1
|
O'Neill DC, Sato EH, Thorne TJ, Mau M, Klonoski JM, Olsen AL, Haller JM. Porcine blast injury model achieves prolonged elevation of intra-compartmental pressures without exogenous pressure manipulation. J Orthop Surg Res 2024; 19:622. [PMID: 39367457 PMCID: PMC11451175 DOI: 10.1186/s13018-024-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Most existing animal models of acute compartment syndrome (ACS) rely on exogenous manipulation of intra-compartmental pressures to model ACS. The purpose of the current study was to evaluate the endogenous effect of a blast injury on porcine lower leg intra-compartmental pressures (ICP). METHODS The hindlimb of juvenile Landrace pigs was fractured at the diaphyseal tibia and subjected to blasts of compressed air to mimic a blast injury. Injured and control legs underwent pre-operative continuous ICP monitoring. At 4.5 h post injury, the fracture was stabilized followed by closure of the anterior compartment fascia (continued compartment pressure model, CCPM) or four compartment fasciotomy. Pressure measurements were made after operative fixation. Select pigs in CCPM were harvested between 48 and 72 h post-injury to evaluate the duration of ICP elevation. RESULTS Post-injury, the model created significantly elevated ICP compared to control limbs (54.5 ± 18.2 vs. 18.2 ± 4.9 mmHg; p < 0.001). Operative fixation and anterior compartment fascial closure further increased the ICP (Mean: 87.4 ± 42.5 mmHg) relative to the pre-operative state (p = 0.037). Fasciotomy returned baseline compartment pressures (Mean: 13.7 ± 10.2 mmHg) which were equivalent to control limbs (p = 0.117). Pressure measurements at the time of delayed harvest (48-72 h) demonstrated that elevated ICP persisted following injury (69.7 ± 55.12 mmHg). CONCLUSION The current study demonstrates that a pilot porcine blast model elevates ICP comparable to existing animal models of compartment syndrome without exogenous ICP manipulation. ICP remained elevated at 48-72 h in the absence of fasciotomy.
Collapse
Affiliation(s)
- Dillon C O'Neill
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA.
| | - Eleanor H Sato
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| | - Tyler J Thorne
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| | - Makoa Mau
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| | - Joshua M Klonoski
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Aaron L Olsen
- Animal Care and Use, Utah State University, Logan, UT, USA
| | - Justin M Haller
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Zhang J, Duan K, Wei J, Zhang W, Zhou H, Sang L, Sun Y, Gong X, Guan H, Yu M. Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model. Ultrasonography 2024; 43:345-353. [PMID: 39112093 PMCID: PMC11374589 DOI: 10.14366/usg.24067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS. METHODS An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury. RESULTS The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis. CONCLUSION In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kunlong Duan
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Junci Wei
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Huihui Zhou
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lin Sang
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuanyuan Sun
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xue Gong
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yu
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Dong Q, Long Y, Jin L, Hou G, Li G, Wang T, Jia H, Yin Y, Guo J, Ma H, Xu S, Zhang Y, Hou Z. Establishment and pathophysiological evaluation of a novel model of acute compartment syndrome in rats. BMC Musculoskelet Disord 2024; 25:70. [PMID: 38233913 PMCID: PMC10792863 DOI: 10.1186/s12891-024-07187-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Researches have used intra-compartmental infusion and ballon tourniquest to create high intra-compartmental pressure in animal models of Acute Compartment Syndrome (ACS). However, due to the large differences in the modeling methods and the evaluation criteria of ACS, further researches of its pathophysiology and pathogenesis are hindered. Currently, there is no ideal animal model for ACS and this study aimed to establish a reproducible, clinically relevant animal model. METHODS Blunt trauma and fracture were caused by the free falling of weights (0.5 kg, 1 kg, 2 kg) from a height of 40 cm onto the lower legs of rats, and the application of pressures of 100 mmHg, 200 mmHg, 300 mmHg and 400 mmHg to the lower limbs of rats using a modified pressurizing device for 6 h. The intra-compartmental pressure (ICP) and the pressure change (ΔP) of rats with single and combined injury were continuously recorded, and the pathophysiology of the rats was assessed based on serum biochemistry, histological and hemodynamic changes. RESULTS The ΔP caused by single injury method of different weights falling onto the lower leg did not meet the diagnosis criteria for ACS (< 30 mmHg). On the other hand, a combined injury method of a falling weight of 1.0 kg and the use of a pressurizing device with pressure of 300 mmHg or 400 mmHg for 6 h resulted in the desired ACS diagnosis criteria with a ΔP value of less than 30 mmHg. The serum analytes, histological damage score, and fibrosis level of the combined injury group were significantly increased compared with control group, while the blood flow was significantly decreased compared with control group. CONCLUSION We successfully established a new preclinical ACS-like rat model, by the compression of the lower leg of rats with 300 mmHg pressure for 6 h and blunt trauma by 1.0 kg weight falling.
Collapse
Affiliation(s)
- Qi Dong
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yubin Long
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedics Surgery, Baoding No.1 Central Hospital, Baoding, China
| | - Lin Jin
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Guoqiang Li
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Wang
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huiyang Jia
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingchao Yin
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junfei Guo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Ma
- Hebei Medical University, Shijiazhuang, China
| | - Sujuan Xu
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Hou
- Department of Orthopaedics Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
- Orthopaedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Abstract
OBJECTIVES Acute compartment syndrome is a devastating condition associated with lasting consequences or even death if not treated in a timely fashion. Current preclinical modeling is inadequate. Ideally a model should mimic human disease. There should be a trauma-induced reperfusion or direct muscle event that causes gradual increased pressure and is amenable to release with fasciotomy. We have attempted to reproduce this mechanism and outcome in a porcine model. METHODS Anterior tibial musculature was injured with vascular occlusion plus exterior tourniquet crush or direct intracompartmental crush through balloon inflation. The injury was maintained for over 5 hours. At that time, the tourniquet or balloon was removed. The injuries were continuously monitored with an intramuscular continuous pressure sensor. Pressure changes were recorded and after 2 hours of postinjury observation, a fasciotomy was performed for the muscle compartment. RESULTS Pressures were brought to 100 mm Hg during the injury phase. During the two-hour observation period, the balloon catheter technique achieved an average pressure of 25.1 ± SD 8.8 mm Hg with a maximum reading of 38.2 mm Hg and minimum reading of 14.1 mm Hg. During this same period, the ischemia-reperfusion + direct crush technique achieved an average pressure of 33.7 ± SD 7.3 mm Hg, with a maximum reading of 43.5 mm Hg and minimum reading of 23.5 mm Hg. Average pressure postfasciotomy for the balloon catheter technique was 2.4 ± SD 2.5 mm Hg; and for the crush technique, average value postfasciotomy was 4.9 ± SD 3.7 mm Hg-both representing a return to physiologic levels. CONCLUSION This is the first preclinical model that shows the same response to injury and treatment as is observed in human physiology. Surgical and nonsurgical therapies for compartment syndrome can now be tested reliably.
Collapse
|
5
|
Yıldırım A, Önal İÖ, Çelik ZE, Vatansev H, Hataysal EP. Early assessment of extremity compartment syndrome by biochemical markers in a rat model. Turk J Med Sci 2023; 53:1-9. [PMID: 36945953 PMCID: PMC10387976 DOI: 10.55730/1300-0144.5552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/10/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND This experimental study aimed to define a biochemical marker that will enable early diagnosis of acute compartment syndrome (ACS) of extremities, a mortal condition that occurs due to trauma. METHODS A total of 15 Wistar rats were included in the study in which saline infusion technique, a clinically compatible ACS model, was applied. After the rats were anesthetized with ketamine-xylazine, the in-compartment pressure of the hind limb was slowly increased with saline delivered through the angiocatheter, and after reaching the target compartment pressure, the pressure level was kept with a rubber tourniquet. The in-compartment pressure level was continuously monitored with a pressure transducer. The rats were divided into three groups. No intervention was applied to the control group (CG) (n = 3). In study group 1 (SG1) (n = 6), ACS was created using the saline infusion technique, keeping the in-compartment pressure between 30 and 40 mmHg for 45 min. In study group 2 (SG2) (n = 6), ACS was created using the saline infusion technique, keeping the in-compartment pressure between 30 and 40 mmHg for 90 min. Fasciotomy was performed on all rats. Tissue samples were obtained for histopathological examination and blood samples for biochemical analysis. RESULTS Total oxidant status (TOS) (p = 0.004), ischemia-modified albumin (IMA) (p = 0.030), aspartate transferase (AST) (p = 0.003) and neopterin (p = 0.012) levels differed significantly between groups in the early period of muscle ischemia. In fact, TOS levels differed significantly between the groups even in the cellular phase where signs of ischemia were not observed (p = 0.048, p = 0.024). According to histopathological evaluation, there was no significant difference between the groups. DISCUSSION TOS can be detected in the early reversible stage of ischemia, when the histopathological findings of ACS do not occur.
Collapse
Affiliation(s)
- Ahmet Yıldırım
- Department of Orthopedics and Traumatology, Medova Private Hospital, Konya, Turkey
| | - İbrahim Özkan Önal
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Zeliha Esin Çelik
- Department of Pathology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Hüsamettin Vatansev
- Department of Biochemistry, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Esra Paydaş Hataysal
- Department of Biochemistry, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, İstanbul, Turkey
| |
Collapse
|
6
|
Raymond-Pope CJ, Basten AM, Bruzina AS, McFaline-Figueroa J, Lillquist TJ, Call JA, Greising SM. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism. J Physiol 2023; 601:743-761. [PMID: 36536512 PMCID: PMC9931639 DOI: 10.1113/jp283959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of skeletal muscle, resulting in chronic functional deficits and pathological comorbidities, including altered whole-body metabolic rate and respiratory exchange ratio (RER), despite no change in physical activity in animal models. In other injury models, treatment with β2 receptor agonists (e.g. formoterol) improves metabolic and skeletal muscle function. We aimed first to examine if restricting physical activity following injury affects metabolic and skeletal muscle function, and second, to enhance the metabolic and contractile function of the muscle remaining following VML injury through treatment with formoterol. Adult male C57Bl/6J mice (n = 32) underwent VML injury to the posterior hindlimb compartment and were randomly assigned to unrestricted or restricted activity and formoterol treatment or no treatment; age-matched injury naïve mice (n = 4) were controls for biochemical analyses. Longitudinal 24 h evaluations of physical activity and whole-body metabolism were conducted following VML. In vivo muscle function was assessed terminally, and muscles were biochemically evaluated for protein expression, mitochondrial enzyme activity and untargeted metabolomics. Restricting activity chronically after VML had the greatest effect on physical activity and RER, reflected in reduced lipid oxidation, although changes were attenuated by formoterol treatment. Formoterol enhanced injured muscle mass, while mitigating functional deficits. These novel findings indicate physical activity restriction may recapitulate following VML clinically, and adjunctive oxidative treatment may create a metabolically beneficial intramuscular environment while enhancing the injured muscle's mass and force-producing capacity. Further investigation is needed to evaluate adjunctive oxidative treatment with rehabilitation, which may augment the muscle's regenerative and functional capacity following VML. KEY POINTS: The natural ability of skeletal muscle to regenerate and recover function is lost following complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), and physical inactivity following VML may incur additional deleterious consequences for muscle and metabolic health. Modelling VML injury-induced physical activity restriction altered whole-body metabolism, primarily by decreasing lipid oxidation, while preserving local skeletal muscle metabolic activity. The β2 adrenergic receptor agonist formoterol has shown promise in other severe injury models to improve regeneration, recover function and enhance metabolism. Treatment with formoterol enhanced mass of the injured muscle and whole-body metabolism while mitigating functional deficits resulting from injury. Understanding of chronic effects of the clinically available and FDA-approved pharmaceutical formoterol could be a translational option to support muscle function after VML injury.
Collapse
Affiliation(s)
| | - Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Angela S. Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| |
Collapse
|
7
|
Shen D, Sugiyama Y, Ishida K, Fuseya S, Ishida T, Kawamata M, Tanaka S. Subfascial infiltration of 0.5% ropivacaine, but not 0.25% ropivacaine, exacerbates damage and inflammation in surgically incised abdominal muscles of rats. Sci Rep 2022; 12:9409. [PMID: 35672375 PMCID: PMC9174254 DOI: 10.1038/s41598-022-13628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
Ropivacaine-induced myotoxicity in surgically incised muscles has not been fully investigated. We evaluated the effects of infiltration anesthesia with ropivacaine on damage, inflammation and regeneration in the incised muscles of rats undergoing laparotomy. Ropivacaine or saline was infiltrated below the muscle fascia over the incised muscles. Pain-related behaviors and histological muscle damage were assessed. Macrophage infiltration at days 2 and 5 and proliferation of satellite cells at day 5 were detected by CD68 and MyoD immunostaining, respectively. Pain-related behaviors were inhibited by 0.25% and 0.5% of ropivacaine for 2 h after surgery. Single infiltration of 0.5% ropivacaine did not induce injury in intact muscles without incision, but single and repeated infiltration of 0.5% ropivacaine significantly augmented laparotomy-induced muscle injury and increased the numbers of CD68-positve macrophages and MyoD-positive cells compared to those in rats with infiltration of saline or 0.25% ropivacaine. In contrast, there were no significant differences in them between rats with saline infusion and rats with 0.25% ropivacaine infiltration. In conclusion, single or repeated subfascial infiltration of 0.25% ropivacaine can be used without exacerbating the damage and inflammation in surgically incised muscles, but the use of 0.5% ropivacaine may be a concern because of potentially increased muscle damage.
Collapse
Affiliation(s)
- Dandan Shen
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Yuki Sugiyama
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Kumiko Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Satoshi Fuseya
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Takashi Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Mikito Kawamata
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Satoshi Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan.
| |
Collapse
|
8
|
O'Neill DC, Treu EA, McCutcheon C, Haller JM. Animal models in compartment syndrome: a review of existing literature. OTA Int 2022; 5:e163(1-8). [PMID: 35282390 PMCID: PMC8900462 DOI: 10.1097/oi9.0000000000000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Objective Extremity compartment syndrome (ECS) is a morbid condition resulting in permanent myoneural damage. Currently, the diagnosis of compartment syndrome relies on clinical symptoms and/or intracompartment pressure measurements, both of which are poor predictors of ECS. Animal models have been used to better define cellular mechanisms, diagnosis, and treatment of ECS. However, no standardized model exists. The purpose of this study was to identify existing animal research on extremity compartment syndrome to summarize the current state of the literature and to identify weaknesses that could be improved with additional research. Methods A MEDLINE database search and reverse inclusion protocol were utilized. We included all animal models of ECS. Results Forty-one studies were included. Dogs were the most commonly used model species, followed by pigs and rats. Most studies sought to better define the pathophysiology of compartment syndrome. Other studies evaluated experimental diagnostic modalities or potential treatments. The most common compartment syndrome model was intracompartment infusion, followed by tourniquet and intracompartment balloon models. Few models incorporated additional soft tissue or osseous injury. Only 65.9% of the reviewed studies confirmed that their model created myoneural injury similar to extremity compartment syndrome. Conclusions Study purpose, methodology, and outcome measures varied widely across included studies. A standardized definition for animal compartment syndrome would direct more consistent research in this field. Few animal models have investigated the pathophysiologic relationship between traumatic injury and the development of compartment syndrome. A validated, clinically relevant animal model of extremity compartment syndrome would spur improvement in diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Justin M Haller
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Dyer SE, Remer JD, Hannifin KE, Hombal A, Wenke JC, Walters TJ, Christ GJ. Administration of particulate oxygen generators improves skeletal muscle contractile function after ischemia-reperfusion injury in the rat hindlimb. J Appl Physiol (1985) 2022; 132:541-552. [PMID: 34989649 PMCID: PMC8836730 DOI: 10.1152/japplphysiol.00259.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Extended tourniquet application, often associated with battlefield extremity trauma, can lead to severe ischemia-reperfusion (I/R) injury in skeletal muscle. Particulate oxygen generators (POGs) can be directly injected into tissue to supply oxygen to attenuate the effects of I/R injury in muscle. The goal of this study was to investigate the efficacy of a sodium percarbonate (SPO)-based POG formulation in reducing ischemic damage in a rat hindlimb during tourniquet application. Male Lewis rats were anesthetized and underwent tourniquet application for 3 h at a pressure of 300 mmHg. Shortly after tourniquet inflation, animals received intramuscular injections of either 0.2 mg/mL SPO with catalase (n = 6) or 2.0 mg/mL SPO with catalase (n = 6) directly into the tibialis anterior (TA) muscle. An additional Tourniquet-Only group (n = 12) received no intervention. Functional recovery was monitored by in vivo contractile testing of the hindlimb at 1, 2, and 4 wk after injury. By the 4 wk time point, the Low-Dose POG group continued to show improved functional recovery (85% of baseline) compared with the Tourniquet-Only (48%) and High-Dose POG (56%) groups. In short, the low-dose POG formulation appeared, at least in part, to mitigate the impact of ischemic tissue injury, thus improving contractile function after tourniquet application. Functional improvement correlated with maintenance of larger muscle fiber cross-sectional area and the presence of fewer fibers containing centrally located nuclei. As such, POGs represent a potentially attractive therapeutic solution for addressing I/R injuries associated with extremity trauma.NEW & NOTEWORTHY Skeletal muscle contraction was evaluated in the same animals at multiple time points up to 4 wk after injury, following administration of particulate oxygen generators (POGs) in a clinically relevant rat hindlimb model of tourniquet-induced ischemia. The observed POG-mediated improvement of muscle function over time confirms and extends previous studies to further document the potential clinical applications of POGs. Of particular significance in austere environments, this technology can be applied in the absence of an intact circulation.
Collapse
Affiliation(s)
- Sarah E. Dyer
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - J. David Remer
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kelsey E. Hannifin
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Aishwarya Hombal
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Joseph C. Wenke
- 2US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | | | - George J. Christ
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia,3Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
10
|
Poteracki JM, Moschouris K, Yoseph BP, Zhou Y, Soker S, Criswell TL. Development of a Rat Model of Fasciotomy Treatment for Compartment Syndrome. Tissue Eng Part C Methods 2022; 28:51-60. [PMID: 35107365 PMCID: PMC9022182 DOI: 10.1089/ten.tec.2021.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle injuries are a major cause of disability for military and civilian populations. Compartment syndrome (CS) in skeletal muscle results from an edema-induced increase in intracompartmental pressure (ICP) after primary injury. Untreated ICP will occlude the tissue vasculature, tissue necrosis, and potential loss of limb. The current standard of care for CS is surgical fasciotomy, an incision through the muscle fascia to relieve ICP. Early fasciotomy will preserve the limb, but often leaves patients with long-term scarring and reduced muscle function. Our group previously developed and characterized a rat model of CS to explore the pathophysiology of CS and test new therapies. We present an expansion of this CS model, including the fasciotomy, to better simulate clinical treatment. CS was induced on the hind limb of adult male Lewis rats and fasciotomy was performed 24 h later. Less than 20% of the rats that underwent fasciotomy showed detectable force 4 days after injury, compared with the 75% of rats that underwent CS induction without fasciotomy. Muscles undergoing fasciotomy showed a significant increase in fibrosis and an increased number of macrophages, Pax7+ satellite cells, and α-smooth muscle actin+ myofibroblasts at 7 days postinjury. These data indicate that the use of fasciotomy in a rat model of CS resulted in injury sequelae that reflect the severity of human clinical disease presentation along with current standard of care. Impact Statement Current animal models of skeletal muscle injury struggle to accurately reflect the injury sequelae seen in humans, particularly in rats and mice. These animals also recover faster than humans do. More accurate recapitulation of the injury is needed to better study the injury progression, as well as screen for novel therapies. This research combines an existing model of compartment syndrome with its clinical standard of care (fasciotomy), creating a more accurate rat model of injury, and providing for a better treatment screening tool. These results show how our model leads to a sustained skeletal muscle deficit with increased inflammation.
Collapse
Affiliation(s)
- James M. Poteracki
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.,Address correspondence to: James M. Poteracki, MS, Wake Forest Institute of Regenerative Medicine, Wake Forest University, 391 Technology Way NE, Winston-Salem, NC 27101, USA
| | - Kathryn Moschouris
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Benyam P. Yoseph
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Yu Zhou
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Shay Soker
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Tracy L. Criswell
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
11
|
Whitely ME, Collins PB, Iwamoto M, Wenke JC. Administration of a selective retinoic acid receptor-γ agonist improves neuromuscular strength in a rodent model of volumetric muscle loss. J Exp Orthop 2021; 8:58. [PMID: 34383202 PMCID: PMC8360252 DOI: 10.1186/s40634-021-00378-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Volumetric muscle loss is a uniquely challenging pathology that results in irrecoverable functional deficits. Furthermore, a breakthrough drug or bioactive factor has yet to be established that adequately improves repair of these severe skeletal muscle injuries. This study sought to assess the ability of an orally administered selective retinoic acid receptor-γ agonist, palovarotene, to improve recovery of neuromuscular strength in a rat model of volumetric muscle loss. METHODS An irrecoverable, full thickness defect was created in the tibialis anterior muscle of Lewis rats and animals were survived for 4 weeks. Functional recovery of the tibialis anterior muscle was assessed in vivo via neural stimulation and determination of peak isometric torque. Histological staining was performed to qualitatively assess fibrous scarring of the defect site. RESULTS Treatment with the selective retinoic acid receptor-γ agonist, palovarotene, resulted in a 38% improvement of peak isometric torque in volumetric muscle loss affected limbs after 4 weeks of healing compared to untreated controls. Additionally, preliminary histological assessment suggests that oral administration of palovarotene reduced fibrous scarring at the defect site. CONCLUSIONS These results highlight the potential role of selective retinoic acid receptor-γ agonists in the design of regenerative medicine platforms to maximize skeletal muscle healing. Additional studies are needed to further elucidate cellular responses, optimize therapeutic delivery, and characterize synergistic potential with adjunct therapies.
Collapse
Affiliation(s)
- Michael E. Whitely
- Orthopaedic Trauma Department, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| | - Patrick B. Collins
- Orthopaedic Trauma Department, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201 USA
| | - Joseph C. Wenke
- Orthopaedic Trauma Department, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| |
Collapse
|
12
|
Sorensen JR, Hoffman DB, Corona BT, Greising SM. Secondary denervation is a chronic pathophysiologic sequela of volumetric muscle loss. J Appl Physiol (1985) 2021; 130:1614-1625. [PMID: 33830817 DOI: 10.1152/japplphysiol.00049.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of muscle tissue that results in long-term functional impairments. Despite the loss of myofibers, there remains an unexplained significant decline in muscle function. VML injury likely extends beyond the defect area, causing negative secondary outcomes to the neuromuscular system, including the neuromuscular junctions (NMJs), yet the extent to which VML induces denervation is unclear. This study systematically examined NMJs surrounding the VML injury, hypothesizing that the sequela of VML includes denervation. The VML injury removed ∼20% of the tibialis anterior (TA) muscle in adult male inbred Lewis rats (n = 43), the noninjured leg served as an intra-animal control. Muscles were harvested up to 48 days post-VML. Synaptic terminals were identified immunohistochemically, and quantitative confocal microscopy evaluated 2,613 individual NMJ. Significant denervation was apparent by 21 and 48 days post-VML. Initially, denervation increased ∼10% within 3 days of injury; with time, denervation further increased to ∼22% and 32% by 21 and 48 days post-VML, respectively, suggesting significant secondary denervation. The appearance of terminal axon sprouting and polyinnervation were observed as early as 7 days post-VML, increasing in number and complexity throughout 48 days. There was no evidence of VML-induced NMJ size alteration, which may be beneficial for interventions aimed at restoring muscle function. This work recognizes VML-induced secondary denervation and poor remodeling of the NMJ as part of the sequela of VML injury; moreover, secondary denervation is a possible contributing factor to the chronic functional impairments and potentially an overlooked treatment target.NEW & NOTEWORTHY This work advances our understanding of the pathophysiologic complexity of volumetric muscle loss injury. Specifically, we identified secondary denervation in the muscle remaining after volumetric muscle loss injuries as a novel aspect of the injury sequela. Denervation increased chronically, in parallel with the appearance of irregular morphological characteristics and destabilization of the neuromuscular junction, which is expected to further confound chronic functional impairments.
Collapse
Affiliation(s)
- Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Goldman SM, Feng JP, Corona BT. Volumetric muscle loss disrupts length-dependent architectural and functional characteristics of skeletal muscle. Connect Tissue Res 2021; 62:72-82. [PMID: 32660287 DOI: 10.1080/03008207.2020.1789608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Skeletal muscle architecture is a primary determinant of function. Volumetric muscle loss (VML) injury is destructive; however, the impact on muscle architecture is uncharacterized. Methods: Architectural and functional effects of VML were assessed in rat tibialis anterior (TA) muscle model 4 weeks post-injury. Results: VML caused a 31% and 33% reduction in muscle weight (p < 0.001) and fiber length (p = 0.002), respectively, culminating a 34% reduction of fiber to muscle length ratio (FL:ML; p < 0.001). Fiber pennation angle (+14%; p = 0.150) and physiological cross-sectional area (PCSA; -12%; p = 0.220) were unchanged. VML injury reduced peak isometric force (Po) by 36% (p < 0.001), specific force (sPo = Po/PCSA) by 41% (vs. Po, p > 0.999), and force per gram muscle weight (Po/mw) by 18% (vs. Po, p < 0.001). VML injury increased the length at which Po was produced (Lo) by 8% (p = 0.009), and reduced functional excursion by 35% (p = 0.035). Conclusion: The architectural changes after VML injury preserved PCSA, and therefore preserved "potential" maximal force-producing capacity. At most, only half the Po deficit was due directly to the cumulative effect of horizontal and longitudinal tissue loss. Highlighting the impact of longitudinal muscle loss, VML injury reduced fiber length, and FL:ML and grossly disrupted length-dependent functional properties. These findings raise the importance of augmenting length-dependent muscle properties to optimize functional recovery after VML injury.
Collapse
Affiliation(s)
- Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, TX, USA.,DoD-VA Extremity Trauma and Amputation Center of Excellence , Fort Sam Houston, TX, USA.,Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,Department of Surgery, Walter Reed National Military Medical Center , Bethesda, MD, USA
| | - Jonathan P Feng
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, TX, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, TX, USA
| |
Collapse
|
14
|
Yosef B, Zhou Y, Mouschouris K, Poteracki J, Soker S, Criswell T. N-Acetyl-L-Cysteine Reduces Fibrosis and Improves Muscle Function After Acute Compartment Syndrome Injury. Mil Med 2020; 185:25-34. [PMID: 32074330 DOI: 10.1093/milmed/usz232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Upon injury, skeletal muscle undergoes a multiphase process beginning with degeneration of the damaged tissue, which is accompanied by inflammation and finally regeneration. One consequence of an injured microenvironment is excessive production of reactive oxygen species, which results in attenuated regeneration and recovery of function ultimately leading to fibrosis and disability. The objective of this research was to test the potential of the antioxidant, N-Acetyl-L-Cysteine (NAC), as a mediator of reactive oxygen species damage that results from traumatic muscle injury in order to support repair and regeneration of wounded muscle tissue and improve function recovery. MATERIALS AND METHODS Adult female Lewis rats were subjected to compartment syndrome injury as previously published by our group. Rats received intramuscular injections of NAC or vehicle at 24, 48, and 72 hours postinjury. Muscle function, tissue fibrosis, and the expression of myogenic and angiogenic markers were measured. RESULTS Muscle function was significantly improved, and tissue fibrosis was significantly decreased in NAC-treated muscles. CONCLUSIONS These results suggest that NAC treatment of skeletal muscle after injury may be a viable option for the prevention of long-term fibrosis and scar formation, facilitating recovery of muscle function.
Collapse
Affiliation(s)
- Benyam Yosef
- Department of Cardiac Surgery, Brigham and Young Women's Hospital, 75 Francis St., Boston, MA 02115
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Kathryn Mouschouris
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - James Poteracki
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Tracy Criswell
- Department of Cardiac Surgery, Brigham and Young Women's Hospital, 75 Francis St., Boston, MA 02115.,Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| |
Collapse
|
15
|
Wang J, Zhu G, Wang X, Cai J, Xie L, Zheng W, Feng Y, Guo Q, Chen H, Cai L. An injectable liposome for sustained release of icariin to the treatment of acute blunt muscle injury. J Pharm Pharmacol 2020; 72:1152-1164. [PMID: 32567690 DOI: 10.1111/jphp.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/23/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Icariin, extracted from Epimedium, is a kind of flavonoid and possesses osteogenesis and antioxidant. This study aimed to evaluate the therapeutic effects of icariin liposome on acute blunt skeletal muscle injury in rats. METHODS Icariin liposome was prepared by the thin-film dispersion method. After muscle injury, the corresponding treatment measures were given every day for two weeks. Recovery and mechanism of muscle injury were evaluated by QRT-PCR, HE, immunohistochemistry, malondialdehyde, superoxide dismutase and serological tests. KEY FINDINGS The particle size, polydispersity index, zeta potential, encapsulation efficiency and drug loading of icariin liposomes were 171.37 ± 38.23 nm, 0.27 ± 0.01, -5.59 ± 1.36 mV, 78.15 ± 2.04% and 15.62%, respectively. The QRT-PCR showed that icariin liposome significantly promoted the expression of MHCIIB and vimentin. Through HE, immunohistochemistry, ELISA and serological tests, we found that icariin liposome effectively promoted desmin expression, reduced collagen I expression and inhibited the production of pro-inflammatory factors, including TNF-α and IL-6. Icariin liposome therapy significantly reduced the level of malondialdehyde and increased the activity of superoxide dismutase. CONCLUSIONS Icariin liposome has excellent therapeutic effects on acute blunt muscle injury in rats by improving immunity, repairing cytoskeleton and cellular integrity, anti-inflammation, anti-fibrosis and antioxidant stress.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Gaosheng Zhu
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Jie Cai
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Wenhao Zheng
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Yongzeng Feng
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Qiang Guo
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Hua Chen
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|
17
|
Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165740. [PMID: 32087280 DOI: 10.1016/j.bbadis.2020.165740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3β stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3β is inactivated during recovery of disuse-induced muscle atrophy. AIM Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN. METHODS Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/β knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored. RESULTS Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle. CONCLUSION This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.
Collapse
|
18
|
Greising SM, Corona BT, McGann C, Frankum JK, Warren GL. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:510-525. [PMID: 31578930 DOI: 10.1089/ten.teb.2019.0207] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our goal was to understand the impact of regenerative therapies on the functional capacity of skeletal muscle following volumetric muscle loss (VML) injury. An extensive database search (e.g., PubMed, Cochrane Library, and ClinicalTrials.gov) was conducted up through January 2019 to evaluate the following: "In humans or animals with VML injury, is treatment better than no treatment at recovering functional capacity?" Study eligibility criteria required studies to have both an untreated and at least one treated VML injury group. From 2312 study reports, 44 studies met the inclusion criteria. Quantitative functional capacity data (absolute and/or normalized strength) or proportional measures (histological analysis quantifying viable muscle tissue, mitochondrial function, and/or exhaustive treadmill running) were extracted for use. While both human and animal studies were included in the searches, only animal studies met the eligibility criteria. Using a random-effects model, Hedges' g was used as the effect size (ES) and calculated such that a positive ES indicated treatment efficacy. The overall ES was 0.75 (95% confidence interval: 0.53-0.96; p < 0.0000001), indicating that the treatments, on average, resulted in a significant improvement in functional capacity. From network meta-analyses, it was determined that an acellular biomaterial combined with stem and/or progenitor cells had the greatest treatment effectiveness. The findings indicate that various treatments in animal models of VML improve the functional capacity of muscle compared to leaving the injury untreated; however, the ∼16% beneficial effect is small. Our results suggest that current regenerative therapy paradigms require further maturation to achieve clinically meaningful improvements in the functional capacity of the muscle. Impact Statement Our most salient findings are that (1) various treatment approaches used in animal models of volumetric muscle loss (VML) injury improve functional capacity compared to leaving the injury untreated and (2) an acellular biomaterial in combination with cellular components was the most effective treatment to improve functional capacity following VML injury to date. The nature of our findings has substantial implications for regenerative medicine, biomedical engineering, and rehabilitative techniques currently being evaluated and developed for VML injury repair, and are pivotal to the progression of the regenerative medicine effort aimed at restoring maximal function to traumatized and disabled limbs.
Collapse
Affiliation(s)
- Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Christopher McGann
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Jeremy K Frankum
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| |
Collapse
|
19
|
Feng Y, He Z, Mao C, Shui X, Cai L. Therapeutic Effects of Resveratrol Liposome on Muscle Injury in Rats. Med Sci Monit 2019; 25:2377-2385. [PMID: 30936416 PMCID: PMC6457134 DOI: 10.12659/msm.913409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study we prepared liposome microbubbles loading resveratrol (LMLR) and evaluated its therapeutic effect on injury of gastrocnemius muscle in rats. MATERIAL AND METHODS LMLR was prepared and characterized by particle size, potential, and microscopy, and a rat model of acute blunt injury of gastrocnemius muscle was established. After treatments with resveratrol or LMLR, the therapeutic effects were evaluated by hematoxylin-eosin (HE) staining. The expression of MHCIIB and vimentin in mRNA level was measured by real-time PCR. The expression of desmin and collagen I protein was assessed by immunohistochemistry. RESULTS LMLR showed regular cycle shape in a size of ~1000 nm. LMLR was negatively charged (-30 mV). The in vitro release of LMLR was close to 80% at 10 h and 90% at 48 h. Acute gastrocnemius muscle injury was established in rats and tissue recovery was observed after LMLR treatment as evidenced by HE staining, decreased expression of MHCIIB, and increased expression of vimentin. Moreover, LMLR treatment obviously facilitated desmin expression and reduced collagen I expression. CONCLUSIONS LMLR is effective in treating acute blunt injury of gastrocnemius muscle in rats.
Collapse
Affiliation(s)
- Yongzeng Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Zili He
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Cong Mao
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Xiaolong Shui
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Leyi Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
20
|
Fresh whole blood resuscitation does not exacerbate skeletal muscle edema and long-term functional deficit after ischemic injury and hemorrhagic shock. J Trauma Acute Care Surg 2019; 84:786-794. [PMID: 29370063 DOI: 10.1097/ta.0000000000001806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hemorrhagic shock caused by extremity vascular injuries is common in combat injuries. Fluid resuscitation is the standard treatment for severe hemorrhage (HEM). Tourniquets (TKs) used for HEM control cause ischemia-reperfusion (I/R) injury that induces edema formation in the injured muscle. Resuscitation fluids affect edema formation; however, its effect on long-term functional response remains unknown. The objectives of this study are to (1) compare acute muscle damage; (2) determine long-term functional recovery of ischemic muscle; and (3) compare local and systemic inflammatory response including the expression of junctional proteins following early resuscitation with Hextend and fresh whole blood using a rodent model of combined HEM and TK-induced limb I/R. METHODS Anesthetized Sprague-Dawley rats underwent 42.5% arterial HEM, followed by 3 hours of TK application. Animals were either not resuscitated or resuscitated with Hextend or fresh whole blood. Two time points were evaluated, 2 and 28 days. Plasma cytokine concentrations were determined at baseline and end resuscitation. At 2 days, edema formation, expression of junctional proteins, and tissue level cytokines concentrations were evaluated. At 28 days, in vivo muscle contractile properties were determined. At both time points, routine histology was performed and graded using a semiquantitative grading system. RESULTS All animals developed hemorrhagic hypovolemia; the mortality rate was 100% in nonresuscitated rats. Hextend resuscitation exacerbated muscle edema (~11%) and muscle strength deficit (~20%). Fresh whole blood resuscitation presented edema and muscle strength akin to TK only. Fresh whole blood resuscitation upregulated expression of junctional proteins including proangiogenic factors and dampened the inflammatory response. CONCLUSION Fresh whole blood resuscitation does not exacerbate either TK-induced edema or muscle strength deficit. Fresh whole blood resuscitation may reduce both acute and long-term morbidity associated with extremity trauma. To our knowledge, this is the first study to demonstrate the nature of the resuscitation fluid administered following HEM impacts short- and long-term indices of I/R in skeletal muscle.
Collapse
|
21
|
McClure MJ, Cohen DJ, Ramey AN, Bivens CB, Mallu S, Isaacs JE, Imming E, Huang YC, Sunwoo M, Schwartz Z, Boyan BD. Decellularized Muscle Supports New Muscle Fibers and Improves Function Following Volumetric Injury. Tissue Eng Part A 2018; 24:1228-1241. [DOI: 10.1089/ten.tea.2017.0386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael J. McClure
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - David J. Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Allison N. Ramey
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Caroline B. Bivens
- Department of School of Art, Virginia Commonwealth University, Richmond, Virginia
| | - Satya Mallu
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan E. Isaacs
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Emily Imming
- MTF Biologics, Musculoskeletal Transplant Foundation, Edison, New Jersey
| | - Yen-Chen Huang
- MTF Biologics, Musculoskeletal Transplant Foundation, Edison, New Jersey
| | - MoonHae Sunwoo
- MTF Biologics, Musculoskeletal Transplant Foundation, Edison, New Jersey
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
22
|
Zhou Y, Lovell D, Bethea M, Yoseph B, Poteracki J, Soker S, Criswell T. * The Impact of Age on Skeletal Muscle Progenitor Cell Survival and Fate After Injury. Tissue Eng Part C Methods 2018; 23:1012-1021. [PMID: 29092672 DOI: 10.1089/ten.tec.2017.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sarcopenia is defined as the loss of skeletal muscle mass and function due to age, and represents a major cause of disability in the elderly population. The contributing factors to the onset of sarcopenia are not well defined, but appear to involve age-dependent changes in both the tissue microenvironment and muscle progenitor cell (MPC) population. MPC transplantation has the potential to be a novel therapy for treatment of muscle dysfunction due to aging or injury, but has not shown significant clinical efficacy to date. The goal of this research was to use a rat model of skeletal muscle injury to examine the differential effects of age on MPC survival, differentiation, and tissue regeneration after transplantation. Fluorescently labeled MPCs, derived from young (YMPCs) and adult (AMPCs) donor rats, were transplanted in the injured tibialis anterior (TA) muscles of young, adult, and aged rats. Our results demonstrated that integration and maturation of YMPCs into mature myofibers were dependent on the age of the host microenvironment; whereas, the integration and maturation of AMPCs were less dependent on age and more dependent on intrinsic cellular changes. These data suggest that the age of both the host microenvironment and cells for transplantation must be considered when designing cell therapy regimens.
Collapse
Affiliation(s)
- Yu Zhou
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Daniel Lovell
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Maigen Bethea
- 2 Cell Molecular & Developmental Biology, University of Alabama , Birmingham, Alabama
| | - Benyam Yoseph
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - James Poteracki
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Tracy Criswell
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
23
|
Goldman SM, Henderson BEP, Walters TJ, Corona BT. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. PLoS One 2018; 13:e0191245. [PMID: 29329332 PMCID: PMC5766229 DOI: 10.1371/journal.pone.0191245] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML). A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN) as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect) within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1) functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2) The capacity for VML therapies to augment regeneration and repair within the remaining musculature may have significant clinical impact and warrants further exploration.
Collapse
Affiliation(s)
- Stephen M. Goldman
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Beth E. P. Henderson
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Thomas J. Walters
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Benjamin T. Corona
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| |
Collapse
|
24
|
Corona BT, Rivera JC, Greising SM. Inflammatory and Physiological Consequences of Debridement of Fibrous Tissue after Volumetric Muscle Loss Injury. Clin Transl Sci 2017; 11:208-217. [PMID: 29193769 PMCID: PMC5867018 DOI: 10.1111/cts.12519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023] Open
Abstract
Volumetric muscle loss (VML) injuries present chronic loss of muscle fibers followed by expansive fibrotic tissue deposition. Regenerative medicine therapies are under development to promote regeneration. However, mitigation of the expansive fibrous tissue is required for integration with the remaining muscle. Using a porcine VML model, delayed debridement of injury fibrosis was performed 3 months post‐VML and observed for an additional 4 weeks. A second group underwent the initial VML and was observed for 4 weeks, allowing comparison of initial fibrosis formation and debrided groups. The following salient observations were made: (i) debridement neither exacerbated nor ameliorated strength deficits; (ii) debridement results in recurrent fibrotic tissue deposition of a similar magnitude and composition as acute VML injury; and (iii) similarly upregulated transcriptional fibrotic and transcriptional pathways persist 4 weeks after initial VML or delayed debridement. This highlights the need for future studies to investigate adjunctive antifibrotic treatments for the fibrosed musculature.
Collapse
Affiliation(s)
- Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Jessica C Rivera
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
25
|
Martinez AP, Moser TP, Saran N, Paquet M, Hemmerling T, Berry GK. Phonomyography as a non-invasive continuous monitoring technique for muscle ischemia in an experimental model of acute compartment syndrome. Injury 2017; 48:2411-2416. [PMID: 28867642 DOI: 10.1016/j.injury.2017.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/22/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND In acute compartment syndrome (ACS), clinicians have difficulty diagnosing muscle ischemia provoked by increased intra-compartmental pressure in a timely and non-invasive manner. Phonomyography records the acoustic signal produced by muscle contraction. We hypothesize that alterations in muscle contraction caused by muscle ischemia can be detected with phonomyography, serving as a potential non-invasive technique in the detection of ACS. METHODS The left hind limb of 15 Sprague-Dawley rats was submitted to a reversible ischemic model of limb injury for 30min and 1, 2, 4, 6h (3 rats in each group). The right limb served as control. Phonomyography microphones were placed over the posterior calf of both limbs and the sciatic nerve was stimulated percutaneously at 10-min intervals to evaluate muscle contraction. Histopathological analysis of muscles and nerves biopsies was performed and correlation was made between duration of injury, phonomyography output and degree of muscle and nerve necrosis. RESULTS There was a statistically significant decrease in the phonomyography signal output in the ischemic limb that correlated with the duration of ischemia and histological findings of muscle and nerve necrosis. The phonomyography signal decrease and histological findings were respectively: 55.5% (n=15;p=0.005) with rare muscle and nerve necrosis at 30min, 65.6% (n=12;p=0.005) with 5-10% muscle necrosis at 1h, 68.4% (n=9;p=0.015) with 100% muscle necrosis and little nerve damage at 2h, 72.4% (n=6;p=0.028) with 100% muscle necrosis and severe nerve damage at 4h, and 92.8% (n=3;p=0.109) with 100% muscle necrosis and severe nerve degeneration at 6h. CONCLUSION Changes in phonomyography signal are observed in early ischemic injury prior to the onset of nerve or muscle necrosis. Therefore, phonomyography could serve as a non-invasive technique to detect early ischemic muscle changes in acute compartment syndrome. CLINICAL RELEVANCE The detection of abnormal muscle contraction in a timely fashion and non-invasive manner is of interest in clinical settings where the presence of ischemia is not easy to diagnose.
Collapse
Affiliation(s)
| | - Thomas P Moser
- Department of Radiology, Université de Montréal, Montreal, Canada.
| | - Neil Saran
- Department of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Quebec, Canada.
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada.
| | | | - Greg K Berry
- Department of Orthopaedic Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
26
|
2016 TERMIS - Americas Conference and Exhibition San Diego, CA December 11-14, 2016. Tissue Eng Part A 2016; 22:S1-S156. [PMID: 27935743 DOI: 10.1089/ten.tea.2016.5000.abstracts] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Zhou Y, Sharma N, Dukes D, Myzithras MB, Gupta P, Khalil A, Kahn J, Ahlberg JS, Hayes DB, Franti M, Criswell T. GDF11 Treatment Attenuates the Recovery of Skeletal Muscle Function After Injury in Older Rats. AAPS JOURNAL 2016; 19:431-437. [PMID: 27924614 DOI: 10.1208/s12248-016-0024-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
Abstract
Loss of skeletal muscle mass and function results in loss of mobility for elderly patients. Novel therapies that can protect and/or restore muscle function during aging would have profound effects on the quality of life for this population. Growth differentiation factor 11 (GDF11) has been proposed as a "youthful" circulating factor that can restore cardiac, neural, and skeletal muscle functions in aging animals. However, conflicting data has been recently published that casts doubt on these assertions. We used a complex rat model of skeletal muscle injury that physiologically mimics injuries seen in patients; to investigate the ability of GDF11 and to enhance skeletal muscle regeneration after injury in older rats. Our data showed that GDF11 treatment resulted in a significant increase in tissue fibrosis, accompanied by attenuated functional recovery, as compared to animals treated with vehicle alone. GDF11 impaired the recovery of skeletal muscle function in older rats after injury.
Collapse
Affiliation(s)
- Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - Neel Sharma
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - David Dukes
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | | | - Priyanka Gupta
- Boehringer-Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Ashraf Khalil
- Boehringer-Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Julius Kahn
- Boehringer-Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | | | - David B Hayes
- Boehringer-Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Michael Franti
- Boehringer-Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
28
|
Corona BT, Wenke JC, Ward CL. Pathophysiology of Volumetric Muscle Loss Injury. Cells Tissues Organs 2016; 202:180-188. [PMID: 27825160 DOI: 10.1159/000443925] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Volumetric muscle loss (VML) injuries are prevalent in civilian and military trauma patients and are known to impart chronic functional deficits. The frank loss of muscle tissue that defines VML injuries is beyond the robust reparative and regenerative capacities of mammalian skeletal muscle. Given the nature of VML injuries, there is a clear need to develop therapies that promote de novo regeneration of skeletal muscle fibers, which can integrate with the remaining musculature and restore muscle strength. However, the pathophysiology of VML injuries is not completely defined, and, therefore, there may be other opportunities to improve functional outcomes other than de novo regeneration. Herein, clinical and preclinical studies of VML were reviewed to ascertain salient manifestations of VML injury that can impair limb function and muscle strength. The limited clinical data available highlighted proliferative fibrosis secondary to VML injury as a viable target to improve limb range of motion. Selected preclinical studies that used standardized neuromuscular functional assessments broadly identified that the muscle mass remaining after VML injury is performing suboptimally, and, therefore, percent VML strength deficits are significantly worse than can be explained by the initial frank loss of contractile machinery. Potential mechanisms of suboptimal strength of the remaining muscle mass suggested within the literature include intramuscular nerve damage, muscle architectural perturbations, and diminished transmission of force. Collectively, both clinical and preclinical data indicate a complex pathophysiology after VML that presents multiple therapeutic targets. This is a work of the US Government and is not subject to copyright protection in the USA. Foreign copyrights may apply. Published by S. Karger AG, Basel.
Collapse
|
29
|
Corona BT, Greising SM. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration. Biomaterials 2016; 104:238-46. [DOI: 10.1016/j.biomaterials.2016.07.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 02/08/2023]
|
30
|
Managing missed lower extremity compartment syndrome in the physiologically stable patient. J Trauma Acute Care Surg 2016; 81:380-7. [DOI: 10.1097/ta.0000000000001107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Fresh frozen plasma reduces edema in skeletal muscle following combined limb ischemia-reperfusion injury and hemorrhagic shock in rats. J Trauma Acute Care Surg 2016; 79:S110-5. [PMID: 26406422 DOI: 10.1097/ta.0000000000000752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Exsanguination from extremity vascular injuries is the most common potentially survivable injury on the battlefield. Advances in treatment have dramatically improved survival, increasing the need to address associated morbidities including ischemia-reperfusion injury and extremity compartment syndrome. Despite advances, hemorrhagic shock (HS) requiring fluid resuscitation is common. Plasma-based resuscitation for the treatment of HS has been shown to reduce edema and injury in tissues other than muscle. The objective of this study was to determine if fresh frozen plasma (FFP) resuscitation offered protection in a rat model of combined HS and skeletal muscle ischemia-reperfusion injury. METHODS Anesthetized Sprague-Dawley rats underwent 37.5% arterial hemorrhage, producing HS, followed by 3 hours of tourniquet application. Animals were not resuscitated or resuscitated with either FFP (equal to the shed blood volume) or lactated Ringer's solution (three times shed volume) after 30 minutes of ischemia. They were euthanized 24 hours later, and their muscles were analyzed for edema (wet weight-dry weight). Routine histology was performed on muscle cross-sections stained with hematoxylin and eosin and graded using a semiquantitative grading system. RESULTS All animals developed HS; the mortality rate was 50% in no resuscitation rats. FFP reduced edema by 13% (p = 0.02) compared with lactated Ringer's solution. Pathology scores were not different between treatment groups. CONCLUSION FFP resuscitation reduces edema following muscle injury, decreasing the risk of developing extremity compartment syndrome.
Collapse
|
32
|
Walters TJ, Garg K, Corona BT. Activity attenuates skeletal muscle fiber damage after ischemia and reperfusion. Muscle Nerve 2015; 52:640-8. [PMID: 25641705 DOI: 10.1002/mus.24581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In this investigation we aimed to determine whether: (1) physical activity protects rat skeletal muscle from ischemia/reperfusion (I/R) injury; and (2) continued activity after I/R improves the rate of healing. METHODS Rats were divided into sedentary or active (voluntary wheel running) groups. Active rats ran for 4 weeks before I/R or 4 weeks before plus 4 weeks after I/R. RESULTS Activity before I/R resulted in 73.2% less muscle damage (Evans blue dye inclusion). Sedentary and active rats had a similar decline in neural-evoked (∼ 99%) and directly stimulated (∼ 70%) in vivo muscle torque, and a similar reduction in junctophilin 1. Active rats produced 19% and 15% greater neural-evoked torque compared with sedentary rats at 14 and 28 days postinjury, respectively, although the rate of recovery appeared similar. CONCLUSIONS Activity protects against long-term muscle damage, but not short-term neural injury or excitation-contraction uncoupling. Continued activity neither accelerates nor hinders the rate of functional recovery.
Collapse
Affiliation(s)
- Thomas J Walters
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| |
Collapse
|
33
|
Zhu H, Hou J, Roe JL, Park KH, Tan T, Zheng Y, Li L, Zhang C, Liu J, Liu Z, Ma J, Walters TJ. Amelioration of ischemia-reperfusion-induced muscle injury by the recombinant human MG53 protein. Muscle Nerve 2015; 52:852-8. [PMID: 25703692 DOI: 10.1002/mus.24619] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ischemia-reperfusion injury (I-R) in skeletal muscle requires timely treatment. METHODS Rodent models of I-R injury were used to test the efficacy of recombinant human MG53 (rhMG53) protein for protecting skeletal muscle. RESULTS In a mouse I-R injury model, we found that mg53,-/- mice are more susceptible to I-R injury. rhMG53 applied intravenously to the wild-type mice protected I-R injured muscle, as demonstrated by reduced CK release and Evans blue staining. Histochemical studies confirmed beneficial effects of rhMG53. Of interest, rhMG53 did not protect against I-R injury in rat skeletal muscle. This was likely due to the fact that the plasma level of endogenous MG53 protein is high in rats. CONCLUSIONS Our data suggest that rhMG53 may be a potential therapy for protection against muscle trauma. A mouse model appears to be a better choice than a rat model for evaluating potential treatments for protecting skeletal muscle.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jincai Hou
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, P.R. China
| | - Janet L Roe
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas, 78234, USA
| | - Ki Ho Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Tao Tan
- Division of Protein Therapeutics, TRIM-edicine, Inc., Columbus, Ohio, USA
| | - Yongqiu Zheng
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, P.R. China
| | - Lei Li
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, P.R. China
| | - Cuixiang Zhang
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, P.R. China
| | - Jianxun Liu
- The Laboratory Research Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, P.R. China
| | - Zhenguo Liu
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Division of Protein Therapeutics, TRIM-edicine, Inc., Columbus, Ohio, USA
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas, 78234, USA
| |
Collapse
|
34
|
Oyster N, Witt M, Gharaibeh B, Poddar M, Schneppendahl J, Huard J. Characterization of a compartment syndrome-like injury model. Muscle Nerve 2015; 51:750-8. [PMID: 25242666 DOI: 10.1002/mus.24461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/23/2014] [Accepted: 09/17/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Acute compartment syndrome (CS) is caused by an elevation of pressure within a muscular compartment that can be caused by numerous factors, including blunt trauma. In this study, we characterized a rodent model of CS-like injury. METHODS Forty male athymic rats received a standardized injury of ischemia and compression to their hindlimbs, while the intracompartmental pressure (ICP) was measured using an implantable transmitter. Tetanic muscle function was evaluated, and histology was performed on the tibialis anterior (TA) muscle. RESULTS ICPs were held at 260.70 ± 2.70 mm Hg during injury. Injured muscles recovered 59% of their total function 4 weeks after injury, and histology showed high levels of edema, inflammation (CD68(+) ), angiogenesis (CD31(+) ), and fibrosis within 72 hours after injury. CONCLUSIONS We describe a novel CS-like injury model and a novel method to measure ICP, which could potentially be used to develop innovative therapies to manage CS injury in patients.
Collapse
Affiliation(s)
- Nick Oyster
- Stem Cell Research Center, University of Pittsburgh, Suite 206, Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219, USA
| | | | | | | | | | | |
Collapse
|
35
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
36
|
Corona BT, Garg K, Roe JL, Zhu H, Park KH, Ma J, Walters TJ. Effect of recombinant human MG53 protein on tourniquet-induced ischemia-reperfusion injury in rat muscle. Muscle Nerve 2014; 49:919-21. [PMID: 24395153 DOI: 10.1002/mus.24160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Skeletal muscle ischemia-reperfusion injury (I-R) is a complex injury process that includes damage to the sarcolemmal membrane, contributing to necrosis and apoptosis. MG53, a muscle-specific TRIM family protein, has been shown to be essential for regulating membrane repair and has been shown to be protective against cardiac I-R and various forms of skeletal muscle injury. The purpose of this study was to determine if recombinant human MG53 (rhMG53) administration offered protection against I-R. METHODS rhMG53 was administered to rats immediately before tourniquet-induced ischemia and again immediately before reperfusion. Two days later muscle damage was assessed histologically. RESULTS rhMG53 offered no protective effect, as evidenced primarily by similar Evans blue dye inclusion in the muscles of rats administered rhMG53 or saline. CONCLUSIONS Administration of rhMG53 does not offer protection against I-R in rat skeletal muscle. Additional studies are required to determine if the lack of a response is species-specific.
Collapse
Affiliation(s)
- Benjamin T Corona
- United States Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234
| | | | | | | | | | | | | |
Collapse
|
37
|
Age-dependent changes cooperatively impact skeletal muscle regeneration after compartment syndrome injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2225-36. [PMID: 24909508 DOI: 10.1016/j.ajpath.2014.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
Declining skeletal muscle function, due to injury and aging (sarcopenia), results in a significantly decreased quality of life and is a major cause of disability in the United States. Studies examining recovery from muscle injury in models of older animals principally used insults that primarily affect only the myofibers without affecting the muscle tissue microenvironment. This type of injury does not adequately represent the full extent of tissue damage observed in older humans, which encompasses injury not only to the muscle fibers, but also to the surrounding tissue components, such as the vasculature and nerves. Previously, we described a novel rat model of compression-induced muscle injury that results in multicomponent injury to the muscle and adequately mimics compartment syndrome injuries seen in patients. Herein, we characterized tissue regeneration in young, adult, and aged rats after compartment syndrome injury. We observed significant differences between the regeneration process in the different aged rats that involved muscle function, tissue anatomical features, neovascularization, and innervation. Compared to young rats, adult rats had delayed functional recovery, whereas the aged rats were deficient in their regenerative capacity. Age-dependent changes in both the ability to restore the contractile apparatus and myogenesis are important, and must be taken into consideration when designing therapies for the treatment of muscle injury.
Collapse
|
38
|
Corona BT, Rathbone CR. Accelerated functional recovery after skeletal muscle ischemia-reperfusion injury using freshly isolated bone marrow cells. J Surg Res 2014; 188:100-9. [PMID: 24485153 DOI: 10.1016/j.jss.2013.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Relatively little information exists regarding the usefulness of bone marrow-derived cells for skeletal muscle ischemia-reperfusion injury (I/R), especially when compared with I/R that occurs in other tissues. The objectives of this study were to evaluate the ability of freshly isolated bone marrow cells to home to injured skeletal muscle and to determine their effects on muscle regeneration. MATERIALS AND METHODS Freshly isolated lineage-depleted bone marrow cells (Lin(-) BMCs) were injected intravenously 2 d after I/R. Bioluminescent imaging was used to evaluate cell localization for up to 28 d after injury. Muscle function, the percentage of fibers with centrally located nuclei, and the capillary-to-fiber ratio were evaluated 14 d after delivery of either saline (Saline) or saline containing Lin(-) BMCs (Lin(-) BMCs). RESULTS Bioluminescence was higher in the injured leg than the contralateral control leg for up to 7 d after injection (P < 0.05) suggestive of cell homing to the injured skeletal muscle. Fourteen days after injury, there was a significant improvement in maximal tetanic torque (40% versus 22% deficit; P < 0.05), a faster rate of force production (+dP/dt) (123.6 versus 94.5 Nmm/S; P < 0.05), and a reduction in the percentage of fibers containing centrally located nuclei (40 versus 17%; P < 0.05), but no change in the capillary-to-fiber ratio in the Lin(-) BMC as compared with the Saline group. CONCLUSIONS The homing of freshly isolated BMCs to injured skeletal muscle after I/R is associated with an increase in functional outcomes.
Collapse
Affiliation(s)
- Benjamin T Corona
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Christopher R Rathbone
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, Texas.
| |
Collapse
|
39
|
Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 2013; 20:705-15. [PMID: 24066899 DOI: 10.1089/ten.tea.2012.0761] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frank loss of a large volume of skeletal muscle (i.e., volumetric muscle loss [VML]) can lead to functional debilitation and presents a significant problem to civilian and military medicine. Current clinical treatment for VML involves the use of free muscle flaps and physical rehabilitation; however, neither are effective in promoting regeneration of skeletal muscle to replace the tissue that was lost. Toward this end, skeletal muscle tissue engineering therapies have recently shown great promise in offering an unprecedented treatment option for VML. In the current study, we further extend our recent progress (Machingal et al., 2011, Tissue Eng; Corona et al., 2012, Tissue Eng) in the development of tissue engineered muscle repair (TEMR) constructs (i.e., muscle-derived cells [MDCs] seeded on a bladder acellular matrix (BAM) preconditioned with uniaxial mechanical strain) for the treatment of VML. TEMR constructs were implanted into a VML defect in a tibialis anterior (TA) muscle of Lewis rats and observed up to 12 weeks postinjury. The salient findings of the study were (1) TEMR constructs exhibited a highly variable capacity to restore in vivo function of injured TA muscles, wherein TEMR-positive responders (n=6) promoted an ≈61% improvement, but negative responders (n=7) resulted in no improvement compared to nonrepaired controls, (2) TEMR-positive and -negative responders exhibited differential immune responses that may underlie these variant responses, (3) BAM scaffolds (n=7) without cells promoted an ≈26% functional improvement compared to uninjured muscles, (4) TEMR-positive responders promoted muscle fiber regeneration within the initial defect area, while BAM scaffolds did so only sparingly. These findings indicate that TEMR constructs can improve the in vivo functional capacity of the injured musculature at least, in part, by promoting generation of functional skeletal muscle fibers. In short, the degree of functional recovery observed following TEMR implantation (BAM+MDCs) was 2.3×-fold greater than that observed following implantation of BAM alone. As such, this finding further underscores the potential benefits of including a cellular component in the tissue engineering strategy for VML injury.
Collapse
Affiliation(s)
- Benjamin T Corona
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center , Winston Salem, North Carolina
| | | | | | | | | |
Collapse
|
40
|
Intramuscular transplantation and survival of freshly isolated bone marrow cells following skeletal muscle ischemia-reperfusion injury. J Trauma Acute Care Surg 2013; 75:S142-9. [PMID: 23883899 DOI: 10.1097/ta.0b013e31829ac1fa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Delayed treatment cellular therapies offer an attractive means to treat extremity injuries involving acute skeletal muscle ischemia-reperfusion injury (I/R). Bone marrow is a rich source of stem and progenitor cells with the potential to improve skeletal muscle regeneration. The extent to which bone marrow cells (BMCs) may be useful for I/R is not known. The purposes of this study were twofold: (1) to evaluate BMC survival following intramuscular injection 0, 2, 7, and 14 days after injury and (2) to determine whether BMCs improve functional recovery following I/R. METHODS Magnetic-activated cell sorting was used to isolate lineage-negative (Lin⁻) BMCs and enrich for stem and progenitor cells. To evaluate in vivo cell survival following I/R, Lin⁻ BMCs were injected intramuscularly 0, 2, 7, and 14 days after I/R, and bioluminescent imaging was performed for up to 28 days after cell injections. To assess their ability to improve muscle regeneration, intramuscular injections were performed 2 days after injury, and in vivo muscle function was assessed 14 days later. RESULTS Lin⁻ BMCs survived throughout the study period regardless of the timing of delivery. Intramuscular injection of Lin⁻ BMCs did not improve maximal isometric torque (300 Hz); however, both saline-injected and Lin⁻ BMC-injected muscles exhibited an increase in the twitch-tetanus ratio, suggesting that damage incurred with the intramuscular injections may have had deleterious consequences for functional recovery. CONCLUSION Although BMCs injected intramuscularly survived cell transplantation, they failed to improve muscle function following I/R. The ability of BMCs to persist in injured muscle following I/R lends to the possibility that with further development, their full potential can be realized.
Collapse
|
41
|
Corona BT, Garg K, Ward CL, McDaniel JS, Walters TJ, Rathbone CR. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am J Physiol Cell Physiol 2013; 305:C761-75. [DOI: 10.1152/ajpcell.00189.2013] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volumetric muscle loss (VML) results in a large void deficient in the requisite materials for regeneration for which there is no definitive clinical standard of care. Autologous minced muscle grafts (MG), which contain the essential components for muscle regeneration, may embody an ideal tissue engineering therapy for VML. The purpose of this study was to determine if orthotopic transplantation of MG acutely after VML in the tibialis anterior muscle of male Lewis rats promotes functional tissue regeneration. Herein we report that over the first 16 wk postinjury, MG transplantation 1) promotes remarkable regeneration of innervated muscle fibers within the defect area (i.e., de novo muscle fiber regeneration); 2) reduced evidence of chronic injury in the remaining muscle mass compared with nonrepaired muscles following VML (i.e., transplantation attenuated chronically upregulated transforming growth factor-β1 gene expression and the presence of centrally located nuclei in 30% of fibers observed in nonrepaired muscles); and 3) significantly improves net torque production (i.e., ∼55% of the functional deficit in nonrepaired muscles was restored). Additionally, voluntary wheel running was shown to reduce the heightened accumulation of extracellular matrix deposition observed within the regenerated tissue of MG-repaired sedentary rats 8 wk postinjury (collagen 1% area: sedentary vs. runner, ∼41 vs. 30%), which may have been the result of an augmented inflammatory response [i.e., M1 (CCR7) and M2 (CD163) macrophage expression was significantly greater in runner than sedentary MG-repaired muscles 2 wk postinjury]. These findings support further exploration of autologous minced MGs for the treatment of VML.
Collapse
Affiliation(s)
- B. T. Corona
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - K. Garg
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - C. L. Ward
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - J. S. McDaniel
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - T. J. Walters
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - C. R. Rathbone
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
42
|
Ward CL, Corona BT, Yoo JJ, Harrison BS, Christ GJ. Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PLoS One 2013; 8:e72485. [PMID: 23991116 PMCID: PMC3753241 DOI: 10.1371/journal.pone.0072485] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022] Open
Abstract
Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1-2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2-5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2-5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1-2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under hypoxic conditions.
Collapse
Affiliation(s)
- Catherine L. Ward
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Benjamin T. Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Benjamin S. Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - George J. Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
43
|
Kobayashi T, Uehara K, Ota S, Tobita K, Ambrosio F, Cummins JH, Terada S, Fu FH, Huard J. The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury. J Appl Physiol (1985) 2012; 114:262-73. [PMID: 23154994 DOI: 10.1152/japplphysiol.00140.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Losartan (Los) is a Food and Drug Administration-approved antihypertensive medication that has a well-tolerated side effect profile. We have demonstrated that treatment with Los immediately after injury was effective at promoting muscle healing and inducing an antifibrotic effect in a murine model of skeletal muscle injury. We initially investigated the minimum effective dose of Los administration immediately after injury and subsequently determined whether the timing of administering a clinically relevant dose of Los would influence its effectiveness at improving muscle healing after muscle injury. In the first part of this study, mice were administered 3, 10, 30, or 300 mg·kg(-1)·day(-1) of Los immediately after injury, and the healing process was evaluated histologically and physiologically 4 wk after injury. In the second study, the clinically relevant dose of 10 mg·kg(-1)·day(-1) was administered immediately or started at 3 or 7 days postinjury. The administration of 300 mg·kg(-1)·day(-1) immediately following injury led to a significant increase in muscle regeneration, a significant decrease in fibrosis, and an improvement in muscle function. Moreover, we observed a significant decrease in fibrosis and a significant increase in muscle regeneration at 4 wk postinjury, when the clinically relevant dose of 10 mg·kg(-1)·day(-1) was administered at 3 or 7 days postinjury. Functional evaluation also demonstrated a significant improvement compared with the injured untreated control when Los treatment was initiated 3 days after injury. Our study revealed accelerated muscle healing when the 300 mg·kg(-1)·day(-1) of Los was administered immediately after injury and a clinically relevant dose of 10 mg·kg(-1)·day(-1) of Los was administered at 3 or 7 days postinjury.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Criswell TL, Corona BT, Wang Z, Zhou Y, Niu G, Xu Y, Christ GJ, Soker S. The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo. Biomaterials 2012; 34:140-9. [PMID: 23059002 DOI: 10.1016/j.biomaterials.2012.09.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
Abstract
Musculoskeletal disorders are a major cause of disability and effective treatments are currently lacking. Tissue engineering affords the possibility of new therapies utilizing cells and biomaterials for the recovery of muscle volume and function. A major consideration in skeletal muscle engineering is the integration of a functional vasculature within the regenerating tissue. In this study we employed fluorescent cell labels to track the location and differentiation of co-cultured cells in vivo and in vitro. We first utilized a co-culture of fluorescently labeled endothelial cells (ECs) and muscle progenitor cells (MPCs) to investigate the ability of ECs to enhance muscle tissue formation and vascularization in an in vivo model of bioengineered muscle. Scaffolds that had been seeded with both MPCs and ECs showed significantly greater vascularization, tissue formation and enhanced innervation as compared to scaffolds seeded with MPCs alone. Subsequently, we performed in vitro experiments using a 3-cell type system (ECs, MPCs, and pericytes (PCs)) to demonstrate the utility of fluorescent cell labeling for monitoring cell growth and differentiation. The growth and differentiation of individual cell types was determined using live cell fluorescent microscopy demonstrating the utility of fluorescent labels to monitor tissue organization in real time.
Collapse
Affiliation(s)
- Tracy L Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cheon S, Park I, Kim M. Pulsed Electromagnetic Field Elicits Muscle Recovery via Increase of HSP 70 Expression after Crush Injury of Rat Skeletal Muscle. J Phys Ther Sci 2012. [DOI: 10.1589/jpts.24.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Songhee Cheon
- Department of Physical Therapy, College of Health Science, Youngsan University
| | - Inah Park
- Department of Life Science, Faculty of Art and Science, University of Toronto
| | - Minhee Kim
- Department of Physical Therapy, College of Health Science, Eulji University
| |
Collapse
|