORM-2. Additionally, CORM-2 further exhibited anti-inflammatory activities in Ang II-stimulated HASMCs, as indicated by the reduction of monocyte adhesion to HASMCs and migration of HASMCs via the suppression of ICAM-1 and VCAM-1 as well as MMP-2 and MMP-9 levels, respectively. Moreover, Ang II-induced COX-2-mediated PGE2 secretion was also inhibited by the pretreatment with CORM-2. Importantly, our data demonstrated that CORM-2 reversed Ang II-induced IL-6 overexpression dependent on Nrf2 activation and HO-1 expression. Taken together, the present study indicates that CORM-2-induced Nrf2/HO-1 alleviates IL-6/Jak2/Stat3-mediated inflammatory responses to Ang II by inhibiting NADPH oxidase- and mitochondria-derived ROS, suggesting that CORM-2 is a promising pharmacologic candidate to reverse the pathological changes involved in the inflammation of vessel wall for the prevention and treatment of AAA.
Collapse
Affiliation(s)
- Chien-Yi Hsu
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Wu S, Liu S, Chen N, Zhang C, Zhang H, Guo X. Genome-Wide Identification of Immune-Related Alternative Splicing and Splicing Regulators Involved in Abdominal Aortic Aneurysm. Front Genet 2022; 13:816035. [PMID: 35251127 PMCID: PMC8892299 DOI: 10.3389/fgene.2022.816035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism of AAA formation is still poorly understood and has not been fully elucidated. The study was designed to identify the immune-related genes, immune-RAS in AAA using bioinformatics methods. The GSE175683 datasets were downloaded from the GEO database. The DEseq2 software was used to identify differentially expressed genes (DEGs). SUVA pipeline was used to quantify AS events and RAS events. KOBAS 2.0 server was used to identify GO terms and KEGG pathways to sort out functional categories of DEGs. The CIBERSORT algorithm was used with the default parameter for estimating immune cell fractions. Nine samples from GSE175683 were used to construct the co-disturbed network between expression of SFs and splicing ratio of RAS events. PCA analysis was performed by R package factoextra to show the clustering of samples, and the pheatmap package in R was used to perform the clustering based on Euclidean distance. The results showed that there were 3,541 genes significantly differentially expressed, of which 177 immune-related genes were upregulated and 48 immune-related genes were downregulated between the WT and WTA group. Immune-RAS events were mainly alt5P and IR events, and about 60% of it was complex splicing events in AAA. The WT group and the WTA group can be clearly distinguished in the first principal component by using the splicing ratio of immune-RAS events. Two downregulated genes, Nr4a1 and Nr4a2, and eight upregulated genes, Adipor2, Akt2, Bcl3, Dhx58, Pparg, Ptgds, Sytl1, and Vegfa were identified among the immune-related genes with RAS and DEGs. Eighteen differentially expressed SFs were identified and displayed by heatmap. The proportion of different types of cells and ratio of the average ratio of different cells were quite different. Both M1 and M2 types of macrophages and plasma cells were upregulated, while M0 type was downregulated in AAA. The proportion of plasma cells in the WTA group had sharply increased. There is a correlation between SF expression and immune cells/immune-RAS. Sf3b1, a splicing factor with significantly different expression, was selected to bind on a mass of immune-related genes. In conclusion, our results showed that immune-related genes, immune-RAS, and SFs by genome-wide identification were involved in AAA.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibiao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| |
Collapse
|
33
|
Qiu R, Chen S, Hua F, Bian S, Chen J, Li G, Wu X. Betanin Prevents Experimental Abdominal Aortic Aneurysm Progression by Modulating the TLR4/NF-κB and Nrf2/HO-1 Pathways. Biol Pharm Bull 2021; 44:1254-1262. [PMID: 34471054 DOI: 10.1248/bpb.b21-00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Betanin, a bioactive ingredient mostly isolated from beetroots, exhibits a protective effect against cardiovascular diseases. However, its effects on abdominal aortic aneurysm (AAA) have not been elucidated. In this study, an AAA model was constructed by infusion of porcine pancreatic elastase in C57BL/6 mice. Mice were then administered with betanin or saline intragastrically once daily for 14 d. Our results showed that treatment with betanin remarkably limited AAA enlargement and mitigated the infiltration of inflammatory cells in the adventitia. The increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) was also significantly alleviated following betanin treatment. Furthermore, betanin suppressed the activation of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling in the aortic wall, and downregulated the levels of tissue-reactive oxygen species as well as circulating 8-isoprostane by stimulating the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Taken together, these data suggest that betanin may attenuate AAA progression and may be used as a therapeutic drug against AAA.
Collapse
Affiliation(s)
- Renfeng Qiu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shouguang People Hospital
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Fang Hua
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Jianfeng Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
34
|
Gonzalez-Guerra A, Roche-Molina M, García-Quintáns N, Sánchez-Ramos C, Martín-Pérez D, Lytvyn M, de Nicolás-Hernández J, Rivera-Torres J, Arroyo DF, Sanz-Rosa D, Bernal JA. Sustained Elevated Blood Pressure Accelerates Atherosclerosis Development in a Preclinical Model of Disease. Int J Mol Sci 2021; 22:8448. [PMID: 34445154 PMCID: PMC8395088 DOI: 10.3390/ijms22168448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
The continuous relationship between blood pressure (BP) and cardiovascular events makes the distinction between elevated BP and hypertension based on arbitrary cut-off values for BP. Even mild BP elevations manifesting as high-normal BP have been associated with cardiovascular risk. We hypothesize that persistent elevated BP increases atherosclerotic plaque development. To evaluate this causal link, we developed a new mouse model of elevated BP based on adeno-associated virus (AAV) gene transfer. We constructed AAV vectors to support transfer of the hRenin and hAngiotensinogen genes. A single injection of AAV-Ren/Ang (1011 total viral particles) induced sustained systolic BP increase (130 ± 20 mmHg, vs. 110 ± 15 mmHg in controls; p = 0.05). In ApoE-/- mice, AAV-induced mild BP elevation caused larger atherosclerotic lesions evaluated by histology (10-fold increase vs. normotensive controls). In this preclinical model, atheroma plaques development was attenuated by BP control with a calcium channel blocker, indicating that a small increase in BP within a physiological range has a substantial impact on plaque development in a preclinical model of atherosclerosis. These data support that non-optimal BP represents a risk for atherosclerosis development. Earlier intervention in elevated BP may prevent or delay morbidity and mortality associated with atherosclerosis.
Collapse
Affiliation(s)
- Andrés Gonzalez-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - Nieves García-Quintáns
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - Cristina Sánchez-Ramos
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - Daniel Martín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - Mariya Lytvyn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - Javier de Nicolás-Hernández
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
| | - José Rivera-Torres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
- Facultad CC Biomédicas, Universidad Europea, 28670 Madrid, Spain
| | - Diego F. Arroyo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
- Servicio de Cardiología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
- Facultad CC Biomédicas, Universidad Europea, 28670 Madrid, Spain
- CIBERCV, 28029 Madrid, Spain
| | - Juan A. Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (A.G.-G.); (M.R.-M.); (N.G.-Q.); (C.S.-R.); (D.M.-P.); (M.L.); (J.d.N.-H.); (J.R.-T.); (D.F.A.); (D.S.-R.)
- CIBERCV, 28029 Madrid, Spain
| |
Collapse
|
35
|
Abstract
Abdominal aortic aneurysm (AAA) is a common disease associated with significant cardiovascular morbidity and mortality. Up to now, there is still controversy on the choice of treatment method of AAA. Even so, the mechanisms of AAA progression are poorly defined, making targeting new therapies problematic. Current evidence favors an interaction of the hemodynamic microenvironment with local and systemic immune responses. In this review, we aim to provide an update of mechanisms in AAA progression, involving hemodynamics, perivascular adipose tissue, adventitial fibroblasts, vasa vasorum remodeling, intraluminal thrombus, and distribution of macrophage subtypes.
Collapse
Affiliation(s)
- Jiang-Ping Gao
- Department of Vascular Surgery, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Cai L, Tang H, Zhou M, Ding Y, Li X, Shi Z. Artesunate Attenuated the Progression of Abdominal Aortic Aneurysm in a Mouse Model. J Surg Res 2021; 267:404-413. [PMID: 34225053 DOI: 10.1016/j.jss.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/12/2021] [Accepted: 05/02/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The inflammatory reaction is an important mechanism of pathogenesis of abdominal aortic aneurysm (AAA). Artesunate (AS) has been found to have anti-inflammatory effects in cardiovascular disease. The purpose of this study was to investigate whether AS could inhibit the development of AAA. MATERIALS AND METHODS AngII infused ApoE (-/-) male mice were selected as AAA model. Mice were spilt into three groups, the experimental control group (AngII), the AS treatment group (AngII + AS) and the negative control group (Vehicle) with 14 in each group. Daily administration of AS (100 mg/kg/d) or vehicle performed 3 day before the perfusion. At the end of the 28-day experiment, animal ultrasound and electronic digital caliper were used to measure the diameter of abdominal aorta. Histologic assays were performed to observe the microstructure of the aorta wall. Immunofluorescence staining was performed to detect inflammatory cells, as well as the levels of matrix metalloproteinases (MMPs). The transcription of cytokines and adhesion molecules were investigated by real-time fluorescence quantitative PCR (qPCR). Western blotting was performed to determine whether the NF-κB pathway is involved in the mechanism. RESULTS While AS failed to reduce the incidence of AAA, AS effectively reduced the diameter of AAA independently of blood pressure effects. Immunofluorescence detection showed that AS effectively reduced the levels of CD45+ cells and MAC3+ macrophages as well as MMP-2 and MMP-9. qPCR revealed that AS reduced mRNA transcription levels of MMP-2, MMP-9, the cytokine IL-1β, TNF-α, adhesion molecules ICAM-1, VCAM-1. AS decreased the levels of NF-κB signaling pathway in aorta. CONCLUSIONS AS can attenuate the development of AAA in mice. The possible mechanism is anti-inflammation.
Collapse
Affiliation(s)
- Liang Cai
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Zhou
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China..
| |
Collapse
|
37
|
Adventitial recruitment of Lyve-1- macrophages drives aortic aneurysm in an angiotensin-2-based murine model. Clin Sci (Lond) 2021; 135:1295-1309. [PMID: 33978148 DOI: 10.1042/cs20200963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Aortic macrophage accumulation is characteristic of the pathogenesis of abdominal aortic aneurysm (AAA) but the mechanisms of macrophage accumulation and their phenotype are poorly understood. Lymphatic vessel endothelial receptor-1 (Lyve-1+) resident aortic macrophages independently self-renew and are functionally distinct from monocyte-derived macrophages recruited during inflammation. We hypothesized that Lyve-1+ and Lyve-1- macrophages differentially contribute to aortic aneurysm. Approach and results: Angiotensin-2 and β-aminopropionitrile (AT2/BAPN) were administered to induce AAA in C57BL/6J mice. Using immunohistochemistry (IHC), we demonstrated primarily adventitial accumulation of aortic macrophages, and in association with areas of elastin fragmentation and aortic dissection. Compared with controls, AAA was associated with a relative percent depletion of Lyve-1+ resident aortic macrophages and accumulation of Lyve-1- macrophages. Using CD45.1/CD45.2 parabiosis, we demonstrated aortic macrophage recruitment in AAA. Depletion of aortic macrophages in CCR2-/- mice was associated with reduced aortic dilatation indicating the functional role of recruitment from the bone marrow. Depletion of aortic macrophages using anti-macrophage colony-stimulating factor 1 receptor (MCSF1R)-neutralizing antibody (Ab) reduced the incidence of AAA. Conditional depletion of Lyve-1+ aortic macrophages was achieved by generating Lyve-1wt/cre Csf1rfl/fl mice. Selective depletion of Lyve-1+ aortic macrophages had no protective effects following AT2/BAPN administration and resulted in increased aortic dilatation in the suprarenal aorta. CONCLUSIONS Aortic macrophage accumulation in AAA derives from adventitial recruitment of Lyve-1- macrophages, with relative percent depletion of Lyve-1+ macrophages. Selective targeting of macrophage subtypes represents a potential novel therapeutic avenue for the medical treatment of AAA.
Collapse
|
38
|
Weighted Gene Co-Expression Network Analysis Reveals Key Genes and Potential Drugs in Abdominal Aortic Aneurysm. Biomedicines 2021; 9:biomedicines9050546. [PMID: 34068179 PMCID: PMC8152975 DOI: 10.3390/biomedicines9050546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent aortic disease that causes high mortality due to asymptomatic gradual expansion and sudden rupture. The underlying molecular mechanisms and effective pharmaceutical therapy for preventing AAA progression have not been fully identified. In this study, we identified the key modules and hub genes involved in AAA growth from the GSE17901 dataset in the Gene Expression Omnibus (GEO) database through the weighted gene co-expression network analysis (WGCNA). Key genes were further selected and validated in the mouse dataset (GSE12591) and human datasets (GSE7084, GSE47472, and GSE57691). Finally, we predicted drug candidates targeting key genes using the Drug-Gene Interaction database. Overall, we identified key modules enriched in the mitotic cell cycle, GTPase activity, and several metabolic processes. Seven key genes (CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, UCP3) related to AAA progression were identified. A total of 35 drugs/compounds targeting the key genes were predicted, which may have the potential to prevent AAA progression.
Collapse
|
39
|
Saito A, Ishimori N, Tokuhara S, Homma T, Nishikawa M, Iwabuchi K, Tsutsui H. Activation of Invariant Natural Killer T Cells by α-Galactosylceramide Attenuates the Development of Angiotensin II-Mediated Abdominal Aortic Aneurysm in Obese ob/ob Mice. Front Cardiovasc Med 2021; 8:659418. [PMID: 34041282 PMCID: PMC8141584 DOI: 10.3389/fcvm.2021.659418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The infiltration and activation of macrophages as well as lymphocytes within the aorta contribute to the pathogenesis of abdominal aortic aneurysm (AAA). Invariant natural killer T (iNKT) cells are unique subset of T lymphocytes and have a crucial role in atherogenesis. However, it remains unclear whether iNKT cells also impact on the development of AAA. Ob/ob mice were administered angiotensin II (AngII, 1,000 ng/kg/min) or phosphate-buffered saline (PBS) by osmotic minipumps for 4 weeks and further divided into 2 groups; α-galactosylceramide (αGC; PBS-αGC; n = 5 and AngII-αGC; n = 12), which specifically activates iNKT cells, and PBS (PBS-PBS; n = 10, and AngII-PBS; n = 6). Maximal abdominal aortic diameter was comparable between PBS-PBS and PBS-αGC, and was significantly greater in AngII-PBS than in PBS-PBS. This increase was significantly attenuated in AngII-αGC without affecting blood pressure. αGC significantly enhanced iNKT cell infiltration compared to PBS-PBS. The ratio of F4/80-positive macrophages or CD3-positive T lymphocytes area to the lesion area was significantly higher in AngII-PBS than in PBS-PBS, and was significantly decreased in AngII-αGC. Gene expression of M2-macrophage specific markers, arginase-1 and resistin-like molecule alpha, was significantly greater in aortic tissues from AngII-αGC compared to AngII-PBS 1 week after AngII administration, and this increase was diminished at 4 weeks. Activation of iNKT cells by αGC can attenuate AngII-mediated AAA in ob/ob mice via inducing anti-inflammatory M2 polarized state. Activation of iNKT cells by the bioactive lipid αGC may be a novel therapeutic target against the development of AAA.
Collapse
Affiliation(s)
- Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Tokuhara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsuneaki Homma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mikito Nishikawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| |
Collapse
|
40
|
Zhang Y, Yang X, Li Z, Bu K, Li T, Ma Z, Wang B, Ma L, Lu H, Zhang K, Liu L, Zhao Y, Zhu Y, Qin J, Cui J, Liu L, Liu S, Fan P, Liu X. Pyk2/MCU Pathway as a New Target for Reversing Atherosclerosis. Front Cell Dev Biol 2021; 9:651579. [PMID: 34026753 PMCID: PMC8134689 DOI: 10.3389/fcell.2021.651579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: Multiple mechanisms including vascular endothelial cell damage have a critical role in the formation and development of atherosclerosis (AS), but the specific molecular mechanisms are not exactly clarified. This study aims to determine the possible roles of proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway in AS mouse model and H2O2-induced endothelial cell damage model and explore its possible mechanisms. Approach and Results: The AS mouse model was established using apolipoprotein E-knockout (ApoE–/–) mice that were fed with a high-fat diet. It was very interesting to find that Pyk2/MCU expression was significantly increased in the artery wall of atherosclerotic mice and human umbilical vein endothelial cells (HUVECs) attacked by hydrogen peroxide (H2O2). In addition, down-regulation of Pyk2 by short hairpin RNA (shRNA) protected HUVECs from H2O2 insult. Furthermore, treatment with rosuvastatin on AS mouse model and H2O2-induced HUVEC injury model showed a protective effect against AS by inhibiting the Pyk2/MCU pathway, which maintained calcium balance, prevented the mitochondrial damage and reactive oxygen species production, and eventually inhibited cell apoptosis. Conclusion: Our results provide important insight into the initiation of the Pyk2/MCU pathway involved in AS-related endothelial cell damage, which may be a new promising target for atherosclerosis intervention.
Collapse
Affiliation(s)
- Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhizhao Ma
- Neurosurgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Luji Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanying Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yipu Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuxia Liu
- Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ping Fan
- Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
41
|
Muniappan L, Okuyama M, Javidan A, Thiagarajan D, Jiang W, Moorleghen JJ, Yang L, Balakrishnan A, Howatt DA, Uchida HA, Saido TC, Subramanian V. Inducible Depletion of Calpain-2 Mitigates Abdominal Aortic Aneurysm in Mice. Arterioscler Thromb Vasc Biol 2021; 41:1694-1709. [PMID: 33761765 PMCID: PMC8062307 DOI: 10.1161/atvbaha.120.315546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Rupture/chemically induced
- Aortic Rupture/enzymology
- Aortic Rupture/genetics
- Aortic Rupture/prevention & control
- Calpain/deficiency
- Calpain/genetics
- Calpain/metabolism
- Cells, Cultured
- Cytoskeleton/enzymology
- Cytoskeleton/pathology
- Dilatation, Pathologic
- Disease Models, Animal
- Extracellular Matrix/enzymology
- Extracellular Matrix/pathology
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Rats
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Michihiro Okuyama
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Devi Thiagarajan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceuticals Sciences, Okayama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
42
|
Toczek J, Boodagh P, Sanzida N, Ghim M, Salarian M, Gona K, Kukreja G, Rajendran S, Wei L, Han J, Zhang J, Jung JJ, Graham M, Liu X, Sadeghi MM. Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics 2021; 11:5876-5888. [PMID: 33897887 PMCID: PMC8058712 DOI: 10.7150/thno.55106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Inflammation plays a major role in the pathogenesis of several vascular pathologies, including abdominal aortic aneurysm (AAA). Evaluating the role of inflammation in AAA pathobiology and potentially outcome in vivo requires non-invasive tools for high-resolution imaging. We investigated the feasibility of X-ray computed tomography (CT) imaging of phagocytic activity using nanoparticle contrast agents to predict AAA outcome. Methods: Uptake of several nanoparticle CT contrast agents was evaluated in a macrophage cell line. The most promising agent, Exitron nano 12000, was further characterized in vitro and used for subsequent in vivo testing. AAA was induced in Apoe-/- mice through angiotensin II (Ang II) infusion for up to 4 weeks. Nanoparticle biodistribution and uptake in AAA were evaluated by CT imaging in Ang II-infused Apoe-/- mice. After imaging, the aortic tissue was harvested and used from morphometry, transmission electron microscopy and gene expression analysis. A group of Ang II-infused Apoe-/- mice underwent nanoparticle-enhanced CT imaging within the first week of Ang II infusion, and their survival and aortic external diameter were evaluated at 4 weeks to address the value of vessel wall CT enhancement in predicting AAA outcome. Results: Exitron nano 12000 showed specific uptake in macrophages in vitro. Nanoparticle accumulation was observed by CT imaging in tissues rich in mononuclear phagocytes. Aortic wall enhancement was detectable on delayed CT images following nanoparticle administration and correlated with vessel wall CD68 expression. Transmission electron microscopy ascertained the presence of nanoparticles in AAA adventitial macrophages. Nanoparticle-induced CT enhancement on images obtained within one week of AAA induction was predictive of AAA outcome at 4 weeks. Conclusions: By establishing the feasibility of CT-based molecular imaging of phagocytic activity in AAA, this study links the inflammatory signal on early time point images to AAA evolution. This readily available technology overcomes an important barrier to cross-sectional, longitudinal and outcome studies, not only in AAA, but also in other cardiovascular pathologies and facilitates the evaluation of modulatory interventions, and ultimately upon clinical translation, patient management.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Parnaz Boodagh
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Nowshin Sanzida
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mean Ghim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Saranya Rajendran
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Linyan Wei
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Morven Graham
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Xinran Liu
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| |
Collapse
|
43
|
Mukherjee K, Pingili AK, Singh P, Dhodi AN, Dutta SR, Gonzalez FJ, Malik KU. Testosterone Metabolite 6β-Hydroxytestosterone Contributes to Angiotensin II-Induced Abdominal Aortic Aneurysms in Apoe-/- Male Mice. J Am Heart Assoc 2021; 10:e018536. [PMID: 33719500 PMCID: PMC8174379 DOI: 10.1161/jaha.120.018536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Sex is a prominent risk factor for abdominal aortic aneurysms (AAAs), and angiotensin II (Ang II) induces AAA formation to a greater degree in male than in female mice. We previously reported that cytochrome P450 1B1 contributes to the development of hypertension, as well as AAAs, in male mice. We also found that a cytochrome P450 1B1‐generated metabolite of testosterone, 6β‐hydroxytestosterone (6β‐OHT), contributes to Ang II‐induced hypertension and associated cardiovascular and renal pathogenesis in male mice. The current study was conducted to determine the contribution of 6β‐OHT to Ang II‐induced AAA development in Apoe–/– male mice. Methods and Results Intact or castrated Apoe–/–/Cyp1b1+/+ and Apoe–/–/Cyp1b1–/– male mice were infused with Ang II or its vehicle for 28 days, and administered 6β‐OHT every third day for the duration of the experiment. Abdominal aortas were then evaluated for development of AAAs. We observed a significant increase in the incidence and severity of AAAs in intact Ang II‐infused Apoe–/–/Cyp1b1+/+ mice, compared with vehicle‐treated mice, which were minimized in castrated Apoe–/–/Cyp1b1+/+ and intact Apoe–/–/Cyp1b1–/– mice infused with Ang II. Treatment with 6β‐OHT significantly restored the incidence and severity of AAAs in Ang II‐infused castrated Apoe–/–/Cyp1b1+/+ and intact Apoe–/–/Cyp1b1–/– mice. However, administration of testosterone failed to increase AAA incidence and severity in Ang II‐infused intact Apoe–/–/Cyp1b1–/– mice. Conclusions Our results indicate that the testosterone‐cytochrome P450 1B1‐generated metabolite 6β‐OHT contributes to Ang II‐induced AAA development in Apoe–/– male mice.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Ajeeth K Pingili
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Purnima Singh
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Ahmad N Dhodi
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Shubha R Dutta
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | | | - Kafait U Malik
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| |
Collapse
|
44
|
Sharma N, Hans CP. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc 2021; 10:e017633. [PMID: 33470127 PMCID: PMC7955443 DOI: 10.1161/jaha.120.017633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Background Development of abdominal aortic aneurysm (AAA) is associated with proinflammatory cytokines including interleukin-12 (IL12). Deficiency of interleukin 12p40 (IL12p40) increases localized fibrotic events by promoting TGFβ2 (transforming growth factor β)-dependent anti-inflammatory response. Here, we determined whether IL12p40 deficiency in apolipoprotein E-/- mice attenuates the development of AAA by antagonizing proinflammatory response. Methods and Results Double knockout (DKO) mice were generated by crossbreeding IL12p40-/- mice with apolipoprotein E-/- mice (n=12). Aneurysmal studies were performed using angiotensin II (1 µg/kg/min; subcutaneous). Surprisingly, DKO mice did not prevent the development of AAA with angiotensin II infusion. Immunohistological analysis, however, showed distinct pathological features between apolipoprotein E-/- and DKO mice. Polymerase chain reaction (7 day) and cytokine arrays (28 day) of the aortic tissues from DKO mice showed significantly increased expression of cytokines related to anti-inflammatory response (interleukin 5 and interleukin 13), synthetic vascular smooth muscle cell phenotype (Activin receptor-like kinase-1 (ALK-1), artemin, and betacellulin) and T helper 17-associated response (4-1BB, interleukin-17e (Il17e) and Cd40 ligand (Cd-40L)). Indeed, DKO mice exhibited increased expression of the fibro-proteolytic pathway in the medial layer of aortae induced by cellular communication network factor 2 (CCN2) and Cd3+IL17+ cells compared with apolipoprotein E-/- mice. Laser capture microdissection showed predominant expression of CCN2/TGFβ2 in the medial layer of human AAA. Finally, Ccn2 haploinsufficiency in the mice showed decreased AAA incidence in response to elastase infusion, associated with decreased matrix metalloproteinase-2 expression. Conclusions Our study reveals novel roles for IL12p40 deficiency in inducing fibro-proteolytic activities in the aneurysmal mouse model. Mechanistically, these effects of IL12p40 deficiency are mediated by CCN2/matrix metalloproteinase-2 crosstalk in the medial layer of aneurysmal aortae.
Collapse
MESH Headings
- Aged
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/physiopathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Blotting, Western
- Cells, Cultured
- Connective Tissue Growth Factor/biosynthesis
- Connective Tissue Growth Factor/genetics
- Disease Models, Animal
- Electrocardiography
- Female
- Gene Expression Regulation
- Humans
- Interleukin-12 Subunit p40/blood
- Interleukin-12 Subunit p40/deficiency
- Male
- Matrix Metalloproteinase 2/biosynthesis
- Matrix Metalloproteinase 2/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- RNA/genetics
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Ultrasonography
- Vascular Stiffness/physiology
Collapse
Affiliation(s)
- Neekun Sharma
- Department of Cardiovascular MedicineUniversity of MissouriColumbiaMO
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMO
| | - Chetan P. Hans
- Department of Cardiovascular MedicineUniversity of MissouriColumbiaMO
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMO
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO
| |
Collapse
|
45
|
Nie H, Qiu J, Wen S, Zhou W. Combining Bioinformatics Techniques to Study the Key Immune-Related Genes in Abdominal Aortic Aneurysm. Front Genet 2020; 11:579215. [PMID: 33362847 PMCID: PMC7758434 DOI: 10.3389/fgene.2020.579215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Approximately 13,000 people die of an abdominal aortic aneurysm (AAA) every year. This study aimed to identify the immune response-related genes that play important roles in AAA using bioinformatics approaches. We downloaded the GSE57691 and GSE98278 datasets related to AAA from the Gene Expression Omnibus database, which included 80 AAA and 10 normal vascular samples. CIBERSORT was used to analyze the samples and detect the infiltration of 22 types of immune cells and their differences and correlations. The principal component analysis showed significant differences in the infiltration of immune cells between normal vascular and AAA samples. High proportions of CD4+ T cells, activated mast cells, resting natural killer cells, and 12 other types of immune cells were found in normal vascular tissues, whereas high proportions of macrophages, CD8+ T cells, resting mast cells, and six other types of immune cells were found in AAA tissues. In the selected samples, we identified 39 upregulated (involved in growth factor activity, hormone receptor binding, and cytokine receptor activity) and 133 downregulated genes (involved in T cell activation, cell chemotaxis, and regulation of immune response mediators). The key differentially expressed immune response-related genes were screened using the STRING database and Cytoscape software. Two downregulated genes, PI3 and MAP2K1, and three upregulated genes, SSTR1, GPER1, and CCR10, were identified by constructing a protein-protein interaction network. Functional enrichment of the differentially expressed genes was analyzed, and the expression of the five key genes in AAA samples was verified using quantitative polymerase chain reaction, which revealed that MAP2K1 was downregulated in AAA, whereas SSTR1, GEPR1, and CCR10 were upregulated; there was no significant difference in PI3 expression. Our study shows that normal vascular and AAA samples can be distinguished via the infiltration of immune cells. Five genes, PI3, MAP2K1, SSTR1, GPER1, and CCR10, may play important roles in the development, diagnosis, and treatment of AAA.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Qiu
- Divison of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Wen
- Xinjian District People's Hospital of Jiangxi Province, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Qi X, Wang F, Chun C, Saldarriaga L, Jiang Z, Pruitt EY, Arnaoutakis GJ, Upchurch GR, Jiang Z. A validated mouse model capable of recapitulating the protective effects of female sex hormones on ascending aortic aneurysms and dissections (AADs). Physiol Rep 2020; 8:e14631. [PMID: 33242364 PMCID: PMC7690909 DOI: 10.14814/phy2.14631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Fewer females develop AADs (ascending aortic aneurysms and dissections) and the reasons for this protection remain poorly understood. The present study seeks to develop a mouse model that may be utilized to address this sexual dimorphism. Adult normolipidemic mice were challenged with BAPN (β-aminopropionitrile), AngII (angiotensin II), or BAPN + AngII. An initial protocol optimization found that 0.2% BAPN in drinking water plus AngII-infusion at 1,000 ng kg-1 min-1 produced favorable rates of AAD rupture (~50%) and dilation (~40%) in 28 days. Using these dosages, further experiments revealed that BAPN is toxic to naïve mature aortas and it acted synergistically with AngII to promote aortic tears and dissections. BAPN + AngII provoked early infiltration of myeloid cells and subsequent recruitment of lymphoid cells to the aortic wall. AADs established with BAPN + AngII, but not AngII alone, continued to expand after the cessation of AngII-infusion. This indefinite growth precipitated a 61% increase in the AAD diameter in 56 days. More importantly, with the optimized protocol, significant differences in AAD dilation (p = .012) and medial degeneration (p = .036) were detected between male and female mice. Treatment of ovariectomized mice with estradiol protected AAD formation (p = .014). In summary, this study developed a powerful mouse AAD model that can be used to study the sexual dimorphism in AAD formation.
Collapse
Affiliation(s)
- Xiaoyan Qi
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
- Institute of Cardiovascular DiseaseUniversity of South ChinaHengyangChina
| | - Fen Wang
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Changzoon Chun
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Lennon Saldarriaga
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Zhisheng Jiang
- Institute of Cardiovascular DiseaseUniversity of South ChinaHengyangChina
| | - Eric Y. Pruitt
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - George J. Arnaoutakis
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
- Division of Thoracic and Cardiovascular SurgeryUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Gilbert R. Upchurch
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular TherapyUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
47
|
DAPT, a potent Notch inhibitor regresses actively growing abdominal aortic aneurysm via divergent pathways. Clin Sci (Lond) 2020; 134:1555-1572. [PMID: 32490531 DOI: 10.1042/cs20200456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a localized pathological dilation of the aorta exceeding the normal diameter (∼20 mm) by more than 50% of its original size (≥30 mm), accounting for approximately 150000-200000 deaths worldwide per year. We previously reported that Notch inhibition does not decrease the size of pre-established AAA at late stage of the disease. Here, we examined whether a potent pharmacologic inhibitor of Notch signaling (DAPT (N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester)), regresses an actively growing AAA. In a mouse model of an aneurysm (Apoe-/- mice; n=44); DAPT (n=17) or vehicle (n=17) was randomly administered at day 14 of angiotensin II (AngII; 1 µg/min/kg), three times a week and mice were killed on day 42. Progressive increase in aortic stiffness and maximal intraluminal diameter (MILD) was observed in the AngII + vehicle group, which was significantly prevented by DAPT (P<0.01). The regression of aneurysm with DAPT was associated with reduced F4/80+Cd68+ (cluster of differentiation 68) inflammatory macrophages. DAPT improved structural integrity of aorta by reducing collagen fibrils abnormality and restoring their diameter. Mechanistically, C-C chemokine receptor type 7 (Ccr7)+F4/80- dendritic cells (DCs), implicated in the regression of aneurysm, were increased in the aorta of DAPT-treated mice. In the macrophages stimulated with AngII or lipopolysaccharide (LPS), DAPT reverted the expression of pro-inflammatory genes Il6 and Il12 back to baseline within 6 h compared with vehicle (P<0.05). DAPT also significantly increased the expression of anti-inflammatory genes, including c-Myc, Egr2, and Arg1 at 12-24 h in the LPS-stimulated macrophages (P<0.05). Overall, these regressive effects of Notch signaling inhibitor emphasize its therapeutic implications to prevent the progression of active AAAs.
Collapse
|
48
|
Risk Factors and Mouse Models of Abdominal Aortic Aneurysm Rupture. Int J Mol Sci 2020; 21:ijms21197250. [PMID: 33008131 PMCID: PMC7583758 DOI: 10.3390/ijms21197250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is an important cause of death in older adults. In clinical practice, the most established predictor of AAA rupture is maximum AAA diameter. Aortic diameter is commonly used to assess AAA severity in mouse models studies. AAA rupture occurs when the stress (force per unit area) on the aneurysm wall exceeds wall strength. Previous research suggests that aortic wall structure and strength, biomechanical forces on the aorta and cellular and proteolytic composition of the AAA wall influence the risk of AAA rupture. Mouse models offer an opportunity to study the association of these factors with AAA rupture in a way not currently possible in patients. Such studies could provide data to support the use of novel surrogate markers of AAA rupture in patients. In this review, the currently available mouse models of AAA and their relevance to the study of AAA rupture are discussed. The review highlights the limitations of mouse models and suggests novel approaches that could be incorporated in future experimental AAA studies to generate clinically relevant results.
Collapse
|
49
|
Knappich C, Spin JM, Eckstein HH, Tsao PS, Maegdefessel L. Involvement of Myeloid Cells and Noncoding RNA in Abdominal Aortic Aneurysm Disease. Antioxid Redox Signal 2020; 33:602-620. [PMID: 31989839 PMCID: PMC7455479 DOI: 10.1089/ars.2020.8035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Abdominal aortic aneurysm (AAA) is a potentially fatal condition, featuring the possibility of high-mortality rupture. To date, prophylactic surgery by means of open surgical repair or endovascular aortic repair at specific thresholds is considered standard therapy. Both surgical options hold different risk profiles of short- and long-term morbidity and mortality. Targeting early stages of AAA development to decelerate disease progression is desirable. Recent Advances: Understanding the pathomechanisms that initiate formation, maintain growth, and promote rupture of AAA is crucial to developing new medical therapeutic options. Inflammatory cells, in particular macrophages, have been investigated for their contribution to AAA disease for decades, whereas evidence on lymphocytes, mast cells, and neutrophils is sparse. Recently, there has been increasing interest in noncoding RNAs (ncRNAs) and their involvement in disease development, including AAA. Critical Issues: The current evidence on myeloid cells and ncRNAs in AAA largely originates from small animal models, making clinical extrapolation difficult. Although it is feasible to collect surgical human AAA samples, these tissues reflect end-stage disease, preventing examination of critical mechanisms behind early AAA formation. Future Directions: Gaining more insight into how myeloid cells and ncRNAs contribute to AAA disease, particularly in early stages, might suggest nonsurgical AAA treatment options. The utilization of large animal models might be helpful in this context to help bridge translational results to humans.
Collapse
Affiliation(s)
- Christoph Knappich
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
50
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|