1
|
Madsen MB, Kiss K, Cilius Nielsen F, Bennedbæk FN, Rossing M. Amplicon-Based NGS Panels for Actionable Cancer Target Identification in Follicular Cell-Derived Thyroid Neoplasia. Front Endocrinol (Lausanne) 2020; 11:146. [PMID: 32265839 PMCID: PMC7105679 DOI: 10.3389/fendo.2020.00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
Follicular cell-derived thyroid cancers are heterogenous and morphological classification is a complex and highly specialized task. Hence, identification of somatic alterations could provide insights to tumor biology and serve as an add-on diagnostic tool. Furthermore, results from these add-on tools could point in the direction of a more personalized treatment strategy. In the present study we set out to identify and validate the somatic mutation profile in a sample-set of follicular cell-derived thyroid neoplasia. One-hundred-and-one archived formalin fixed paraffin embedded (FFPE) tissue samples from patients diagnosed with follicular cell-derived thyroid neoplasia were included, and upon DNA-extraction and qualitative measurements 99 samples were eligible for amplicon-based next-generation-sequencing. Libraries were generated using the TruSeq Amplicon Cancer Panel, followed by sequencing using a MiSeq. Upon data processing and variant filtering all variants were manually assessed to exclude false positive mutations in the final curated list. Moreover, hot-spot mutations were validated using an independent platform from Agilent. Each diagnostic group were correlated to mutation burden and individual mutations were classified according to recent guidelines for somatic mutation classification. Close to 100% of the archived FFPE samples were eligible for DNA-library preparation and amplicon sequencing based on DNA quality criterion. The distribution of mutations in the specific diagnostic groups resulted in a higher mutation frequency among the most dedifferentiated than in the groups with a more differentiated cell profile. Based on the distribution mutations across the samples and using hierarchical clustering, we generated four tentative mutational signatures; highly mutated tumors; tumors with mainly NRAS and TP53 mutations; BRAF mutated tumors and tumors with none or single sporadic mutations. Future studies including more samples and follow-up data may amend these signatures, however our results imply that morphological classification of follicular cell derived thyroid neoplasia could be supplemented with a somatic mutational signature. Taken together, broad screening of the somatic alterations in FFPE tissue of thyroid neoplasia is comprehensible and essential for future identification of possible treatment targets and personalized medicine.
Collapse
Affiliation(s)
- Majbritt Busk Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Noe Bennedbæk
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- *Correspondence: Maria Rossing
| |
Collapse
|
2
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
3
|
Borowczyk M, Szczepanek-Parulska E, Dębicki S, Budny B, Verburg FA, Filipowicz D, Więckowska B, Janicka-Jedyńska M, Gil L, Ziemnicka K, Ruchała M. Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing. Int J Mol Sci 2019; 20:ijms20133126. [PMID: 31248021 PMCID: PMC6651591 DOI: 10.3390/ijms20133126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
We aimed to identify differences in mutational status between follicular thyroid adenoma (FTA) and follicular thyroid cancer (FTC). The study included 35 patients with FTA and 35 with FTC. DNA was extracted from formalin-fixed paraffin-embedded (FFPE) samples from thyroidectomy. Next-generation sequencing (NGS) was performed with the 50-gene Ion AmpliSeq Cancer Hotspot Panel v2. Potentially pathogenic mutations were found in 14 (40%) FTA and 24 (69%) FTC patients (OR (95%CI) = 3.27 (1.22−8.75)). The number of mutations was higher in patients with FTC than FTA (p-value = 0.03). SMAD4 and STK11 mutations were present only in patients with FTA, while defects in FBXW7, JAK3, KIT, NRAS, PIK3CA, SMARCB1, and TP53 were detected exclusively in FTC patients. TP53 mutations increased the risk of FTC; OR (95%CI) = 29.24 (1.64–522.00); p-value = 0.001. FLT3-positivity was higher in FTC than in the FTA group (51.4% vs. 28.6%; p-value = 0.051). The presence of FLT3 and TP53 with no RET mutations increased FTC detectability by 17.1%, whereas the absence of FLT3 and TP53 with a presence of RET mutations increased FTA detectability by 5.7%. TP53 and FLT3 are candidate markers for detecting malignancy in follicular lesions. The best model to predict FTA and FTC may consist of FLT3, TP53, and RET mutations considered together.
Collapse
Affiliation(s)
- Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland.
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Szymon Dębicki
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Frederik A Verburg
- Department of Nuclear Medicine, University Hospital Marburg, 35043 Marburg, Germany
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Barbara Więckowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | | | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznań, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland
| |
Collapse
|
4
|
Abstract
Thyroid nodules are heterogeneous tumors with variable genetic signatures. Thyroid cancers are monoclonal lesions with a defined histomorphology that largely depends on the underlying somatic mutation. While the mutation rate is generally low in differentiated thyroid cancers, poorly differentiated and anaplastic thyroid cancers show a high mutation load. The identification of somatic mutations in fine needle aspirates can be helpful for the differential diagnostics of thyroid nodules; however, a prognostic contribution is less certain. The molecular pathology of thyroid tumors is helpful for the development of targeted therapies and may infer novel immuno-oncological concepts for advanced aggressive thyroid cancers.
Collapse
Affiliation(s)
- D Führer
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
5
|
Dom G, Frank S, Floor S, Kehagias P, Libert F, Hoang C, Andry G, Spinette A, Craciun L, de Saint Aubin N, Tresallet C, Tissier F, Savagner F, Majjaj S, Gutierrez-Roelens I, Marbaix E, Dumont JE, Maenhaut C. Thyroid follicular adenomas and carcinomas: molecular profiling provides evidence for a continuous evolution. Oncotarget 2018; 9:10343-10359. [PMID: 29535811 PMCID: PMC5828225 DOI: 10.18632/oncotarget.23130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Non-autonomous thyroid nodules are common in the general population with a proportion found to be cancerous. A current challenge in the field is to be able to distinguish benign adenoma (FA) from preoperatively malignant thyroid follicular carcinoma (FTC), which are very similar both histologically and genetically. One controversial issue, which is currently not understood, is whether both tumor types represent different molecular entities or rather a biological continuum. To gain a better insight into FA and FTC tumorigenesis, we defined their molecular profiles by mRNA and miRNA microarray. Expression data were analyzed, validated by qRT-PCR and compared with previously published data sets. The majority of deregulated mRNAs were common between FA and FTC and were downregulated, however FTC showed additional deregulated mRNA. Both types of tumors share deregulated pathways, molecular functions and biological processes. The additional deregulations in FTC include the lipid transport process that may be involved in tumor progression. The strongest candidate genes which may be able to discriminate follicular adenomas and carcinomas, CRABP1, FABP4 and HMGA2, were validated in independent samples by qRT-PCR and immunohistochemistry. However, they were not able to adequately classify FA or FTC, supporting the notion of continuous evolving tumors, whereby FA and FTC appear to show quantitative rather than qualitative changes. Conversely, miRNA expression profiles showed few dysregulations in FTC, and even fewer in FA, suggesting that miRNA play a minor, if any, role in tumor progression.
Collapse
Affiliation(s)
- Geneviève Dom
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sandra Frank
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Sebastien Floor
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Pashalina Kehagias
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Catherine Hoang
- Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | - Guy Andry
- Institut Jules Bordet, Brussels, Belgium
| | | | | | | | | | - Frederique Tissier
- Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | - Ilse Gutierrez-Roelens
- Biolibrary of the King Albert II Institute, Cliniques Universitaires Saint-Luc, and Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne Marbaix
- Biolibrary of the King Albert II Institute, Cliniques Universitaires Saint-Luc, and Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques E. Dumont
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, School of Medicine, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Führer D, Musholt T, Schmid KW. [Molecular Pathogenesis of Thyroid Nodules: Relevance for Clinical Care]. Laryngorhinootologie 2017; 96:590-596. [PMID: 28881369 DOI: 10.1055/s-0043-109180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid nodules represent heterogeneous tumors with distinct molecular signatures. While benign thyroid nodules correspond to poly- or monoclonal tumors, thyroid carcinomas are monoclonal and thus "real" neoplasms. These are caused by somatic mutations that lead to the constitutive activation of specific signaling cascades and determine the corresponding histology and also partly the functional phenotype of the thyroid tumor. Dedifferentiation of thyroid carcinomas is accompanied by the occurrence of additional mutations in the tumors. The mutation load of thyroid carcinomas correlates with their biological behavior. In clinical practice, detection of somatic mutations can help in the cytological differential diagnosis. In the prognostic assessment of thyroid tumors, proof of classical oncogene mutations (BRAF, RAS) has little relevance. Other genetic alterations, especially TERT promoter mutations that occur with increasing frequency in advanced thyroid carcinomas, probably have a prognostic significance. The molecular signature, however, is of great relevance for the development and application of targeted therapies in advanced carcinomas (radioactive iodine-refractory DTC, PDTC and ATC, metastatic medullary carcinoma). For this, there is increasing evidence from clinical studies and case reports that underline the concept of "oncogene addiction" as a pathogenetically relevant mechanism of thyroid tumorigenesis and carcinogenesis.
Collapse
Affiliation(s)
- D Führer
- Klinik für Endokrinologie und Stoffwechselerkrankungen, Zentrallabor - Bereich Forschung und Lehre, Endokrines Tumorzentrum am WTZ und ENETS Center of Excellence, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen
| | - T Musholt
- Sektion Endokrine Chirurgie, Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz
| | - K W Schmid
- Institut für Pathologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen
| |
Collapse
|
7
|
Lai X, Umbricht CB, Fisher K, Bishop J, Shi Q, Chen S. Identification of novel biomarker and therapeutic target candidates for diagnosis and treatment of follicular carcinoma. J Proteomics 2017; 166:59-67. [DOI: 10.1016/j.jprot.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022]
|
8
|
Weiner J, Kranz M, Klöting N, Kunath A, Steinhoff K, Rijntjes E, Köhrle J, Zeisig V, Hankir M, Gebhardt C, Deuther-Conrad W, Heiker JT, Kralisch S, Stumvoll M, Blüher M, Sabri O, Hesse S, Brust P, Tönjes A, Krause K. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci Rep 2016; 6:38124. [PMID: 27941950 PMCID: PMC5150531 DOI: 10.1038/srep38124] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo14C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.
Collapse
Affiliation(s)
- Juliane Weiner
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Nora Klöting
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Anne Kunath
- German Center for Diabetes Research (DZD), Leipzig, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Eddy Rijntjes
- Institute of Experimental Endocrinology, Charité University Hospital, Berlin, Germany
| | - Josef Köhrle
- Institute of Experimental Endocrinology, Charité University Hospital, Berlin, Germany
| | - Vilia Zeisig
- Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Mohammed Hankir
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Claudia Gebhardt
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - John T Heiker
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Susan Kralisch
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Osama Sabri
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Swen Hesse
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Anke Tönjes
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| |
Collapse
|
9
|
Lyckesvärd MN, Kapoor N, Ingeson-Carlsson C, Carlsson T, Karlsson JO, Postgård P, Himmelman J, Forssell-Aronsson E, Hammarsten O, Nilsson M. Linking loss of sodium-iodide symporter expression to DNA damage. Exp Cell Res 2016; 344:120-131. [PMID: 27108928 DOI: 10.1016/j.yexcr.2016.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1nM) calicheamicin blocked NIS mRNA expression and transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress.
Collapse
Affiliation(s)
- Madeleine Nordén Lyckesvärd
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Nirmal Kapoor
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Camilla Ingeson-Carlsson
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Therese Carlsson
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Jan-Olof Karlsson
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Per Postgård
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | - Jakob Himmelman
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | | | - Ola Hammarsten
- Department of Clinical Chemistry, University of Gothenburg, Göteborg, Sweden
| | - Mikael Nilsson
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
10
|
Dinets A, Pernemalm M, Kjellin H, Sviatoha V, Sofiadis A, Juhlin CC, Zedenius J, Larsson C, Lehtiö J, Höög A. Differential protein expression profiles of cyst fluid from papillary thyroid carcinoma and benign thyroid lesions. PLoS One 2015; 10:e0126472. [PMID: 25978681 PMCID: PMC4433121 DOI: 10.1371/journal.pone.0126472] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Cystic papillary thyroid carcinoma (cPTC) is a subgroup of PTC presenting a diagnostic challenge at fine needle aspiration biopsy (FNAB). To further investigate this entity we aimed to characterize protein profiles of cyst fluids from cPTC and benign thyroid cystic lesions. In total, 20 cPTCs and 56 benign thyroid cystic lesions were studied. Profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on cyst fluids from a subset of cases after depletion, and selected proteins were further analyzed by Western blot (WB), immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). A total of 1,581 proteins were detected in cyst fluids, of which 841 were quantified in all samples using LC-MS/MS. Proteins with different expression levels between cPTCs and benign lesions were identified by univariate analysis (41 proteins) and multivariate analysis (59 proteins in an orthogonal partial least squares model). WB analyses of cyst fluid and IHC on corresponding tissue samples confirmed a significant up-regulation of cytokeratin 19 (CK-19/CYFRA 21-1) and S100A13 in cPTC vs. benign lesions. These findings were further confirmed by ELISA in an extended material of non-depleted cyst fluids from cPTCs (n = 17) and benign lesions (n = 55) (p<0.05). Applying a cut-off at >55 ng/ml for CK-19 resulted in 82% specificity and sensitivity. For S100A13 a cut-off at >230 pg/ml revealed a 94% sensitivity, but only 35% specificity. This is the first comprehensive catalogue of the protein content in fluid from thyroid cysts. The up-regulations of CK-19 and S100A13 suggest their possible use in FNAB based preoperative diagnostics of cystic thyroid lesions.
Collapse
Affiliation(s)
- Andrii Dinets
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Center Karolinska, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- * E-mail: (AD); (CL)
| | - Maria Pernemalm
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, SE-171 65, Stockholm, Sweden
| | - Hanna Kjellin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, SE-171 65, Stockholm, Sweden
| | - Vitalijs Sviatoha
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Center Karolinska, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Pathology-Cytology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Anastasios Sofiadis
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Center Karolinska, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - C. Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Center Karolinska, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Pathology-Cytology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Center Karolinska, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- * E-mail: (AD); (CL)
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, SE-171 65, Stockholm, Sweden
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Cancer Center Karolinska, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Pathology-Cytology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| |
Collapse
|
11
|
Hong S, Laimins LA. The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog 2013; 9:e1003295. [PMID: 23593005 PMCID: PMC3616964 DOI: 10.1371/journal.ppat.1003295] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/25/2013] [Indexed: 01/02/2023] Open
Abstract
High-risk human papillomavirus (HPV) must evade innate immune surveillance to establish persistent infections and to amplify viral genomes upon differentiation. Members of the JAK-STAT family are important regulators of the innate immune response and HPV proteins downregulate expression of STAT-1 to allow for stable maintenance of viral episomes. STAT-5 is another member of this pathway that modulates the inflammatory response and plays an important role in controlling cell cycle progression in response to cytokines and growth factors. Our studies show that HPV E7 activates STAT-5 phosphorylation without altering total protein levels. Inhibition of STAT-5 phosphorylation by the drug pimozide abolishes viral genome amplification and late gene expression in differentiating keratinocytes. In contrast, treatment of undifferentiated cells that stably maintain episomes has no effect on viral replication. Knockdown studies show that the STAT-5β isoform is mainly responsible for this activity and that this is mediated through the ATM DNA damage response. A downstream target of STAT-5, the peroxisome proliferator-activated receptor γ (PPARγ) contributes to the effects on members of the ATM pathway. Overall, these findings identify an important new regulatory mechanism by which the innate immune regulator, STAT-5, promotes HPV viral replication through activation of the ATM DNA damage response. Over 120 types of human papillomavirus (HPV) have been identified, and approximately one-third of these infect epithelial cells of the genital mucosa. A subset of HPV types are the causative agents of cervical and other anogenital cancers. The infectious life cycle of HPV is dependent on differentiation of the host epithelial cell, with viral genome amplification and virion production restricted to differentiated suprabasal cells. While normal keratinocytes exit the cell cycle upon differentiation, HPV-positive suprabasal cells are able to re-enter S-phase to mediate productive replication. HPV induces an ATM-dependent DNA damage response in differentiating cells that is essential for viral genome amplification. Our studies describe an important mechanism by which human papillomaviruses activate a member of the JAK/STAT innate immune signaling pathway to induce the ATM DNA damage pathway. This is necessary for differentiation-dependent productive viral replication. HPVs must suppress the transcription of one member of the JAK/STAT pathway, STAT-1, while at the same time activating STAT-5 to regulate genome amplification in suprabasal cells. The E7 protein activates STAT-5 leading to induction of ATM phosphorylation through the PPARγ pathway. Our study identifies important links between innate immune signaling, the ATM DNA damage pathway and productive HPV replication that may lead to the characterization of new targets for the development of therapeutics to treat HPV-induced infections.
Collapse
Affiliation(s)
- Shiyuan Hong
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Karger S, Krause K, Engelhardt C, Weidinger C, Gimm O, Dralle H, Sheu-Grabellus SY, Schmid KW, Fuhrer D. Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours. J Mol Endocrinol 2012; 48:193-202. [PMID: 22331172 DOI: 10.1530/jme-11-0119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased oxidative stress has been linked to thyroid carcinogenesis. In this paper, we investigate whether oxidative DNA damage and DNA repair differ in follicular adenoma (FA) and follicular thyroid carcinoma (FTC). 7,8-Dihydro-8-oxoguanine (8-OxoG) formation was analysed by immunohistochemistry in 46 FAs, 52 FTCs and 18 normal thyroid tissues (NTs). mRNA expression of DNA repair genes OGG1, Mut Y homologue (MUTYH) and endonuclease III (NTHL1) was analysed by real-time PCR in 19 FAs, 25 FTCs and 19 NTs. Induction and repair of oxidative DNA damage were studied in rat FRTL-5 cells after u.v. irradiation. Moreover, activation of DNA damage checkpoints (ataxia telangiectasia mutated (ATM) and H2A histone family, member X (H2AFX (H2AFX))) and proliferation index (MIB-1) were quantified in 28 non-oxyphilic and 24 oxyphilic FTCs. Increased nuclear and cytosolic 8-OxoG formation was detected in FTC compared with follicular adenoma, whereby cytosolic 8-OxoG formation was found to reflect RNA oxidation. Significant downregulation of DNA repair enzymes was detected in FTC compared with FA. In vitro experiments mirrored the findings in FTC with oxidative stress-induced DNA checkpoint activation and downregulation of OGG1, MUTYH and NTHL1 in FRTL-5 cells, an effect that, however, was reversible after 24 h. Further analysis of FTC variants showed decreased oxidative DNA damage, sustained checkpoint activation and decreased proliferation in oxyphilic vs non-oxyphilic FTC. Our data suggest a pathophysiological scenario of accumulating unrepaired DNA/RNA damage in FTC vs counterbalanced DNA/RNA damage and repair in FA. Furthermore, this study provides the first evidence for differences in oxidative stress defence in FTC variants with possible implications for therapeutic response and prognostic outcome.
Collapse
Affiliation(s)
- Stefan Karger
- Clinic of Endocrinology and Nephrology, Department of Internal Medicine, Neurology and Dermatology, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|