1
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
2
|
Tandean S, Japardi I, Rusda M, Indharty RS, Lelo A, Aman RA, Amin MM, Siahaan AMP, Eyanoer PC, D’Prinzessin CA, Lesmana R, Popova M, Trusheva B, Bankova V, Zulhendri F. Chemical Composition and Neuroprotective Properties of Indonesian Stingless Bee ( Geniotrigona thoracica) Propolis Extract in an In-Vivo Model of Intracerebral Hemorrhage (ICH). Nutrients 2024; 16:1880. [PMID: 38931235 PMCID: PMC11206540 DOI: 10.3390/nu16121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is the world's second-leading cause of death. Current treatments for cerebral edema following intracerebral hemorrhage (ICH) mainly involve hyperosmolar fluids, but this approach is often inadequate. Propolis, known for its various beneficial properties, especially antioxidant and anti-inflammatory properties, could potentially act as an adjunctive therapy and help alleviate stroke-associated injuries. The chemical composition of Geniotrigona thoracica propolis extract was analyzed by GC-MS after derivatization for its total phenolic and total flavonoid content. The total phenolic content and total flavonoid content of the propolis extract were 1037.31 ± 24.10 μg GAE/mL and 374.02 ± 3.36 μg QE/mL, respectively. By GC-MS analysis, its major constituents were found to be triterpenoids (22.4% of TIC). Minor compounds, such as phenolic lipids (6.7% of TIC, GC-MS) and diterpenic acids (2.3% of TIC, GC-MS), were also found. Ninety-six Sprague Dawley rats were divided into six groups; namely, the control group, the ICH group, and four ICH groups that received the following therapies: mannitol, propolis extract (daily oral propolis administration after the ICH induction), propolis-M (propolis and mannitol), and propolis-B+A (daily oral propolis administration 7 days prior to and 72 h after the ICH induction). Neurocognitive functions of the rats were analyzed using the rotarod challenge and Morris water maze. In addition, the expression of NF-κB, SUR1-TRPM4, MMP-9, and Aquaporin-4 was analyzed using immunohistochemical methods. A TUNEL assay was used to assess the percentage of apoptotic cells. Mannitol significantly improved cognitive-motor functions in the ICH group, evidenced by improved rotarod and Morris water maze completion times, and lowered SUR-1 and Aquaporin-4 levels. It also significantly decreased cerebral edema by day 3. Similarly, propolis treatments (propolis-A and propolis-B+A) showed comparable improvements in these tests and reduced edema. Moreover, combining propolis with mannitol (propolis-M) further enhanced these effects, particularly in reducing edema and the Virchow-Robin space. These findings highlight the potential of propolis from the Indonesian stingless bee, Geniotrigona thoracica, from the Central Tapanuli region as a neuroprotective, adjunctive therapy.
Collapse
Affiliation(s)
- Steven Tandean
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Iskandar Japardi
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
| | - Muhammad Rusda
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Rr Suzy Indharty
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Aznan Lelo
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Renindra Ananda Aman
- Department of Neurosurgery, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia;
| | - Mustafa Mahmud Amin
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Andre Marolop Pangihutan Siahaan
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Putri Chairani Eyanoer
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Community and Preventive Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Celine Augla D’Prinzessin
- Undergraduate Program in Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java 45363, Indonesia;
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Felix Zulhendri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Kabupaten Sumedang, Jawa Barat 45363, Indonesia
- Kebun Efi, Kabupaten Karo, Sumatera Utara 22171, Indonesia
| |
Collapse
|
3
|
Morris NL, Michael DN, Crotty KM, Chang SS, Yeligar SM. Alcohol-Induced Glycolytic Shift in Alveolar Macrophages Is Mediated by Hypoxia-Inducible Factor-1 Alpha. Front Immunol 2022; 13:865492. [PMID: 35634337 PMCID: PMC9130492 DOI: 10.3389/fimmu.2022.865492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol use increases the risk of developing respiratory infections partially due to impaired alveolar macrophage (AM) phagocytic capacity. Previously, we showed that chronic ethanol (EtOH) exposure led to mitochondrial derangements and diminished oxidative phosphorylation in AM. Since oxidative phosphorylation is needed to meet the energy demands of phagocytosis, EtOH mediated decreases in oxidative phosphorylation likely contribute to impaired AM phagocytosis. Treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, pioglitazone (PIO), improved EtOH-mediated decreases in oxidative phosphorylation. In other models, hypoxia-inducible factor-1 alpha (HIF-1α) has been shown to mediate the switch from oxidative phosphorylation to glycolysis; however, the role of HIF-1α in chronic EtOH mediated derangements in AM has not been explored. We hypothesize that AM undergo a metabolic shift from oxidative phosphorylation to a glycolytic phenotype in response to chronic EtOH exposure. Further, we speculate that HIF-1α is a critical mediator of this metabolic switch. To test these hypotheses, primary mouse AM (mAM) were isolated from a mouse model of chronic EtOH consumption and a mouse AM cell line (MH-S) were exposed to EtOH in vitro. Expression of HIF-1α, glucose transporters (Glut1 and 4), and components of the glycolytic pathway (Pfkfb3 and PKM2), were measured by qRT-PCR and western blot. Lactate levels (lactate assay), cell energy phenotype (extracellular flux analyzer), glycolysis stress tests (extracellular flux analyzer), and phagocytic function (fluorescent microscopy) were conducted. EtOH exposure increased expression of HIF-1α, Glut1, Glut4, Pfkfb3, and PKM2 and shifted AM to a glycolytic phenotype. Pharmacological stabilization of HIF-1α via cobalt chloride treatment in vitro mimicked EtOH-induced AM derangements (increased glycolysis and diminished phagocytic capacity). Further, PIO treatment diminished HIF-1α levels and reversed glycolytic shift following EtOH exposure. These studies support a critical role for HIF-1α in mediating the glycolytic shift in energy metabolism of AM during excessive alcohol use.
Collapse
Affiliation(s)
- Niya L Morris
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - David N Michael
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Sarah S Chang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
4
|
Abstract
Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.
Collapse
Affiliation(s)
- Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology; Department of Radiology; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
5
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Pervin Z, Stephen JM. Effect of alcohol on the central nervous system to develop neurological disorder: pathophysiological and lifestyle modulation can be potential therapeutic options for alcohol-induced neurotoxication. AIMS Neurosci 2021; 8:390-413. [PMID: 34183988 PMCID: PMC8222771 DOI: 10.3934/neuroscience.2021021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 12/06/2022] Open
Abstract
The central nervous system (CNS) is the major target for adverse effects of alcohol and extensively promotes the development of a significant number of neurological diseases such as stroke, brain tumor, multiple sclerosis (MS), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Excessive alcohol consumption causes severe neuro-immunological changes in the internal organs including irreversible brain injury and it also reacts with the defense mechanism of the blood-brain barrier (BBB) which in turn leads to changes in the configuration of the tight junction of endothelial cells and white matter thickness of the brain. Neuronal injury associated with malnutrition and oxidative stress-related BBB dysfunction may cause neuronal degeneration and demyelination in patients with alcohol use disorder (AUD); however, the underlying mechanism still remains unknown. To address this question, studies need to be performed on the contributing mechanisms of alcohol on pathological relationships of neurodegeneration that cause permanent neuronal damage. Moreover, alcohol-induced molecular changes of white matter with conduction disturbance in neurotransmission are a likely cause of myelin defect or axonal loss which correlates with cognitive dysfunctions in AUD. To extend our current knowledge in developing a neuroprotective environment, we need to explore the pathophysiology of ethanol (EtOH) metabolism and its effect on the CNS. Recent epidemiological studies and experimental animal research have revealed the association between excessive alcohol consumption and neurodegeneration. This review supports an interdisciplinary treatment protocol to protect the nervous system and to improve the cognitive outcomes of patients who suffer from alcohol-related neurodegeneration as well as clarify the pathological involvement of alcohol in causing other major neurological disorders.
Collapse
Affiliation(s)
- Zinia Pervin
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| |
Collapse
|
7
|
Olde Heuvel F, Holl S, Chandrasekar A, Li Z, Wang Y, Rehman R, Förstner P, Sinske D, Palmer A, Wiesner D, Ludolph A, Huber-Lang M, Relja B, Wirth T, Röszer T, Baumann B, Boeckers T, Knöll B, Roselli F. STAT6 mediates the effect of ethanol on neuroinflammatory response in TBI. Brain Behav Immun 2019; 81:228-246. [PMID: 31207335 DOI: 10.1016/j.bbi.2019.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) and ethanol intoxication (EI) frequently coincide, particularly in young subjects. However, the mechanisms of their interaction remain poorly understood. Among other pathogenic pathways, TBI induces glial activation and neuroinflammation in the hippocampus, resulting in acute and chronic hippocampal dysfunction. In this regard, we investigated the role of EI affecting these responses unfolding after TBI. We used a blunt, weight-drop approach to model TBI in mice. Male mice were pre-administered with ethanol or vehicle to simulate EI. The neuroinflammatory response in the hippocampus was assessed by monitoring the expression levels of >20 cytokines, the phosphorylation status of transcription factors and the phenotype of microglia and astrocytes. We used AS1517499, a brain-permeable STAT6 inhibitor, to elucidate the role of this pathway in the EI/TBI interaction. We showed that TBI causes the elevation of IL-33, IL-1β, IL-38, TNF-α, IFN-α, IL-19 in the hippocampus at 3 h time point and concomitant EI results in the dose-dependent downregulation of IL-33, IL-1β, IL-38, TNF-α and IL-19 (but not of IFN-α) and in the selective upregulation of IL-13 and IL-12. EI is associated with the phosphorylation of STAT6 and the transcription of STAT6-controlled genes. Moreover, ethanol-induced STAT6 phosphorylation and transcriptional activation can be recapitulated in vitro by concomitant exposure of neurons to ethanol, depolarization and inflammatory stimuli (simulating the acute trauma). Acute STAT6 inhibition prevents the effects of EI on IL-33 and TNF-α, but not on IL-13 and negates acute EI beneficial effects on TBI-associated neurological impairment. Additionally, EI is associated with reduced microglial activation and astrogliosis as well as preserved synaptic density and baseline neuronal activity 7 days after TBI and all these effects are prevented by acute administration of the STAT6 inhibitor concomitant to EI. EI concomitant to TBI exerts significant immunomodulatory effects on cytokine induction and microglial activation, largely through the activation of STAT6 pathway, ultimately with beneficial outcomes.
Collapse
Affiliation(s)
- Florian Olde Heuvel
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Sarah Holl
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Akila Chandrasekar
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Zhenghui Li
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Yibin Wang
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rida Rehman
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Philip Förstner
- Institute of Physiological Chemistry, Ulm University, N27, Albert-Einstein-Allee 11 9081 Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, N27, Albert-Einstein-Allee 11 9081 Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Diana Wiesner
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Albert Ludolph
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Borna Relja
- Dept. of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, N27, Albert-Einstein-Allee 11 9081 Ulm, Germany
| | - Tamás Röszer
- Institute of Neurobiology, Ulm University, M24, ALbert-Einstein Allee 11, 89081 Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, N27, Albert-Einstein-Allee 11 9081 Ulm, Germany
| | - Tobias Boeckers
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany; Institute of Anatomy and Cell Biology, Ulm University, M24, ALbert-Einstein Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, N27, Albert-Einstein-Allee 11 9081 Ulm, Germany
| | - Francesco Roselli
- Dept. of Neurology, Ulm University, ZBF - Helmholtzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany; Institute of Anatomy and Cell Biology, Ulm University, M24, ALbert-Einstein Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
8
|
Brigode W, Cohan C, Beattie G, Victorino G. Alcohol in Traumatic Brain Injury: Toxic or Therapeutic? J Surg Res 2019; 244:196-204. [PMID: 31299436 DOI: 10.1016/j.jss.2019.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/17/2019] [Accepted: 06/07/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alcohol (EtOH) poses a challenge in traumatic brain injuries (TBIs) given its metabolic and neurologic impact. Studies have had opposing results regarding mortality and complication rates in the intoxicated TBI patient. We hypothesized that trauma mechanism, brain injury severity, and blood alcohol concentration (BAC) would influence the impact of EtOH on mortality in TBI. METHODS We performed a single-institution retrospective review of consecutive adult trauma patients tested for EtOH and a diagnosis of TBI. The primary outcome was mortality, and secondary outcomes included infectious complications. The primary analysis included univariate and multivariate regression comparing mortality between intoxicated and sober patients, at different values of BAC, different brain injury severities, and among mechanisms of trauma. RESULTS Admission EtOH was assessed in 583 patients with TBI, with 256 testing positive for EtOH and 327 testing negative. Overall, EtOH was associated with lower mortality on univariate analysis (4.7% versus 8.9%, P = 0.05) but not on multivariate analysis (P = 0.21). There was no effect of EtOH on mortality when patients were stratified by brain injury severity or among penetrating trauma victims. However, EtOH was associated with lower overall infectious complications on univariate and multivariate regression. Finally, EtOH was predictive of mortality with an area under the receiver operator characteristic curve of 0.83. CONCLUSIONS We found that EtOH is not associated with mortality in the patient with TBI, suggesting no causative effect. However, EtOH showed some predictability of mortality based on a receiver operator characteristic analysis. Interestingly, EtOH was associated with lower infectious complications, suggesting an immunomodulatory effect of EtOH in TBI.
Collapse
Affiliation(s)
- William Brigode
- Department of Surgery, University of California-San Francisco, Oakland California.
| | - Caitlin Cohan
- Department of Surgery, University of California-San Francisco, Oakland California
| | - Genna Beattie
- Department of Surgery, University of California-San Francisco, Oakland California
| | - Gregory Victorino
- Department of Surgery, University of California-San Francisco, Oakland California
| |
Collapse
|
9
|
Glober NK, Sprague S, Ahmad S, Mayfield KG, Fletcher LM, Digicaylioglu MH, Sayre NL. Acetazolamide Treatment Prevents Redistribution of Astrocyte Aquaporin 4 after Murine Traumatic Brain Injury. NEUROSCIENCE JOURNAL 2019; 2019:2831501. [PMID: 31187032 PMCID: PMC6521570 DOI: 10.1155/2019/2831501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
After traumatic brain injury (TBI), multiple ongoing processes contribute to worsening and spreading of the primary injury to create a secondary injury. One major process involves disrupted fluid regulation to create vascular and cytotoxic edema in the affected area. Although understanding of factors that influence edema is incomplete, the astrocyte water channel Aquaporin 4 (AQP4) has been identified as an important mediator and therefore attractive drug target for edema prevention. The FDA-approved drug acetazolamide has been administered safely to patients for years in the United States. To test whether acetazolamide altered AQP4 function after TBI, we utilized in vitro and in vivo models of TBI. Our results suggest that AQP4 localization is altered after TBI, similar to previously published reports. Treatment with acetazolamide prevented AQP4 reorganization, both in human astrocyte in vitro and in mice in vivo. Moreover, acetazolamide eliminated cytotoxic edema in our in vivo mouse TBI model. Our results suggest a possible clinical role for acetazolamide in the treatment of TBI.
Collapse
Affiliation(s)
- Nancy K. Glober
- Department of Emergency Medicine, Stanford University, Palo Alto, California, USA
| | - Shane Sprague
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sadiya Ahmad
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Katherine G. Mayfield
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lauren M. Fletcher
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Murat H. Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Naomi L. Sayre
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| |
Collapse
|
10
|
Qing Y, Xiong W, Da-Xiang H, Juan Z, Fei W, Yong-Qiang Y. Statistical Analysis of the Apparent Diffusion Coefficient in Patients with Clinically Mild Encephalitis/Encephalopathy with a Reversible Splenial Lesion Indicates That the Pathology Extends Well beyond the Visible Lesions. Magn Reson Med Sci 2019; 19:14-20. [PMID: 30956273 PMCID: PMC7067916 DOI: 10.2463/mrms.mp.2018-0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose: To investigate whether the genu of the corpus callosum is involved in patients with clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) type I. Methods: Twenty-three cases of clinically confirmed MERS I were analyzed retrospectively, and MRI features of the lesion were observed. The apparent diffusion coefficient (ADC) values of the same region of interests in lesions at the splenium and genu of the corpus callosum were measured before and after treatment (i.e., four groups), and the average ADC values were calculated. Paired t-tests were used to compare the ADC values of lesions in the splenium and genu before and after treatment. Independent sample t-tests were used to compare the values in the splenium and genu after treatment. Results: The mean ADC values of the splenium before and after treatment were 0.448 ± 0.124 and 0.790 ± 0.070 × 10−3 mm2/s, respectively, showing significant difference (P < 0.01). The mean ADC values in the genu before and after treatment were 0.783 ± 0.067 and 0.829 ± 0.070 × 10−3 mm2/s, respectively, also showing significant difference (P < 0.01). There was no significant difference in the ADC values between the splenium and genu after treatment (P > 0.05). Conclusion: The genu showed a slight restriction in diffusion in the acute stage of type I MERS. After treatment, this diffusion restriction diminished as it typically does in the splenium. Our results indicate that the pathology in MERS extends well beyond the visible lesions.
Collapse
Affiliation(s)
- Yang Qing
- Department of MRI, Anqing Municipal Hospital
| | - Wang Xiong
- Department of Neurology, Anqing Municipal Hospital
| | | | - Zhu Juan
- Department of MRI, Anqing Municipal Hospital
| | - Wang Fei
- Department of MRI, Anqing Municipal Hospital
| | - Yu Yong-Qiang
- The First Affiliated Hospital of Anhui Medical University
| |
Collapse
|
11
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Mautes AE, Schwerdtfeger K, Oertel J. Brain Edema Formation and Functional Outcome After Surgical Decompression in Murine Closed Head Injury Are Modulated by Acetazolamide Administration. Front Neurol 2019; 10:273. [PMID: 30972006 PMCID: PMC6443632 DOI: 10.3389/fneur.2019.00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Acetazolamide (ACZ), carbonic anhydrase inhibitor, has been successfully applied in several neurosurgical conditions for diagnostic or therapeutic purposes. Furthermore, neuroprotective and anti-edematous properties of ACZ have been postulated. However, its use in traumatic brain injury (TBI) is limited, since ACZ-caused vasodilatation according to the Monro-Kellie doctrine may lead to increased intracranial blood volume / raise of intracranial pressure. We hypothesized that these negative effects of ACZ will be reduced or prevented, if the drug is administered after already performed decompression. To test this hypothesis, we used a mouse model of closed head injury (CHI) and decompressive craniectomy (DC). Mice were assigned into following experimental groups: sham, DC, CHI, CHI+ACZ, CHI+DC, and CHI+DC+ACZ (n = 8 each group). 1d and 3d post injury, the neurological function was assessed according to Neurological Severity Score (NSS) and Beam Balance Score (BBS). At the same time points, brain edema was quantified by MRI investigations. Functional impairment and edema volume were compared between groups and over time. Among the animals without skull decompression, the group additionally treated with acetazolamide demonstrated the most severe functional impairment. This pattern was reversed among the mice with decompressive craniectomy: CHI+DC treated but not CHI+DC+ACZ treated animals showed a significant neurological deficit. Accordingly, radiological assessment revealed most severe edema formation in the CHI+DC group while in CHI+DC+ACZ animals, volume of brain edema did not differ from DC-only animals. In our CHI model, the response to acetazolamide treatment varies between animals with decompressive craniectomy and those without surgical treatment. Opening the cranial vault potentially creates an opportunity for acetazolamide to exert its beneficial effects while vasodilatation-related risks are attenuated. Therefore, we recommend further exploration of this potentially beneficial drug in translational research projects.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Institute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Institute of Interventional and Diagnostic Radiology, Karlsruhe Municipal Hospital, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
12
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
13
|
Yong YX, Li YM, Lian J, Luo CM, Zhong DX, Han K. Inhibitory role of lentivirus-mediated aquaporin-4 gene silencing in the formation of glial scar in a rat model of traumatic brain injury. J Cell Biochem 2018; 120:368-379. [PMID: 30246455 DOI: 10.1002/jcb.27390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI), an acute degenerative pathology of the central nervous system, is a leading cause of death and disability. As the glial scar is a mechanical barrier to nerve regeneration, inhibitory molecules in the forming scar and methods to overcome them have suggested molecular modification strategies to allow neuronal growth and functional regeneration. Herein, we aim to investigate the effects of aquaporin-4 (AQP4) gene silencing on the glial scar formation after TBI by establishing rat models. After modeling, TBI rats were transfected with AQP4 small hairpin RNA [shRNA] (AQP4 gene silencing by lentiviral vector-delivered shRNA) and empty vectors, respectively. Neurological functions of the rats were evaluated after TBI. The hematoxylin and eosin staining was conducted to observe histomorphological changes in rat brain tissues. The messenger RNA (mRNA) and protein expressions of glial fibrillary acidic protein (GFAP), vimentin, fibronectin, laminin, and AQP4 were measured by reverse transcription-quantitative polymerase chain reaction and Western blot analysis. The ratio of positive expression area was calculated, and the glial scar was observed by immunohistochemistry. At the 7th, 14th, and 28th days after TBI, TBI rats treated with AQP4 shRNA showed improved neurological function and lessened histomorphological changes. AQP4 gene silencing mediated by lentivirus decreased the mRNA and protein expressions of GFAP, vimentin, fibronectin, and laminin, the number of positive cells, the ratio of positive expression area, and the glial scar. Our study demonstrates that lentivirus-mediated AQP4 gene silencing could inhibit the formation of glial scar after TBI, which is beneficial to the recovery of neurological function.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yu-Ming Li
- Department of Neurosurgery, First Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Lian
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chuan-Ming Luo
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - De-Xia Zhong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ke Han
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
14
|
Chandrasekar A, Olde Heuvel F, Wepler M, Rehman R, Palmer A, Catanese A, Linkus B, Ludolph A, Boeckers T, Huber-Lang M, Radermacher P, Roselli F. The Neuroprotective Effect of Ethanol Intoxication in Traumatic Brain Injury Is Associated with the Suppression of ErbB Signaling in Parvalbumin-Positive Interneurons. J Neurotrauma 2018; 35:2718-2735. [PMID: 29774782 DOI: 10.1089/neu.2017.5270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ethanol intoxication (EI) is a frequent comorbidity of traumatic brain injury (TBI), but the impact of EI on TBI pathogenic cascades and prognosis is unclear. Although clinical evidence suggests that EI may have neuroprotective effects, experimental support is, to date, inconclusive. We aimed at elucidating the impact of EI on TBI-associated neurological deficits, signaling pathways, and pathogenic cascades in order to identify new modifiers of TBI pathophysiology. We have shown that ethanol administration (5 g/kg) before trauma enhances behavioral recovery in a weight-drop TBI model. Neuronal survival in the injured somatosensory cortex was also enhanced by EI. We have used phospho-receptor tyrosine kinase (RTK) arrays to screen the impact of ethanol on TBI-induced activation of RTK in somatosensory cortex, identifying ErbB2/ErbB3 among the RTKs activated by TBI and suppressed by ethanol. Phosphorylation of ErbB2/3/4 RTKs were upregulated in vGlut2+ excitatory synapses in the injured cortex, including excitatory synapses located on parvalbumin (PV)-positive interneurons. Administration of selective ErbB inhibitors was able to recapitulate, to a significant extent, the neuroprotective effects of ethanol both in sensorimotor performance and structural integrity. Further, suppression of PV interneurons in somatosensory cortex before TBI, by engineered receptors with orthogonal pharmacology, could mimic the beneficial effects of ErbB inhibitors. Thus, we have shown that EI interferes with TBI-induced pathogenic cascades at multiple levels, with one prominent pathway, involving ErbB-dependent modulation of PV interneurons.
Collapse
Affiliation(s)
| | | | - Martin Wepler
- 2 Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University , Ulm, Germany
| | - Rida Rehman
- 1 Department of Neurology, Ulm University , Ulm, Germany
| | - Annette Palmer
- 3 Institute of Clinical and Experimental Trauma-Immunology, Ulm University , Ulm, Germany
| | - Alberto Catanese
- 4 Department of Anatomy and Cell Biology, Ulm University , Ulm, Germany
| | - Birgit Linkus
- 1 Department of Neurology, Ulm University , Ulm, Germany
| | - Albert Ludolph
- 1 Department of Neurology, Ulm University , Ulm, Germany
| | - Tobias Boeckers
- 4 Department of Anatomy and Cell Biology, Ulm University , Ulm, Germany
| | - Markus Huber-Lang
- 3 Institute of Clinical and Experimental Trauma-Immunology, Ulm University , Ulm, Germany
| | - Peter Radermacher
- 2 Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University , Ulm, Germany
| | - Francesco Roselli
- 1 Department of Neurology, Ulm University , Ulm, Germany .,4 Department of Anatomy and Cell Biology, Ulm University , Ulm, Germany
| |
Collapse
|
15
|
Guo J, Mi X, Zhan R, Li M, Wei L, Sun J. Aquaporin 4 Silencing Aggravates Hydrocephalus Induced by Injection of Autologous Blood in Rats. Med Sci Monit 2018; 24:4204-4212. [PMID: 29921834 PMCID: PMC6042309 DOI: 10.12659/msm.906936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Aquaporin 4 (AQP4), the most abundant aquaporin in the brain, is a type of bidirectional water channel controlling the brain-water balance and plays a critical role in physiologic and pathologic water balance in the brain. AQP4 was reported to be elevated in hydrocephalus; therefore, we hypothesized that AQP4 contributes to hydrocephalus. In this study, the role of AQP4 in hydrocephalus was explored. MATERIAL AND METHODS The hydrocephalus rat model was established by injection of autologous blood. On Day 1 and Day 3 after injection of autologous blood, magnetic resonance imaging (MRI) and hematoxylin-eosin (HE) staining were performed to detect the changes in ventricles, and quantitative real-time PCR (qRT-PCR) and immunohistochemistry were carried out to detect the changes in AQP4 level. Thereafter, an AQP4-specific siRNA was used to downregulate AQP4. Then, on Day 3 after injection of autologous blood, the levels of AQP4 and connexin-43 were detected by qRT-PCR, immunohistochemistry, immunofluorescence, or Western blot analysis. MRI and HE staining were performed to detect the changes in ventricles, and Evans blue extravasation assay was used to assess blood-brain barrier integrity. RESULTS The hydrocephalus rat model was established successfully, and hydrocephalus rats showed a higher AQP4 level. Silencing AQP4 aggravated the hydrocephalus, with enlarged lateral ventricles and destruction of ependymal integrity and blood-brain barrier. CONCLUSIONS Our study demonstrates that silencing AQP4 aggravates hydrocephalus, indicating that AQP4 protects against hydrocephalus.
Collapse
Affiliation(s)
- Jian Guo
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Xinjiang Mi
- Second Department of Surgery, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Rucai Zhan
- Second Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Meng Li
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Wei
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jinlong Sun
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
16
|
Duan L, Di Q. Acetazolamide Suppresses Multi-Drug Resistance-Related Protein 1 and P-Glycoprotein Expression by Inhibiting Aquaporins Expression in a Mesial Temporal Epilepsy Rat Model. Med Sci Monit 2017; 23:5818-5825. [PMID: 29217817 PMCID: PMC5731216 DOI: 10.12659/msm.903855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Mesial temporal epilepsy (MTLE) is the most common type of focal epilepsy in adults, and is often drug-resistant. This study investigated the effects of aquaporins (AQP) inhibitor on multi-drug-resistant protein expression in an MTLE rat model. Material/Methods The MTLE rat model was established by injecting pilocarpine into rats. The MTLE rats were divided into an MTLE-6 h group, an MTLE-12 h group, and an MTLE-24 h group, together with a normal saline group (NS), to examine the AQP4 expression by using Western blot assay and immunohistochemistry assay. The other 18 MTLE model rats were used to observe the effects of the AQP4 inhibitor, acetazolamide, on the multi-drug-resistant protein 1 (MRP1) and P-glycoprotein (Pgp) by using Western blot and immunohistochemistry assays, respectively. Results AQP4 expression was enhanced in hippocampal tissues of MTLE model rats compared to NS rats (P<0.05). More positively stained AQP4 was discovered in hippocampal tissues of MTLE model rats. AQP4 inhibitor significantly decreased multi-drug-resistant protein MRP1 and Pgp expression in the AQP4 inhibitor Interfere group and the AQP4 inhibitor Therapy group compared to the TMLE model group (P<0.05). Conclusions The present findings confirm that the AQP4 inhibitor, acetazolamide, effectively inhibits the multi-drug-resistant protein, MRP1, and Pgp, in the MTLE rat model.
Collapse
Affiliation(s)
- Lei Duan
- Nanjing Brain Hospital Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qing Di
- Nanjing Brain Hospital Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
17
|
Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury. Sci Rep 2016; 6:33330. [PMID: 27623738 PMCID: PMC5022024 DOI: 10.1038/srep33330] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022] Open
Abstract
Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.
Collapse
|
18
|
Kumfu S, Charununtakorn ST, Jaiwongkam T, Chattipakorn N, Chattipakorn SC. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model. Exp Physiol 2016; 101:697-707. [DOI: 10.1113/ep085749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sirinart Kumfu
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Savitree T. Charununtakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
19
|
Brennan JH, Bernard S, Cameron PA, Olaussen A, Fitzgerald MC, Rosenfeld JV, Mitra B. Ethanol exposure and isolated traumatic brain injury. J Clin Neurosci 2015; 22:1928-32. [DOI: 10.1016/j.jocn.2015.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/09/2015] [Indexed: 11/26/2022]
|
20
|
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2015; 120:204-15. [PMID: 26294748 DOI: 10.1152/japplphysiol.00443.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Pharmacotherapy in acute mountain sickness (AMS) for the past half century has largely rested on the use of carbonic anhydrase (CA) inhibitors, such as acetazolamide, and corticosteroids, such as dexamethasone. The benefits of CA inhibitors are thought to arise from their known ventilatory stimulation and resultant greater arterial oxygenation from inhibition of renal CA and generation of a mild metabolic acidosis. The benefits of corticosteroids include their broad-based anti-inflammatory and anti-edemagenic effects. What has emerged from more recent work is the strong likelihood that drugs in both classes act on other pathways and signaling beyond their classical actions to prevent and treat AMS. For the CA inhibitors, these include reduction in aquaporin-mediated transmembrane water transport, anti-oxidant actions, vasodilation, and anti-inflammatory effects. In the case of corticosteroids, these include protection against increases in vascular endothelial and blood-brain barrier permeability, suppression of inflammatory cytokines and reactive oxygen species production, and sympatholysis. The loci of action of both classes of drug include the brain, but may also involve the lung as revealed by benefits that arise with selective administration to the lungs by inhalation. Greater understanding of their pluripotent actions and sites of action in AMS may help guide development of better drugs with more selective action and fewer side effects.
Collapse
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Health Care System, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
21
|
Brennan JH, Bernard S, Cameron PA, Rosenfeld JV, Mitra B. Ethanol and isolated traumatic brain injury. J Clin Neurosci 2015; 22:1375-81. [PMID: 26067542 DOI: 10.1016/j.jocn.2015.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/27/2022]
Abstract
The aim of this systematic review was to determine whether ethanol is neuroprotective or associated with adverse effects in the context of traumatic brain injury (TBI). Approximately 30-60% of TBI patients are intoxicated with ethanol at the time of injury. We performed a systematic review of the literature using a combination of keywords for ethanol and TBI. Manuscripts were included if the population studied was human subjects with isolated moderate to severe TBI, acute ethanol intoxication was studied as an exposure variable and mortality reported as an outcome. The included studies were assessed for heterogeneity. A meta-analysis was performed and the pooled odds ratio (OR) for the association between ethanol and in-hospital mortality reported. There were seven studies eligible for analysis. A statistically significant association favouring reduced mortality with ethanol intoxication was found (OR 0.78; 95% confidence interval 0.73-0.83). Heterogeneity among selected studies was not statistically significant (p=0.25). Following isolated moderate-severe TBI, ethanol intoxication was associated with reduced in-hospital mortality. The retrospective nature of the studies, varying definitions of brain injury, degree of intoxication and presence of potential confounders limits our confidence in this conclusion. Further research is recommended to explore the potential use of ethanol as a therapeutic strategy following TBI.
Collapse
Affiliation(s)
- James H Brennan
- Emergency & Trauma Centre, The Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia.
| | - Stephen Bernard
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia; Intensive Care Unit, The Alfred Hospital, Melbourne, VIC, Australia
| | - Peter A Cameron
- Emergency & Trauma Centre, The Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia; Emergency Medicine, Hamad Medical Corporation, Doha, Qatar; National Trauma Research Institute, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jeffrey V Rosenfeld
- National Trauma Research Institute, The Alfred Hospital, Melbourne, VIC, Australia; Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC, Australia; Department of Surgery, Monash University, Clayton, VIC, Australia; Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD, USA
| | - Biswadev Mitra
- Emergency & Trauma Centre, The Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia; National Trauma Research Institute, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Neuroinflammation and neurodegeneration in adult rat brain from binge ethanol exposure: abrogation by docosahexaenoic acid. PLoS One 2014; 9:e101223. [PMID: 25029343 PMCID: PMC4100731 DOI: 10.1371/journal.pone.0101223] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼9 g/kg/d, achieving blood ethanol levels ∼375 mg/dl; “Majchrowicz” model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model—hippocampus, entorhinal cortex, and olfactory bulb—but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain “oxidative stress footprints” (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼60 d) were ethanol-binged (100 mM or ∼450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models support involvement of AQP4- and PLA2-associated neuroinflammatory pro-oxidative pathways in the neurodamage, with potential regulation by PARP-1 as well. Furthermore, DHA emerges as an effective inhibitor of these binge ethanol-dependent neuroinflammatory pathways as well as associated neurodegeneration in adult-age brain.
Collapse
|
23
|
Wang G, Yuan Y, Zhang J, Gao L, Tan X, Yang G, Lv X, Jin Y. Roles of aquaporins and matrix metalloproteinases in mouse brain edema formation induced by subacute exposure to 1,2-dichloroethane. Neurotoxicol Teratol 2014; 44:105-12. [DOI: 10.1016/j.ntt.2014.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/06/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
|
24
|
Collins MA, Tajuddin N, Moon KH, Kim HY, Nixon K, Neafsey EJ. Alcohol, phospholipase A2-associated neuroinflammation, and ω3 docosahexaenoic acid protection. Mol Neurobiol 2014; 50:239-45. [PMID: 24705861 DOI: 10.1007/s12035-014-8690-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/24/2014] [Indexed: 01/03/2023]
Abstract
Chronic alcohol (ethanol) abuse causes neuroinflammation and brain damage that can give rise to alcoholic dementia. Insightfully, Dr. Albert Sun was an early proponent of oxidative stress as a key factor in alcoholism-related brain deterioration. In fact, oxidative stress has proven to be critical to the hippocampal and temporal cortical neurodamage resulting from repetitive "binge" alcohol exposure in adult rat models. Although the underlying mechanisms are uncertain, our immunoelectrophoretic and related assays in binge alcohol experiments in vivo (adult male rats) and in vitro (rat organotypic hippocampal-entorhinal cortical slice cultures) have implicated phospholipase A(2) (PLA(2))-activated neuroinflammatory pathways, release of pro-oxidative arachidonic acid (20:4 ω6), and elevated oxidative stress adducts (i.e., 4-hydroxynonenal-protein adducts). Also, significantly increased by the binge alcohol treatments was aquaporin-4 (AQP4), a water channel enriched in astrocytes that, when augmented, may trigger brain (esp. cellular) edema and neuroinflammation; of relevance, glial swelling is known to provoke increased PLA(2) activities or levels. Concomitant with PLA(2) activation, the results have further implicated binge alcohol-elevated poly (ADP-ribose) polymerase-1 (PARP-1), an oxidative stress-responsive DNA repair enzyme linked to parthanatos, a necrotic-like neuronal death process. Importantly, supplementation of the brain slice cultures with docosahexaenoic acid (22:6 ω3) exerted potent suppression of the induced changes in PLA(2) isoforms, AQP4, PARP-1 and oxidative stress footprints, and prevention of the binge alcohol neurotoxicity, by as yet unknown mechanisms. These neuroinflammatory findings from our binge alcohol studies and supportive rat binge studies in the literature are reviewed.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA,
| | | | | | | | | | | |
Collapse
|
25
|
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5:454-71. [PMID: 24493632 DOI: 10.1007/s12975-014-0327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/09/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA,
| | | | | | | | | | | |
Collapse
|
26
|
Adenosine and glutamate in neuroglial interaction: implications for circadian disorders and alcoholism. ADVANCES IN NEUROBIOLOGY 2014; 11:103-19. [PMID: 25236726 DOI: 10.1007/978-3-319-08894-5_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. In fact, astrocytes are essential for neuronal activity in the brain and play an important role in the regulation of complex behavior. Astrocytes actively participate in synapse formation and brain information processing by releasing and uptaking glutamate, D-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine-mediated neuronal activity modulates the actions of other neurotransmitter systems. Adenosinergic fine-tuning of the glutamate system in particular has been shown to regulate circadian rhythmicity and sleep, as well as alcohol-related behavior and drinking. Adenosine gates both photic (light-induced) glutamatergic and nonphotic (alerting) input to the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Astrocytic, SNARE-mediated ATP release provides the extracellular adenosine that drives homeostatic sleep. Acute ethanol increases extracellular adenosine, which mediates the ataxic and hypnotic/sedative effects of alcohol, while chronic ethanol leads to downregulated adenosine signaling that underlies insomnia, a major predictor of relapse. Studies using mice lacking the equilibrative nucleoside transporter 1 have illuminated how adenosine functions through neuroglial interactions involving glutamate uptake transporter GLT-1 [referred to as excitatory amino acid transporter 2 (EAAT2) in human] and possibly water channel aquaporin 4 to regulate ethanol sensitivity, reward-related motivational processes, and alcohol intake.
Collapse
|
27
|
Abstract
Carbonic anhydrase (CA) inhibitors, particularly acetazolamide, have been used at high altitude for decades to prevent or reduce acute mountain sickness (AMS), a syndrome of symptomatic intolerance to altitude characterized by headache, nausea, fatigue, anorexia and poor sleep. Principally CA inhibitors act to further augment ventilation over and above that stimulated by the hypoxia of high altitude by virtue of renal and endothelial cell CA inhibition which oppose the hypocapnic alkalosis resulting from the hypoxic ventilatory response (HVR), which acts to limit the full expression of the HVR. The result is even greater arterial oxygenation than that driven by hypoxia alone and greater altitude tolerance. The severity of several additional diseases of high attitude may also be reduced by acetazolamide, including high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE) and chronic mountain sickness (CMS), both by its CA-inhibiting action as described above, but also by more recently discovered non-CA inhibiting actions, that seem almost unique to this prototypical CA inhibitor and are of most relevance to HAPE. This chapter will relate the history of CA inhibitor use at high altitude, discuss what tissues and organs containing carbonic anhydrase play a role in adaptation and maladaptation to high altitude, explore the role of the enzyme and its inhibition at those sites for the prevention and/or treatment of the four major forms of illness at high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA, USA,
| |
Collapse
|
28
|
Alves JL. Blood–brain barrier and traumatic brain injury. J Neurosci Res 2013; 92:141-7. [DOI: 10.1002/jnr.23300] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/10/2013] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Affiliation(s)
- José Luís Alves
- Doctoral Programme in Health SciencesFaculdade de Medicina da Universidade de CoimbraCoimbra Portugal
| |
Collapse
|
29
|
Malhotra K, Ortega L. Central pontine myelinolysis with meticulous correction of hyponatraemia in chronic alcoholics. BMJ Case Rep 2013; 2013:bcr-2013-009970. [PMID: 23813514 DOI: 10.1136/bcr-2013-009970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Central pontine myelinolysis is a demyelinating disorder that arises due to osmolar disturbances in the cerebral microenvironment characterised by loss of the myelin sheath of neurons. The diffusion-weighting imaging sequence of MRI is the most sensitive diagnostic imaging modality for myelinolysis. The rapid correction of hyponatraemia by >20-25 mmol/L/48 h has been known for a long time as a prime cause of osmotic demyelination. Various other comorbidities in hyponatraemic patients are well known that can lead to osmotic demyelination such as alcoholism, hypoxaemia, severe liver disease, malignancy, burns, liver transplantation and malnutrition. Chronic alcohol abusers with additional liver disease and malnutrition have altered osmotic equilibrium at baseline that predisposes them to osmotic demyelination. We suggest a more cautious and meticulous approach should be followed in these patients to avoid the dreaded complication.
Collapse
Affiliation(s)
- Konark Malhotra
- Department of Neurology, Drexel University College of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
30
|
Lee MR, Ruby CL, Hinton DJ, Choi S, Adams CA, Young Kang N, Choi DS. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice. Neuropsychopharmacology 2013; 38:437-45. [PMID: 23032072 PMCID: PMC3547194 DOI: 10.1038/npp.2012.198] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.
Collapse
Affiliation(s)
- Moonnoh R Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Chelsea A Adams
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Na Young Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Tel: +1 507 284-5602, Fax: +1 507 266-0824, E-mail:
| |
Collapse
|
31
|
Brain water channel proteins in health and disease. Mol Aspects Med 2012; 33:562-78. [DOI: 10.1016/j.mam.2012.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023]
|