1
|
Brar HK, Chen E, Chang F, Lu SA, Longowal DK, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania regulates host YY1: Comparative proteomic analysis identifies infection modulated YY1 dependent proteins. PLoS One 2025; 20:e0323227. [PMID: 40373059 PMCID: PMC12080872 DOI: 10.1371/journal.pone.0323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 05/17/2025] Open
Abstract
The protein Yin-Yang 1 (YY1) is a ubiquitous multifunctional transcription factor. Interestingly, there are several cellular functions controlled by YY1 that could play a role in Leishmania pathogenesis. Leishmaniasis is a human disease caused by protozoan parasites of the genus Leishmania. This study examined the potential role of macrophage YY1 in promoting Leishmania intracellular survival. Deliberate knockdown of YY1 resulted in attenuated survival of Leishmania in infected macrophages, suggesting a role of YY1 in Leishmania persistence. Biochemical fractionation studies revealed Leishmania infection caused redistribution of YY1 to the cytoplasm from the nucleus where it is primarily located. Inhibition of nuclear transport by leptomycin B attenuates infection-mediated YY1 redistribution and reduces Leishmania survival. This suggests that Leishmania induces the translocation of YY1 from the nucleus to the cytoplasm of infected cells, where it may regulate host molecules to favour parasite survival. A label-free quantitative whole proteome approach showed that the expression of a large number of macrophage proteins was dependent on the YY1 level. Interestingly, several of these proteins were modulated in Leishmania-infected cells, revealing YY1-dependent host response and suggesting their potential role in Leishmania pathogenesis. Together, this study identifies YY1 as a novel virulence factor that promotes Leishmania survival inside host macrophages.
Collapse
Affiliation(s)
- Harsimran Kaur Brar
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eleanor Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Chang
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shawna Angel Lu
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dilraj Kaur Longowal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Merenstein A, Obeidat L, Zaravinos A, Bonavida B. The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications. Cancers (Basel) 2024; 17:19. [PMID: 39796650 PMCID: PMC11718991 DOI: 10.3390/cancers17010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities.
Collapse
Affiliation(s)
- Adam Merenstein
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| | - Loiy Obeidat
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Basheer I, Wang H, Li G, Jehan S, Raza A, Du C, Ullah N, Li D, Sui G. β-caryophyllene sensitizes hepatocellular carcinoma cells to chemotherapeutics and inhibits cell malignancy through targeting MAPK signaling pathway. Front Pharmacol 2024; 15:1492670. [PMID: 39734415 PMCID: PMC11671526 DOI: 10.3389/fphar.2024.1492670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background β-caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene extracted from various plants, and widely used as a medicinal agent for various diseases. During hepatocellular carcinoma (HCC) development, cancer cells generally exhibit increased cell proliferation due to mutations or aberrant expression of key regulatory genes. The current study determines the cytotoxic effects of BCP alone or in combination with doxorubicin (DOX) and cisplatin (DDP) on HCC cells, and elucidates the underlying mechanism of BCP to exert its anticancer activities. Materials and methods HepG2, SMMC-7721 HCC cells, and HL-7702 normal liver cells were treated with BCP, DOX, and DDP individually or combinatorially. Cell proliferation assay, flow cytometric assay, and Western blot were employed to evaluate the cytotoxic effects of these treatments. Transwell assays were used to examine BCP's effects on HCC cell migration and invasion. RNA-seq analysis was used to determine BCP's primary target genes in HepG2 cells. Integrative analysis of differentially expressed genes (DEGs) of RNA-seq data with an HCC TCGA dataset identified BCP-targeted genes that were verified by RT-qPCR analysis. Ectopic gene expression, cell viability, and colony formation assay were performed to validate the primary targets of BCP. Results BCP selectively inhibited HCC cell proliferation while exhibited relatively low toxicity in normal liver cells; however, DOX and DDP showed higher toxicity in normal cells than that in HCC cells. In combinatorial treatments, BCP synergistically enhanced cytotoxicity of DOX and DDP in HCC cells but this effect was markedly reduced in HL-7702 cells. BCP treatment reduced migration and invasion of HCC cells. Furthermore, RNA-seq analyses of BCP-treated HepG2 cells identified 433 protein-coding DEGs. Integrative analyses revealed five BCP-targeted DEGs regulating the MAPK signaling pathway. Among these five genes, three displayed a significantly positive correlation of their expression with the overall survival of HCC patients. As a primary target, PGF was significantly downregulated by BCP treatment, and its exogenous expression desensitized HCC cells to BCP-mediated inhibition. Discussion BCP inhibits malignant properties of HCC and synergistically sensitizes the anticancer activity of DOX and DDP. In HCC cells, BCP primarily targets the PGF gene and MAPK signaling pathway.
Collapse
Affiliation(s)
- Irum Basheer
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hai Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Intelligent Biomedical Labs, Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shah Jehan
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ali Raza
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chentao Du
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Najeeb Ullah
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Liu R, Xu Z, Huang X, Xu B, Chen M. Yin Yang 1 promotes the neuroendocrine differentiation of prostate cancer cells via the non-canonical WNT pathway (FYN/STAT3). Clin Transl Med 2023; 13:e1422. [PMID: 37771187 PMCID: PMC10539684 DOI: 10.1002/ctm2.1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.
Collapse
Affiliation(s)
- Rui‐ji Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Zhi‐Peng Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bin Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Ming Chen
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
- Department of Urology, Nanjing Lishui District People's HospitalZhongda Hospital Lishui BranchSoutheast UniversityNanjingChina
| |
Collapse
|
5
|
Wang S, Nie J, Xu K, Liu Y, Tong W, Li A, Zuo W, Liu Z, Yang F. YY1 is regulated by ALKBH5-mediated m6A modification and promotes autophagy and cancer progression through targeting ATG4B. Aging (Albany NY) 2023; 15:9590-9613. [PMID: 37724907 PMCID: PMC10564435 DOI: 10.18632/aging.205037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
YY1 affects tumorigenesis and metastasis in multiple ways. However, the function of YY1 and the potential mechanisms through which it operates in gastric cancer (GC) progression by regulating autophagy remains poorly understood. This study aimed to assess the essential transcription factors (TFs) involved in autophagy regulation in GC. Western blot, RFP-GFP-LC3 double fluorescence and transmission electron microscopy (TEM) assays were used to probe autophagy activity in GC cells. Methylated RNA immunoprecipitation (MeRIP) was utilized to evaluate the ALKBH5-regulated m6A levels of YY1. Gain- and loss-of-function assays were employed in the scrutiny of the biological effects of the ALKBH5/YY1/ATG4B axis on cancer cell proliferation and invasion abilities in vitro. Per the findings, YY1 was identified as a crucial transcriptional activator of cancer autophagy-related genes and promoted the proliferation and aggressiveness of cancer cells associated with enhanced ATG4B-mediated autophagy. However, ectopic ALKBH5 expression abolished the YY1-induced effect via m6A modification. Importantly, YTHDF1 facilitated the mRNA stability of YY1 through m6A recognition. Collectively, this study found that YY1 was regulated by ALKBH5 and YTHDF1-mediated m6A modification and served as an autophagy-dependent tumor driver to accelerate cancer progression through ATG4B transactivation, providing an exploitable therapeutic target for GC.
Collapse
Affiliation(s)
- Shijiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Jiangbo Nie
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Kaiying Xu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Yangyang Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Weilai Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Anan Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Wei Zuo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Feng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People’s Republic of China
| |
Collapse
|
6
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
7
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Cha CD, Son SH, Kim CG, Park H, Chung MS. Prognostic Implication of YY1 and CP2c Expression in Patients with Primary Breast Cancer. Cancers (Basel) 2023; 15:3495. [PMID: 37444605 PMCID: PMC10340759 DOI: 10.3390/cancers15133495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Yin Yang 1 (YY1) is a transcription factor that regulates epigenetic pathways and protein modifications. CP2c is a transcription factor that functions as an oncogene to regulate cell proliferation. YY1 is known to interact with CP2c to suppress CP2c's transcriptional activity. This study aimed to investigate YY1 and CP2c expression in breast cancer and prognostic implications. In this study, YY1 and CP2c expression was evaluated using immunohistochemical staining, Western blot and RT-PCR assays. Of 491 patients with primary breast cancer, 138 patients showed YY1 overexpression. Luminal subtype and early stage were associated with overexpression (p < 0.001). After a median follow-up of 68 months, YY1 overexpression was found to be associated with a better prognosis (disease-free survival rates of 92.0% vs. 79.2%, p = 0.014). In Cox proportional hazards model, YY1 overexpression functioned as an independent prognostic factor after adjustment of hormone receptor/HER2 status and tumor size (hazard ratio of 0.50, 95% CI 0.26-0.98, p = 0.042). Quantitative analysis of YY1 and CP2c protein expression in tumors revealed a negative correlation between them. In conclusion, YY1 overexpression is a favorable prognostic biomarker in patients with breast cancer, and it has a negative correlation with CP2c at the protein level.
Collapse
Affiliation(s)
- Chihwan David Cha
- Department of Surgery, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04764, Republic of Korea;
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04764, Republic of Korea;
| | - Hosub Park
- Department of Pathology, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| | - Min Sung Chung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| |
Collapse
|
10
|
Identification of Hub Genes for Colorectal Cancer with Liver Metastasis Using miRNA-mRNA Network. DISEASE MARKERS 2023; 2023:2295788. [PMID: 36798788 PMCID: PMC9928517 DOI: 10.1155/2023/2295788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
Background Liver metastasis is an important cause of death in patients with colorectal cancer (CRC). Increasing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of colorectal cancer liver metastasis (CRLM). This study is aimed at exploring the potential miRNA-mRNA regulatory network. Methods From the GEO database, we downloaded the microarray datasets GSE56350 and GSE73178. GEO2R was used to conduct differentially expressed miRNAs (DEMs) between CRC and CRLM using the GEO2R tool. Then, GO and KEGG pathway analysis for differentially expressed genes (DEGs) performed via DAVID. A protein-protein interaction (PPI) network was constructed by the STRING and identified by Cytoscape. Hub genes were identified by miRNA-mRNA network. Finally, the expression of the hub gene expression was assessed in the GSE81558. Results The four DEMs (hsa-miR-204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-552-3p) were identified as common DEMs in GSE56350 and GSE73178 datasets. The SP1 was likely to adjust the upregulated DEMs; however, the YY1 could regulate both the upregulated and downregulated DEMs. A total of 3925 genes (3447 upregulated DEM genes and 478 downregulated DEM genes) were screened. These predicted genes were mainly linked to Platinum drug resistance, Cellular senescence, and ErbB signaling pathway. Through the gene network construction, most of the hub genes were found to be modulated by hsa-miR-204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-552-3p. Among the top 20 hub genes, the expression of CREB1, RHOA, and EGFR was significantly different in the GSE81558 dataset. Conclusion In this study, miRNA-mRNA networks in CRLM were screened between CRC patients and CRLM patients to provide a new method to predict for the pathogenesis and development of CRC.
Collapse
|
11
|
Flores BCT, Chawla S, Ma N, Sanada C, Kujur PK, Yeung R, Bellon MB, Hukari K, Fowler B, Lynch M, Chinen LTD, Ramalingam N, Sengupta D, Jeffrey SS. Microfluidic live tracking and transcriptomics of cancer-immune cell doublets link intercellular proximity and gene regulation. Commun Biol 2022; 5:1231. [DOI: 10.1038/s42003-022-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractCell–cell communication and physical interactions play a vital role in cancer initiation, homeostasis, progression, and immune response. Here, we report a system that combines live capture of different cell types, co-incubation, time-lapse imaging, and gene expression profiling of doublets using a microfluidic integrated fluidic circuit that enables measurement of physical distances between cells and the associated transcriptional profiles due to cell–cell interactions. We track the temporal variations in natural killer—triple-negative breast cancer cell distances and compare them with terminal cellular transcriptome profiles. The results show the time-bound activities of regulatory modules and allude to the existence of transcriptional memory. Our experimental and bioinformatic approaches serve as a proof of concept for interrogating live-cell interactions at doublet resolution. Together, our findings highlight the use of our approach across different cancers and cell types.
Collapse
|
12
|
Zhou S, Li P, Qin L, Huang S, Dang N. Transcription factor YY1 contributes to human melanoma cell growth through modulating the p53 signaling pathway. Exp Dermatol 2022; 31:1563-1578. [PMID: 35730240 DOI: 10.1111/exd.14628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melanoma has a higher mortality rate than any other skin cancer, and its cases are increasing. The transcription factor YY1 has been proven to be involved in tumor progression; however, the role of YY1 in melanoma is not well understood. METHODS This study investigates how YY1 functions in melanoma progression, and it also elucidates the underlying mechanisms involved. RESULTS We have found that in clinical human melanoma tissues, YY1 is overexpressed compared to YY1 expression in normal melanocytes and skin tissues. Cellular immunofluorescence shows that YY1 is mainly located in the nucleus. YY1 knockdown reduces proliferation, migration, and invasion of melanoma cell lines. Moreover, the apoptosis rate of cells is significantly increased in low-YY1 environments. The overexpression of YY1 resulted in decreased apoptotic rates in melanoma cells. YY1 also affects the expression of EMT-related proteins. Additional experiments reveal that YY1 knockdown disrupts the interaction of MDM2-p53, and that it both stabilizes and increases p53 activity. The upregulation of p53 expression in turn stimulates p21 expression just as it suppresses CDK4 expression, which then induces cells that were arrested in the G1 phase. The effect then is to constrain cell proliferation in melanoma cells. Upon activation of the p53 pathway, Bax, a pro-apoptotic protein, is upregulated, and Bcl-2, an anti-apoptotic protein, was downregulated in A375 cells. CONCLUSIONS The findings of this study provide novel insights into the pathology of melanoma as well as the role that YY1 plays in tumor progression. The findings also suggest that targeting YY1 has the potential to improve the diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Shumin Zhou
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Linyi people's Hospital, Linyi, Shandong, China
| | - Pin Li
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Li Qin
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
13
|
Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers (Basel) 2022; 14:cancers14122866. [PMID: 35740532 PMCID: PMC9221043 DOI: 10.3390/cancers14122866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
3D chromatin organization plays an important role in transcription regulation and gene expression. The 3D genome is highly maintained by several architectural proteins, such as CTCF, Yin Yang 1, and cohesin complex. This structural organization brings regulatory DNA elements in close proximity to their target promoters. In this review, we discuss the 3D chromatin organization of super-enhancers and their relationship to phase-separated condensates. Super-enhancers are large clusters of DNA elements. They can physically contact with their target promoters by chromatin looping during transcription. Multiple transcription factors can bind to enhancer and promoter sequences and recruit a complex array of transcriptional co-activators and RNA polymerase II to effect transcriptional activation. Phase-separated condensates of transcription factors and transcriptional co-activators have been implicated in assembling the transcription machinery at particular enhancers. Cancer cells can hijack super-enhancers to drive oncogenic transcription to promote cell survival and proliferation. These dysregulated transcriptional programs can cause cancer cells to become highly dependent on transcriptional regulators, such as Mediator and BRD4. Moreover, the expression of oncogenes that are driven by super-enhancers is sensitive to transcriptional perturbation and often occurs in phase-separated condensates, supporting therapeutic rationales of targeting SE components, 3D genome organization, or dysregulated condensates in cancer.
Collapse
|
14
|
Wang W, Qiao S, Li G, Cheng J, Yang C, Zhong C, Stovall DB, Shi J, Teng C, Li D, Sui G. A histidine cluster determines YY1-compartmentalized coactivators and chromatin elements in phase-separated enhancer clusters. Nucleic Acids Res 2022; 50:4917-4937. [PMID: 35390165 PMCID: PMC9122595 DOI: 10.1093/nar/gkac233] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 12/28/2022] Open
Abstract
As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1’s transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.
Collapse
Affiliation(s)
- Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shiyao Qiao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Cuicui Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chen Zhong
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, USA
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
YY1 Oligomerization Is Regulated by Its OPB Domain and Competes with Its Regulation of Oncoproteins. Cancers (Basel) 2022; 14:cancers14071611. [PMID: 35406384 PMCID: PMC8996997 DOI: 10.3390/cancers14071611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary YY1 regulates various cancer-related genes and activates key oncoproteins. In this study, we discovered that the oncoprotein binding (OPB) domain of YY1 is both necessary and stimulatory to its oligomerization. The hydrophobic residues, especially F219, in the OPB are essential to YY1 intermolecular interaction. Strikingly, the mutations of the hydrophobic residues showed better ability than wild-type YY1 in promote breast cancer cell proliferation and migration. Our further study revealed that YY1 proteins with mutated hydrophobic residues in the OPB domain showed improved binding affinity to EZH2. Overall, our data support the model of a mutually exclusive process between oligomerization of YY1 and its regulation of the oncoproteins EZH2, AKT and MDM2. Abstract Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.
Collapse
|
16
|
Upregulation of Yin-Yang-1 Associates with Proliferation and Glutamine Metabolism in Esophageal Carcinoma. Int J Genomics 2022; 2022:9305081. [PMID: 35359580 PMCID: PMC8961439 DOI: 10.1155/2022/9305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the expression of Yin-Yang-1 (YY1) in esophageal carcinoma (ESCA) and its effect on glutamine metabolism in ESCA. Methods The expression and roles of YY1 in ESCA were investigated using a series of bioinformatics databases and tools. The expression of YY1 between ESCA tissues with the corresponding adjacent tissues was validated using real-time PCR, western blot, and immunohistochemical staining method. Furthermore, the effects of YY1 on ESCC cell proliferation and migration were examined. The correlation between the YY1 and glutamine metabolism was evaluated by western blot. Results YY1 gene was highly conserved in evolution and upregulated in ESCA tissues and ESCC cell lines (ECA109 and TE-1). In addition, YY1 may affect the level of immune cell infiltration and promote tumor cell immune escape. Functional enrichment analysis found that YY1 involved in many biological processes, such as cell division and glutathione and glutamine metabolism. After siRNA knockdown of YY1 in ECA109 and TE-1, the proliferation and the migration of ECA109 and TE-1 were suppressed. The glutamine consumption and glutamate production were significantly decreased. The protein expression of alanine-, serine-, cysteine-preferring transporter 2 (ASCT2), glutaminase (GLS), and glutamate dehydrogenase (GLUD1) was significantly downregulated. Conclusion YY1 is highly expressed in ESCA and may promote glutamine metabolism of ESCC cells, indicating it may be as a diagnostic biomarker for ESCA.
Collapse
|
17
|
Abe H, Abe K. PCR-based profiling of transcription factor activity in vivo by a virus-based reporter battery. iScience 2022; 25:103927. [PMID: 35281741 PMCID: PMC8904617 DOI: 10.1016/j.isci.2022.103927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 01/22/2023] Open
Abstract
Understanding the molecular mechanisms of gene regulation is pivotal for understanding how cells establish and modify their identities and functions. Multiple transcription factors (TFs) coordinate to alter gene expression in cells; however, a method to quantitatively analyze the activity of each TF is lacking, particularly in vivo. Here, we introduce a viral-vector-based TF reporter battery that can be used to simultaneously analyze the activity of multiple TFs, visualized as the TF activity profile (TFAP) obtained by qPCR. We show that the cells possess distinct TFAPs that dynamically change according to experimental manipulation or physiological activity. We report a practical method to obtain the TFAP of a defined cell population and their experience-dependent changes in the mouse brain in vivo. The TFAP obtained by our method will help bridge the information gap between the genome and transcriptome and aid the multi-omics view of understanding the gene regulation system. A virus-based reporter battery for obtaining the TF activity profile of cells TFAP analysis reveals the dynamic change of TF activity upon stimulation Experience-dependent change of TFAP of the mouse brain in vivo Neural and glial change of TF activity revealed by the cell-type-specific TFAP
Collapse
Affiliation(s)
- Hitomi Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kentaro Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Division for the Establishment of Frontier Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
18
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Li W, Hu S, Han Z, Jiang X. YY1-Induced Transcriptional Activation of FAM111B Contributes to the Malignancy of Breast Cancer. Clin Breast Cancer 2021; 22:e417-e425. [PMID: 34802969 DOI: 10.1016/j.clbc.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Family with sequence similarity 111 member B (FAM111B) is an oncoprotein associated with multiple malignancies. We investigated the potential mechanisms of FAM111B in breast cancer. PATIENTS AND METHODS We tested the expression of FAM111B in breast cancer tissues and the survival rate of breast cancer patients with high or low level of FAM111B through TCGA data. The expression of FAM111B in breast cancer tissues and adjacent tissues was detected using western blotting. Then we used siRNA to construct a low expression model of FAM111B in SKBR3 and MDA-MB-468. EdU, CCK-8, wound healing, and transwell assays were performed to monitor the proliferation, migration, and invasion of breast cancer cells. Western blotting was used to detect the expression of EMT-related indicators. Chromatin Immunoprecipitation (ChIP) and qPCR were used to evaluate the regulatory effect of Yin Yang 1 (YY1) on FAM111B. RESULTS The expression of FAM111B in breast cancer tissues was higher than that in normal tissues. Patients who had high FAM111B expression had a worse prognosis. Knockdown of FAM111B inhibited the proliferation, migration, and invasion of breast cancer cells. Knockdown of FAM111B resulted in increased expression of EMT-related protein E-cadherin and decreased expression of N-cadherin and Vimentin. ChIP-qPCR analysis demonstrated that YY1 could bind to the promoter of FAM111B gene and strengthen its transcription activity. CONCLUSION YY1-induced transcriptional activation of FAM111B accelerated the progression of breast cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of General surgery, Inner Mongolia Baogang Hospital, Inner Mongolia, P.R. China
| | - Sihui Hu
- Department of General surgery, Inner Mongolia Baogang Hospital, Inner Mongolia, P.R. China
| | - Zhiqiang Han
- Department of General surgery, Inner Mongolia Baogang Hospital, Inner Mongolia, P.R. China
| | - Xuejun Jiang
- Department of General surgery, Inner Mongolia Baogang Hospital, Inner Mongolia, P.R. China.
| |
Collapse
|
20
|
Protein Ligands in the Secretome of CD36 + Fibroblasts Induce Growth Suppression in a Subset of Breast Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13184521. [PMID: 34572749 PMCID: PMC8469330 DOI: 10.3390/cancers13184521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Human breast cancers are not fully autonomous. They are dependent on nutrients and growth-promoting signals provided by stromal cells. In order to instruct the surrounding cells to provide essential growth factors, cancer cells co-opt normal signaling molecules and mechanisms. To inhibit or potentially reverse tumor growth, our goal is to emulate this signaling and reprogram the microenvironment. For example, in a healthy mammary gland, fibroblasts (FBs) overexpress CD36; and the downregulation of CD36 is one of the hallmarks of cancer-associated FBs. Therefore, in this project, we hypothesized that signaling from CD36+ FBs could cause growth suppression in a subset of breast cancer cell lines. We then designed a series of experiments to validate this growth suppression and identified responsible secreted factors by the CD36+ FBs. These experiments suggested that three protein ligands are primarily responsible for growth suppression in a subset of breast cancer cell lines. Abstract Reprogramming the tumor stroma is an emerging approach to circumventing the challenges of conventional cancer therapies. This strategy, however, is hampered by the lack of a specific molecular target. We previously reported that stromal fibroblasts (FBs) with high expression of CD36 could be utilized for this purpose. These studies are now expanded to identify the secreted factors responsible for tumor suppression. Methodologies included 3D colonies, fluorescent microscopy coupled with quantitative techniques, proteomics profiling, and bioinformatics analysis. The results indicated that the conditioned medium (CM) of the CD36+ FBs caused growth suppression via apoptosis in the triple-negative cell lines of MDA-MB-231, BT549, and Hs578T, but not in the ERBB2+ SKBR3. Following the proteomics and bioinformatic analysis of the CM of CD36+ versus CD36− FBs, we determined KLF10 as one of the transcription factors responsible for growth suppression. We also identified FBLN1, SLIT3, and PENK as active ligands, where their minimum effective concentrations were determined. Finally, in MDA-MB-231, we showed that a mixture of FBLN1, SLIT3, and PENK could induce an amount of growth suppression similar to the CM of CD36+ FBs. In conclusion, our findings suggest that these ligands, secreted by CD36+ FBs, can be targeted for breast cancer treatment.
Collapse
|
21
|
Li J, Li G, Qi Y, Lu Y, Wang H, Shi K, Li D, Shi J, Stovall DB, Sui G. SRSF5 regulates alternative splicing of DMTF1 pre-mRNA through modulating SF1 binding. RNA Biol 2021; 18:318-336. [PMID: 34291726 DOI: 10.1080/15476286.2021.1947644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ABBREVIATIONS ARF: alternative reading frame, that is, p14ARF, or CDKN2A (cyclin-dependent kinase inhibitor 2A); β-gal: β-galactosidase; CLIP-seq: crosslinking and immunoprecipitation-sequencing; DMTF1: the cyclin D binding myb-like transcription factor 1; ESS/ESE: exonic splicing silencer/enhancer; Ex: exon; FBS: fetal bovine serum; Gluc: Gaussia luciferase; hnRNPs: heterogeneous nuclear ribonucleoproteins; In: intron; ISS/ISE: intronic splicing silencer/enhancer; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PSI: percent-splice-in; qPCR: quantitative real-time PCR; RIP: RNA immunoprecipitation; RNAseq: RNA sequencing; RT: reverse transcription; SF1: splicing factor 1; SR: serine/arginine-rich proteins; SRSF5: serine and arginine-rich splicing factor 5; TCGA: the cancer genome atlas; UCSC: University of California, Santa Cruz. WT: Wild type.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yige Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Ke Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC, USA
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
22
|
Disruption of YY1-EZH2 Interaction Using Synthetic Peptides Inhibits Breast Cancer Development. Cancers (Basel) 2021; 13:cancers13102402. [PMID: 34065631 PMCID: PMC8156467 DOI: 10.3390/cancers13102402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Both Yin Yang 1 (YY1) and enhancer of zeste homolog 2 (EZH2) are oncogenes with overexpressed statuses in cancers. As a transcription factor, YY1 recruits EZH2 through its oncoprotein binding (OPB) domain to repress gene expression. In this study, we identified the interaction domain of YY1 on EZH2 protein with amino acids 493–519, named the YY1 protein binding (YPB) domain. Synthetic peptides using YPB and OPB domain sequences effectively blocked endogenous YY1-EZH2 interaction. Functionally, YPB and OPB peptides could efficiently inhibit the proliferation of breast cancer cells, promote their apoptosis, and reduce tumor growth in a xenograft mouse model. Using chromatin immunoprecipitation DNA sequencing (ChIP-seq) analysis, we discovered that YPB and OPB peptides could interfere with H3K27 trimethylation of multiple genes. Eventually, we identified that YPB and OPB peptides primarily targeted the PTENP1 gene and validated its importance in the anticancer activity of the two peptides. Abstract Enhancer of zeste homolog 2 (EZH2) is a methyltransferase to mediate lysine 27 trimethylation in histone H3 (i.e., H3K27me3) and repress gene expression. In solid tumors, EZH2 promotes oncogenesis and is considered a therapeutic target. As a transcription factor, Yin Yang 1 (YY1) recruits EZH2 through its oncoprotein binding (OPB) domain to establish gene repression. In this study, we mapped the YY1 protein binding (YPB) domain on EZH2 to a region of 27 amino acids. Both YPB and OPB domain synthetic peptides could disrupt YY1EZH2 interaction, markedly reduce breast cancer cell viability, and efficiently inhibit tumor growth in a xenograft mouse model. We analyzed MDA-MB-231 cells treated with YPB, OPB, and control peptides by chromatin immunoprecipitation DNA sequencing (ChIP-seq) using an antibody against H3K27me3. YPB and OPB treatments altered H3K27me3 on 465 and 1137 genes, respectively, compared to the control. Of these genes, 145 overlapped between the two peptides. Among them, PTENP1, the PTEN pseudogene, showed reduced H3K27me3 signal when treated by either YPB or OPB peptide. Consistently, the two peptides enhanced both PTENP1 and PTEN expression with concomitantly reduced AKT activation. Further studies validated PTENP1′s contribution to the anticancer activity of YPB and OPB peptides.
Collapse
|
23
|
Transcriptome analysis of signaling pathways targeted by Ellagic acid in hepatocellular carcinoma cells. Biochim Biophys Acta Gen Subj 2021; 1865:129911. [PMID: 33862123 DOI: 10.1016/j.bbagen.2021.129911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ellagic acid (EA) possesses prominent inhibitory activities against various cancers, including hepatocellular carcinoma (HCC). Our recent study demonstrated EA's activities in reducing HCC cell proliferation and tumor formation. However, the mechanisms of EA to exert its anticancer activities and its primary targets in cancer cells have not been systematically explored. METHODS Cell proliferation assay and flow cytometric analysis were used to examine the effects of EA treatment on viability and apoptosis, respectively, of HepG2 cells. RNA-seq studies and associated pathway analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to determine EA's primary targets. Differentially expressed genes (DEG) in EA-treated HepG2 cells were verified by RT-qPCR and Western blot. Integrative analyses of the RNA-seq dataset with a TCGA dataset derived from HCC patients were conducted to verify EA-targeted genes and signaling pathways. Interaction network analysis of the DEGs, shRNA-mediated knockdown, cell viability assay, and colony formation assay were used to validate EA's primary targets. RESULTS EA reduced cell viability, caused DNA damage, and induced cell cycle arrest at G1 phase of HepG2 cells. We identified 5765 DEGs encoding proteins with over 2.0-fold changes in EA-treated HepG2 cells by DESeq2. These DEGs showed significant enrichment in the pathways regulating DNA replication and cell cycle progression. As primary targets, p21 was significantly upregulated, while MCM2-7 were uniformly downregulated in response to EA treatment. Consistently, p21 knockdown desensitized liver cells to EA in cell viability and colony formation assays. CONCLUSION EA induced G1 phase arrest and promoted apoptosis of HCC cells through activating the p21 gene and downregulating the MCM2-7 genes, respectively. GENERAL SIGNIFICANCE The discoveries in this study provide helpful insights into developing novel strategies in the therapeutic treatment of HCC patients.
Collapse
|
24
|
Abstract
Accumulating evidence strongly indicates that the presence of cancer stem cells (CSCs) leads to the emergence of worse clinical scenarios, such as chemo- and radiotherapy resistance, metastasis, and cancer recurrence. CSCs are a highly tumorigenic population characterized by self-renewal capacity and differentiation potential. Thus, CSCs establish a hierarchical intratumor organization that enables tumor adaptation to evade the immune response and resist anticancer therapy. YY1 functions as a transcription factor, RNA-binding protein, and 3D chromatin regulator. Thus, YY1 has multiple effects and regulates several molecular processes. Emerging evidence indicates that the development of lethal YY1-mediated cancer phenotypes is associated with the presence of or enrichment in cancer stem-like cells. Therefore, it is necessary to investigate whether and to what extent YY1 regulates the CSC phenotype. Since CSCs mirror the phenotypic behavior of stem cells, we initially describe the roles played by YY1 in embryonic and adult stem cells. Next, we scrutinize evidence supporting the contributions of YY1 in CSCs from a number of various cancer types. Finally, we identify new areas for further investigation into the YY1-CSCs axis, including the participation of YY1 in the CSC niche.
Collapse
|
25
|
Hao A, Wang Y, Zhang X, Li J, Li Y, Li D, Kulik G, Sui G. Long non-coding antisense RNA HYOU1-AS is essential to human breast cancer development through competitive binding hnRNPA1 to promote HYOU1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118951. [PMID: 33422616 DOI: 10.1016/j.bbamcr.2021.118951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) has poor prognosis due to lack of biomarker and therapeutic target. Emerging research has revealed long noncoding RNAs (lncRNAs) are involved in breast cancer progression, but their functions and regulatory mechanisms remain poorly understood, especially in TNBC. In this study, we performed lncRNA microarray analysis of five TNBC samples and their matched normal tissues, and discovered a number of differentially expressed lncRNAs. We identified an antisense lncRNA, HYOU1-AS, which is transcribed from the opposite strand of the hypoxia up-regulated 1 (HYOU1) gene, enriched in the nucleus and highly expressed in TNBC. HYOU1-AS knockdown could inhibit the proliferation and migration of the TNBC MDA-MB-231 cells, and reduce their xenograft tumor formation in nude mice. In mechanistic studies, we found that HYOU1-AS could promote the expression of HYOU1, a proliferative gene, through competitively binding to hnRNPA1, an RNA-binding protein, to relieve its post-transcriptional inhibition of the HYOU1 mRNA. Consistently, increased HYOU1 levels correlated with poor clinical outcomes of breast cancer patients based on our study of the TCGA database. Overall, our data indicated that the lncRNA HYOU1-AS promoted TNBC progression through upregulating HYOU1.
Collapse
Affiliation(s)
- Aixin Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jialiang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingzhou Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - George Kulik
- Department of Life Sciences, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
26
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020. [PMID: 33344262 DOI: 10.3389/fcimb.2020.537650,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
27
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020; 10:537650. [PMID: 33344262 PMCID: PMC7738612 DOI: 10.3389/fcimb.2020.537650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K. Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C. Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
28
|
Zeng Y, Qin T, Flamini V, Tan C, Zhang X, Cong Y, Birkin E, Jiang WG, Yao H, Cui Y. Identification of DHX36 as a tumour suppressor through modulating the activities of the stress-associated proteins and cyclin-dependent kinases in breast cancer. Am J Cancer Res 2020; 10:4211-4233. [PMID: 33414996 PMCID: PMC7783738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023] Open
Abstract
The nucleic acid guanine-quadruplex structures (G4s) are involved in many aspects of cancer progression. The DEAH-box polypeptide 36 (DHX36) has been identified as a dominant nucleic acid helicase which targets and disrupts DNA and RNA G4s in an ATP-dependent manner. However, the actual role of DHX36 in breast cancer remains unknown. In this study, we observed that the gene expression of DHX36 was positively associated with patient survival in breast cancer. The abundance of DHX36 is also linked with pathologic conditions and the stage of breast cancer. By using the xenograft mouse model, we demonstrated that the stable knockdown of DHX36 via lentivirus in breast cancer cells significantly promoted tumour growth. We also found that, after the DHX36 knockdown (KD), the invasion of triple-negative breast cancer cells was enhanced. In addition, we found a significant increase in the number of cells in the S-phase and a reduction of apoptosis with the response to cisplatin. DHX36 KD also desensitized the cytotoxic cellular response to paclitaxel and cisplatin. Transcriptomic profiling analysis by RNA sequencing indicated that DHX36 altered gene expression profile through the upstream activation of TNF, IFNγ, NFκb and TGFβ1. High throughput signalling analysis showed that one cluster of stress-associated kinase proteins including p53, ROCK1 and JNK were suppressed, while the mitotic checkpoint protein-serine kinases CDK1 and CDK2 were activated, as a consequence of the DHX36 knockdown. Our study reveals that DHX36 functions as a tumour suppressor and may be considered as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yinduo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
- Breast Tumour Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Valentina Flamini
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Cui Tan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Department of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Xinke Zhang
- Sun Yat-sen University Cancer Centre, The State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer MedicineGuangzhou 510060, China
| | - Yizi Cong
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
- Breast Tumour Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou 510120, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
29
|
Li J, Shi K, Xu T, Hu J, Li T, Li G, Chen K, Li D, Inoue K, Sui G. Mechanisms regulating DMTF1β/γ expression and their functional interplay with DMTF1α. Int J Oncol 2020; 58:20-32. [PMID: 33367929 PMCID: PMC7721083 DOI: 10.3892/ijo.2020.5146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
The cyclin D binding myb-like transcription factor 1 (DMTF1), a haplo-insufficient tumor suppressor gene, has 3 alternatively spliced mRNA isoforms encoding DMTF1α, β and γ proteins. Previous studies have indicated a tumor suppressive role of DMTF1α and the oncogenic activity of DMTF1β, while the function of DMTF1γ remains largely undetermined. In the present study, the mechanisms regulating DMTF1 isoform expression were investigated and the functional interplay of DMTF1β and γ with DMTF1α was characterized. It was found that specific regions of DMTF1β and γ transcripts can impair their mRNA integrity or stability, and thus reduce protein expression levels. Additionally, DMTF1β and γ proteins exhibited a reduced stability compared to DMTF1α and all 3 DMTF1 isoforms were localized in the nuclei. Two basic residues, K52 and R53, in the DMTF1 isoforms determined their nuclear localization. Importantly, both DMTF1β and γ could associate with DMTF1α and antagonize its transactivation of the ARF promoter. Consistently, the ratios of both DMTF1β/α and γ/α were significantly associated with a poor prognoses of breast cancer patients, suggesting oncogenic roles of DMTF1β and γ isoforms in breast cancer development.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Ke Shi
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Tianqi Xu
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Jingru Hu
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Tianxin Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Guangyue Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Kuida Chen
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Dangdang Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Kazushi Inoue
- Department of Pathology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston‑Salem, NC 27157, USA
| | - Guangchao Sui
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
30
|
Cheng Q, Khoshdeli M, Ferguson BS, Jabbari K, Zang C, Parvin B. YY1 is a cis-regulator in the organoid models of high mammographic density. Bioinformatics 2020; 36:1663-1667. [PMID: 31688895 DOI: 10.1093/bioinformatics/btz812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/20/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
MOTIVATION Our previous study has shown that ERBB2 is overexpressed in the organoid model of MCF10A when the stiffness of the microenvironment is increased to that of high mammographic density (MD). We now aim to identify key transcription factors (TFs) and functional enhancers that regulate processes associated with increased stiffness of the microenvironment in the organoid models of premalignant human mammary cell lines. RESULTS 3D colony organizations and the cis-regulatory networks of two human mammary epithelial cell lines (184A1 and MCF10A) are investigated as a function of the increased stiffness of the microenvironment within the range of MD. The 3D colonies are imaged using confocal microscopy, and the morphometries of colony organizations and heterogeneity are quantified as a function of the stiffness of the microenvironment using BioSig3D. In a surrogate assay, colony organizations are profiled by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed morphometric indices. Next, a subset of enriched data are processed against publicly available ChIP-Seq data using Model-based Analysis of Regulation of Gene Expression to predict regulatory transcription factors. This integrative analysis of morphometric and transcriptomic data predicted YY1 as one of the cis-regulators in both cell lines as a result of the increased stiffness of the microenvironment. Subsequent experiments validated that YY1 is expressed at protein and mRNA levels for MCF10A and 184A1, respectively. Also, there is a causal relationship between activation of YY1 and ERBB2 when YY1 is overexpressed at the protein level in MCF10A. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qingsu Cheng
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 22908, USA
| | - Mina Khoshdeli
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 22908, USA
| | - Bradley S Ferguson
- Department of Nutrition, University Of Nevada, Reno, NV 22908, USA.,Department of Public Health, Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, NV 22908, USA
| | - Kosar Jabbari
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 22908, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Bahram Parvin
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 22908, USA
| |
Collapse
|
31
|
Jehan S, Zhong C, Li G, Zulqarnain Bakhtiar S, Li D, Sui G. Thymoquinone Selectively Induces Hepatocellular Carcinoma Cell Apoptosis in Synergism With Clinical Therapeutics and Dependence of p53 Status. Front Pharmacol 2020; 11:555283. [PMID: 33041795 PMCID: PMC7522566 DOI: 10.3389/fphar.2020.555283] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Thymoquinone (TQ) is a natural compound extracted from the black seeds of Nigella sativa Linn. belonging to the Ranunculaceae family. TQ exhibits anti-inflammatory and antineoplastic activities against various cancers. Many therapeutics in hepatocellular carcinoma (HCC) treatments, such as doxorubicin (DOX) and cisplatin (DDP), exhibit considerable side effects on patients. We investigated cytotoxic effects of TQ, alone or in combination with DDP and DOX to HCC cells. TQ exhibited selective killing to HCC HepG2 and SMMC-7721 cells, but relatively low toxicity to normal liver HL-7702 cells. Importantly, when used with DOX or DDP, TQ showed synergistic inhibition of HCC cells, but not HL-7702 cells. We also discovered that Hep3B cells with a p53 null status were more sensitive to TQ than HepG2 and SMMC-7721 cells harboring wild type p53. Consistently, shRNA-mediated p53 silencing in HepG2 cells dramatically enhanced TQ-induced apoptosis, measured by caspase 3 and PARP cleavage. Furthermore, TQ-stimulated increase of reactive oxygen species (ROS) in p53-depleted cells was more pronounced than that in cells with intact p53. In summary, we discovered that TQ synergistically improves the anti-cancer activity of DOX and DDP, and loss of p53 sensitizes HCC cells to TQ-induced apoptosis.
Collapse
Affiliation(s)
- Shah Jehan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Syed Zulqarnain Bakhtiar
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
32
|
Nguyen AP, Nicoletti P, Arnol D, Califano A, Rodríguez Martínez M. Identifying the Potential Mechanism of Action of SNPs Associated With Breast Cancer Susceptibility With GVITamIN. Front Bioeng Biotechnol 2020; 8:798. [PMID: 32850701 PMCID: PMC7417307 DOI: 10.3389/fbioe.2020.00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
In the last decade, a large number of genome-wide association studies have uncovered many single-nucleotide polymorphisms (SNPs) that are associated with complex traits and confer susceptibility to diseases, such as cancer. However, so far only a few heritable traits with medium-to-high penetrance have been identified. The vast majority of the discovered variants only leads to disease in combination with other still unknown factors. Furthermore, while many studies aimed to link the effect of SNPs to changes in molecular phenotypes, the analysis has been often focused on testing associations between a single SNP and a transcript, hence disregarding the dysregulation of gene regulatory networks that has been shown to play an essential role in disease onset, notably in cancer. Here we take a systems biology approach and develop GVITamIN (Genetic VarIaTIoN functional analysis tool), a new statistical and computational approach to characterize the effect of a SNP on both genes and transcriptional regulatory programs. GVITamIN exploits a novel statistical approach to combine the usually small effect of disease-susceptibility SNPs, and reveals important potential oncogenic mechanisms, hence taking one step further in the direction of understanding the SNP mechanism of action. We apply GVITamIN on a breast cancer cohort and identify well-known cancer-related transcription factors, such as CTCF, LEF1, and FOXA1, as TFs dysregulated by breast cancer-associated SNPs. Furthermore, our results reveal that SNPs located on the RAD51B gene are significantly associated with an abnormal regulatory activity, suggesting a pivotal role for homologous recombination repair mechanisms in breast cancer.
Collapse
Affiliation(s)
- An-Phi Nguyen
- IBM Research-Zurich, Zurich, Switzerland.,ETH-Zürich, Zurich, Switzerland
| | - Paola Nicoletti
- Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, United States
| | | | - Andrea Califano
- Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Biomedical Informatics, Columbia University, New York, NY, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, United States
| | - María Rodríguez Martínez
- Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
33
|
Álvarez-Machancoses Ó, DeAndrés Galiana EJ, Cernea A, Fernández de la Viña J, Fernández-Martínez JL. On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:105-119. [PMID: 32256101 PMCID: PMC7090191 DOI: 10.2147/pgpm.s205082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
The complexity of orphan diseases, which are those that do not have an effective treatment, together with the high dimensionality of the genetic data used for their analysis and the high degree of uncertainty in the understanding of the mechanisms and genetic pathways which are involved in their development, motivate the use of advanced techniques of artificial intelligence and in-depth knowledge of molecular biology, which is crucial in order to find plausible solutions in drug design, including drug repositioning. Particularly, we show that the use of robust deep sampling methodologies of the altered genetics serves to obtain meaningful results and dramatically decreases the cost of research and development in drug design, influencing very positively the use of precision medicine and the outcomes in patients. The target-centric approach and the use of strong prior hypotheses that are not matched against reality (disease genetic data) are undoubtedly the cause of the high number of drug design failures and attrition rates. Sampling and prediction under uncertain conditions cannot be avoided in the development of precision medicine.
Collapse
Affiliation(s)
- Óscar Álvarez-Machancoses
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Spain.,DeepBiosInsights, NETGEV (Maof Tech), Dimona 8610902, Israel
| | - Enrique J DeAndrés Galiana
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Spain
| | - Ana Cernea
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Spain
| | - J Fernández de la Viña
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, Oviedo 33007, Spain
| | | |
Collapse
|
34
|
Cheng Q, Jabbari K, Winkelmaier G, Andersen C, Yaswen P, Khoshdeli M, Parvin B. Overexpression of CD36 in mammary fibroblasts suppresses colony growth in breast cancer cell lines. Biochem Biophys Res Commun 2020; 526:41-47. [PMID: 32192771 DOI: 10.1016/j.bbrc.2020.03.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Human breast tumors are not fully autonomous. They are dependent on nutrients and growth-promoting signals provided by the supporting stromal cells. Within the tumor microenvironment, one of the secreted macromolecules by tumor cells is activin A, where we show to downregulate CD36 in fibroblasts. Downregulation of CD36 in fibroblasts also increases the secretion of activin A by fibroblasts. We hypothesize that overexpression of CD36 in fibroblasts inhibits the formation of solid tumors in subtypes of breast cancer models. For the first time, we show that co-culturing organoid models of breast cancer cell lines of MDA-MB-231 (e.g., a triple-negative line) or MCF7 (e.g., a luminal-A line) with CD36+ fibroblasts inhibit the growth and normalizes basal and lateral polarities, respectively. In the long-term anchorage-independent growth assay, the rate of colony formation is also reduced for MDA-MB-231. These observations are consistent with the mechanism of tumor suppression involving the downregulation of pSMAD2/3 and YY1 expression levels. Our integrated analytical methods leverage and extend quantitative assays at cell- and colony-scales in both short- and long-term cultures using brightfield or immunofluorescent microscopy and robust image analysis. Conditioned media are profiled with the ELISA assay.
Collapse
Affiliation(s)
- Qingsu Cheng
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Kosar Jabbari
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Garrett Winkelmaier
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Cody Andersen
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Paul Yaswen
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Mina Khoshdeli
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Bahram Parvin
- Department Biomedical Engineering, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
35
|
Cernea A, Fernández-Martínez JL, deAndrés-Galiana EJ, Fernández-Ovies FJ, Alvarez-Machancoses O, Fernández-Muñiz Z, Saligan LN, Sonis ST. Robust pathway sampling in phenotype prediction. Application to triple negative breast cancer. BMC Bioinformatics 2020; 21:89. [PMID: 32164540 PMCID: PMC7068866 DOI: 10.1186/s12859-020-3356-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Phenotype prediction problems are usually considered ill-posed, as the amount of samples is very limited with respect to the scrutinized genetic probes. This fact complicates the sampling of the defective genetic pathways due to the high number of possible discriminatory genetic networks involved. In this research, we outline three novel sampling algorithms utilized to identify, classify and characterize the defective pathways in phenotype prediction problems, such as the Fisher’s ratio sampler, the Holdout sampler and the Random sampler, and apply each one to the analysis of genetic pathways involved in tumor behavior and outcomes of triple negative breast cancers (TNBC). Altered biological pathways are identified using the most frequently sampled genes and are compared to those obtained via Bayesian Networks (BNs). Results Random, Fisher’s ratio and Holdout samplers were more accurate and robust than BNs, while providing comparable insights about disease genomics. Conclusions The three samplers tested are good alternatives to Bayesian Networks since they are less computationally demanding algorithms. Importantly, this analysis confirms the concept of “biological invariance” since the altered pathways should be independent of the sampling methodology and the classifier used for their inference. Nevertheless, still some modifications are needed in the Bayesian networks to be able to sample correctly the uncertainty space in phenotype prediction problems, since the probabilistic parameterization of the uncertainty space is not unique and the use of the optimum network might falsify the pathways analysis.
Collapse
Affiliation(s)
- Ana Cernea
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain
| | - Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain.
| | - Enrique J deAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain.,Department of Informatics and Computer Science, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain
| | - Francisco Javier Fernández-Ovies
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain
| | - Oscar Alvarez-Machancoses
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain
| | - Zulima Fernández-Muñiz
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García-Lorca, 18, 33007, Oviedo, Spain
| | - Leorey N Saligan
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Stephen T Sonis
- Primary Endpoint Solutions, Watertown, MA, USA.,Brigham and Women's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
36
|
Adenosine Receptor A1-A2a Heteromers Regulate EAAT2 Expression and Glutamate Uptake via YY1-Induced Repression of PPAR γ Transcription. PPAR Res 2020; 2020:2410264. [PMID: 32206061 PMCID: PMC7079221 DOI: 10.1155/2020/2410264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
Adenosine receptors A1 (A1AR) and A2a (A2aAR) play an important role in regulating glutamate uptake to avoid glutamate accumulation that causes excitotoxicity in the brain; however, the precise mechanism of the effects of A1AR and A2aAR is unclear. Herein, we report that expression of the A1AR protein in the astrocyte membrane and the level of intracellular glutamate were decreased, while expression of the A2aR protein was elevated in cells exposed to oxygen-glucose deprivation (OGD) conditions. Coimmunoprecipitation (Co-IP) experiments showed that A1AR interacts with A2aAR under OGD conditions. The activation of A1AR and inactivation of A2aAR by 2-chloro-N6-cyclopentyladenosine (CCPA) and SCH58251, respectively, partly reversed OGD-mediated glutamate uptake dysfunction, elevated EAAT2, and PPARγ protein levels, and suppressed the expression of Ying Yang 1 (YY1). Both the silencing of YY1 and the activation of PPARγ upregulated EAAT2 expression. Moreover, YY1 silencing elevated the PPARγ level under both normal and OGD conditions. Histone deacetylase (HDAC)1 was found to interact with YY1, and HDAC1 silencing improved PPARγ promoter activity. Taken together, our findings suggest that A1AR-A2aAR heteromers regulate EAAT2 expression and glutamate uptake through the YY1-mediated recruitment of HDAC1 to the PPARγ promoter region.
Collapse
|
37
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
38
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
39
|
Schiano C, Franzese M, Pane K, Garbino N, Soricelli A, Salvatore M, de Nigris F, Napoli C. Hybrid 18F-FDG-PET/MRI Measurement of Standardized Uptake Value Coupled with Yin Yang 1 Signature in Metastatic Breast Cancer. A Preliminary Study. Cancers (Basel) 2019; 11:cancers11101444. [PMID: 31561604 PMCID: PMC6827137 DOI: 10.3390/cancers11101444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Detection of breast cancer (BC) metastasis at the early stage is important for the assessment of BC progression status. Image analysis represents a valuable tool for the management of oncological patients. Our preliminary study combined imaging parameters from hybrid 18F-FDG-PET/MRI and the expression level of the transcriptional factor Yin Yang 1 (YY1) for the detection of early metastases. Methods: The study enrolled suspected n = 217 BC patients that underwent 18F-FDG-PET/MRI scans. The analysis retrospectively included n = 55 subjects. n = 40 were BC patients and n = 15 imaging-negative female individuals were healthy subjects (HS). Standard radiomics parameters were extracted from PET/MRI image. RNA was obtained from peripheral blood mononuclear cells and YY1 expression level was evaluated by real time reverse transcription polymerase chain reactions (qRT-PCR). An enzyme-linked immuosorbent assay (ELISA) was used to determine the amount of YY1 serum protein. Statistical comparison between subgroups was evaluated by Mann-Whitney U and Spearman’s tests. Results: Radiomics showed a significant positive correlation between Greg-level co-occurrence matrix (GLCM) and standardized uptake value maximum (SUVmax) (r = 0.8 and r = 0.8 respectively) in BC patients. YY1 level was significant overexpressed in estrogen receptor (ER)-positive/progesteron receptor-positive/human epidermal growth factor receptor2-negative (ER+/PR+/HER2-) subtype of BC patients with synchronous metastasis (SM) at primary diagnosis compared to metachronous metastasis (MM) and HS (p < 0.001) and correlating significantly with 18F-FDG-uptake parameter (SUVmax) (r = 0.48). Conclusions: The combination of functional 18F-FDG-PET/MRI parameters and molecular determination of YY1 could represent a novel integrated approach to predict synchronous metastatic disease with more accuracy than 18F-FDG-PET/MRI alone.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Soricelli
- IRCCS SDN, 80134 Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, 80134 Naples, Italy
| | | | - Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- IRCCS SDN, 80134 Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
40
|
Behera AK, Kumar M, Shanmugam MK, Bhattacharya A, Rao VJ, Bhat A, Vasudevan M, Gopinath KS, Mohiyuddin A, Chatterjee A, Sethi G, Kundu TK. Functional interplay between YY1 and CARM1 promotes oral carcinogenesis. Oncotarget 2019; 10:3709-3724. [PMID: 31217904 PMCID: PMC6557205 DOI: 10.18632/oncotarget.26984] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Coactivator associated arginine methyltransferase 1 (CARM1) has been functionally implicated in maintenance of pluripotency, cellular differentiation and tumorigenesis; where it plays regulatory roles by virtue of its ability to coactivate transcription as well as to modulate protein function as an arginine methyltransferase. Previous studies establish an oncogenic function of CARM1 in the context of colorectal and breast cancer, which correlate to its overexpressed condition. However, the mechanism behind its deregulated expression in the context of cancer has not been addressed before. In the present study we uncover an oncogenic function of CARM1 in the context of oral cancer, where it was found to be overexpressed. We also identify YY1 to be a positive regulator of CARM1 gene promoter, where silencing of YY1 in oral cancer cell line could lead to reduction in expression of CARM1. In this context, YY1 showed concomitant overexpression in oral cancer patient samples compared to adjacent normal tissue. Cell line based experiments as well as xenograft study revealed pro-neoplastic functions of YY1 in oral cancer. Transcriptomics analysis as well as qRT-PCR validation clearly indicated pro-proliferative, pro-angiogenic and pro-metastatic role of YY1 in oral cancer. We also show that YY1 is a substrate of CARM1 mediated arginine methylation, where the latter could coactivate YY1 mediated reporter gene activation in vivo. Taken together, CARM1 and YY1 were found to regulate each other in a positive feedback loop to facilitate oral cancer progression.
Collapse
Affiliation(s)
- Amit K Behera
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Vinay J Rao
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Akshay Bhat
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Madavan Vasudevan
- Bionivid Technology Private Limited, Kasturi Nagar, Bangalore 560043, India
| | - Kodaganur S Gopinath
- Department of Surgical Oncology, HCG Bangalore Institute of Oncology, Bangalore 560027, India
| | - Azeem Mohiyuddin
- Department of Pathology, Sri Devaraj Urs Academy of Higher Education and Research Center, Kolar, Bangalore 563101, India.,Department of Ear, Nose and Throat, Sri Devaraj Urs Academy of Higher Education and Research Center, Kolar, Bangalore 563101, India.,Department of Head and Neck Surgery, Sri Devaraj Urs Academy of Higher Education and Research Center, Kolar, Bangalore 563101, India
| | - Anupam Chatterjee
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
41
|
Chen K, Lu Y, Shi K, Stovall DB, Li D, Sui G. Functional analysis of YY1 zinc fingers through cysteine mutagenesis. FEBS Lett 2019; 593:1392-1402. [PMID: 31127623 DOI: 10.1002/1873-3468.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 11/08/2022]
Abstract
As a transcription factor, Yin Yang 1 (YY1) either activates or represses gene expression depending on its recruited cofactors. The YY1 C-terminal consists of four zinc fingers (ZF) that are responsible for its DNA binding. However, the contribution of each YY1 ZF to its functions have not been fully elucidated. In this study, we used alanines to replace YY1 cysteines that are crucial to ZFs in binding to DNA. We characterized these YY1 mutants for their DNA binding, transcriptional activity, and functional role in maintaining MDA-MB-231 cell proliferation. We demonstrated that ZFs 2 and 3 are essential to the general biological activity of YY1. ZF 1 showed relatively low importance, while ZF 4 is virtually dispensable for YY1 function.
Collapse
Affiliation(s)
- Kuida Chen
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yao Lu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ke Shi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Daniel B Stovall
- School of Math and Science, North Carolina Wesleyan College, Rocky Mount, NC, USA
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
42
|
Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z, Zhang B, Wang CC, Cheung TH, Wu Z, Wong CCL, Sun H, Wang H. YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO J 2019; 38:embj.201899727. [PMID: 30979776 DOI: 10.15252/embj.201899727] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.
Collapse
Affiliation(s)
- Fengyuan Chen
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yang Cao
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Galloway NR, Ball KF, Stiff T, Wall NR. Yin Yang 1 (YY1): Regulation of Survivin and Its Role In Invasion and Metastasis. Crit Rev Oncog 2019; 22:23-36. [PMID: 29604934 DOI: 10.1615/critrevoncog.2017020836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite significant clinical and basic science advancements, cancer remains a devastating disease that affects people of all ages, races, and backgrounds. The pathogenesis of cancer has recently been described to result from eight biological capabilities or hallmarks and two enabling characteristics. These eight hallmarks are: deregulation of cellular energetics, avoiding immune destruction, enabling replicative immortality, inducing angiogenesis, sustaining proliferative signaling, evading growth suppressors, resisting cell death, and activating invasion and metastasis. The enabling characteristics are: genome instability and mutation and tumor-promoting inflammation. Survivin, the fourth most common transcript found in cancer cells, is a protein that is thought to be involved in the enhanced proliferation, survival, and metastasis and possibly other key hallmarks of cancer cells. Understanding how this gene is turned on and off is vitally important for attempt improving cancer management and therapy. Our work has identified a novel transcriptional regulator of survivin called Yin Yang 1 (YY1), which has been observed to activate some gene promoters and repress others and is gaining increasing interest as a target of cancer therapy. Our work shows for the first time that YY1 represses survivin transcription by physically interacting with the survivin promoter. Furthermore, YY1 appears to contribute to basal survivin transcriptional activity, indicating that disruption of its binding may in part contribute to survivin overexpression after cellular stress events including chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nicholas R Galloway
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Kathryn F Ball
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - TessaRae Stiff
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Nathan R Wall
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| |
Collapse
|
44
|
Zhang X, Zhao B, Yan T, Hao A, Gao Y, Li D, Sui G. G-quadruplex structures at the promoter of HOXC10 regulate its expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1018-1028. [DOI: 10.1016/j.bbagrm.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
|
45
|
Li J, Song J, Guo F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int J Mol Med 2018; 43:517-524. [PMID: 30365062 DOI: 10.3892/ijmm.2018.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is among the most devastating types of cancer, with a median survival of <1 year. Despite the development of new surgical and radiation techniques, and the use of multiple anti‑neoplastic drugs, effective treatment strategies for malignant gliomas have not yet been developed. The limited efficacy of current treatments reflects the resistance of glioblastoma cells to cytotoxic agents. In this study, using western blot analysis, we found that Yin Yang 1 (YY1) expression was increased in cisplatin‑resistant glioblastoma U87MG cells (U87MG‑CR). We observed that the silencing of YY1 sensitized the U87MG‑CR cells to cisplatin and that the overexpression of YY1 promoted the resistance of LN‑229 glioblastoma cells to cisplatin, as shown by MTT assay. Using sphere formation assay, we also found that the silencing of YY1 inhibited the formation of the glioblastoma‑initiating cell (GIC) phenotype in the U87MG‑CR cells. In addition, the results of RT‑qPCR revealed that miR‑186 expression was decreased in U87MG‑CR cells. Using RT‑PCR and western blot analysis, we observed that overexpression of miR‑186 inhibited YY1 expression in U87MG‑CR cells. The overexpression of miR‑186 also reversed cisplatin resistance and the formation of the GIC phenotype in glioblastoma cells. On the whole, the findings of this study demonstrate that miR‑186 reverses cisplatin resistance and inhibits the formation of the GIC phenotype by degrading YY1 in glioblastoma.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Jie Song
- Department of Neurosurgery, Yishui Central Hospital, Yishui, Shandong 276400, P.R. China
| | - Feng Guo
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
46
|
Lin J, He Y, Wang B, Xun Z, Chen S, Zeng Z, Ou Q. Blocking of YY1 reduce neutrophil infiltration by inhibiting IL-8 production via the PI3K-Akt-mTOR signaling pathway in rheumatoid arthritis. Clin Exp Immunol 2018; 195:226-236. [PMID: 30229869 DOI: 10.1111/cei.13218] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2018] [Indexed: 12/21/2022] Open
Abstract
Our previous study revealed that Yin Yang 1(YY1) played an important part in promoting interleukin (IL)-6 production in rheumatoid arthritis (RA). However, whether YY1 has any role in regulation of IL-8 in RA remains unclear. YY1 and IL-8 expression in RA patients were analyzed by real-time polymerase chain reaction (PCR). Ingenuity pathway analysis (IPA) was used to analyze the signaling pathway involved in YY1-induced IL-8 production. The expression of YY1 and proteins involved in the pathway were detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Migration of neutrophils was performed by chemotaxis assay. In this study, we found that high expression of IL-8 was positively associated with YY1 expression in RA. Blocking YY1 expression by YY1-short hairpin (sh)RNA lentivirus reduced IL-8 production. Mechanistically, we showed YY1 activated IL-8 production via the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. Further, using a co-culture system consisting of peripheral blood mononuclear cells (PBMC) and neutrophils, we found that migration of neutrophils would be inhibited by YY1 RNA interference. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the YY1-shRNA lentivirus led to reduction of IL-8 levels and attenuation of inflammation and neutrophil infiltration in vivo. Our results reveal a role of YY1 involved in neutrophil infiltration in RA via the PI3K/Akt/mTOR/IL-8 signaling pathway. YY1 may be a new therapeutic target for treatment of RA.
Collapse
Affiliation(s)
- J Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Y He
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - B Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Z Xun
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - S Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Z Zeng
- Department of Hematology and Rheumatology, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Q Ou
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
G-quadruplexes in the BAP1 promoter positively regulate its expression. Exp Cell Res 2018; 369:147-157. [DOI: 10.1016/j.yexcr.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
|
48
|
Knockdown of Yin Yang 1 enhances anticancer effects of cisplatin through protein phosphatase 2A-mediated T308 dephosphorylation of AKT. Cell Death Dis 2018; 9:747. [PMID: 29970878 PMCID: PMC6030060 DOI: 10.1038/s41419-018-0774-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
Cisplatin is still one of the first-line drugs for chemotherapy of head and neck squamous cell carcinoma (HNSCC) and shows a survival advantage for HNSCC. However, a substantial proportion of HNSCC eventually becomes resistance to cisplatin and the underlying mechanisms remain to be fully understood. Yin Yang 1 (YY1) is a multifunctional protein regulating both gene transcription and protein modifications and also plays a role in chemotherapy resistance. Here, we reported that knockdown of YY1 by lentivirus-mediated short hairpin RNA or tetracycline-inducible short hairpin RNA enhanced cisplatin-induced apoptosis and inhibition of cell proliferation, migration and invasion in the HNSCC cell lines, and inhibition of the xenograft tumor growth. The underlying mechanisms were revealed that knockdown of YY1 downregulated both S473 and T308 phosphorylation of AKT (protein kinase B), which was mainly responsible for cisplatin resistance, whereas overexpression of YY1 upregulated both S473 and T308 phosphorylation. Cisplatin upregulated YY1 mRNA and protein expression and both S473 and T308 phosphorylation of AKT. In the presence of cisplatin, knockdown of YY1 not only blocked cisplatin-induced increase in S473 and T308 phosphorylation of AKT, but still downregulated T308 phosphorylation. Moreover, protein phosphatase 2A (PP2A) antagonist, okadaic acid, upregulated T308, but not S473, phosphorylation, and simultaneously abolished YY1 knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. In addition, knockdown of YY1 promoted PP2A activity through upregulating mRNA and protein expressions of PP2A catalytic subunit alpha (PPP2CA) through the binding of YY1 in the promoter of PPP2CA. Conversely, activating PP2A by forskolin also promoted YY1 degradation and subsequently inhibited T308 phosphorylation. These results suggested that knockdown of YY1 enhanced anticancer effects of cisplatin through PP2A mediating T308 dephosphorylation of AKT, and that targeting YY1 or PP2A would enhance the efficiency of cisplatin chemotherapy in treatment of HNSCC.
Collapse
|
49
|
Patra P, Izawa T, Pena-Castillo L. REPA: Applying Pathway Analysis to Genome-Wide Transcription Factor Binding Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1270-1283. [PMID: 27019499 DOI: 10.1109/tcbb.2015.2453948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pathway analysis has been extensively applied to aid in the interpretation of the results of genome-wide transcription profiling studies, and has been shown to successfully find associations between the biological phenomena under study and biological pathways. There are two widely used approaches of pathway analysis: over-representation analysis, and gene set analysis. Recently genome-wide transcription factor binding data has become widely available allowing for the application of pathway analysis to this type of data. In this work, we developed regulatory enrichment pathway analysis (REPA) to apply gene set analysis to genome-wide transcription factor binding data to infer associations between transcription factors and biological pathways. We used the transcription factor binding data generated by the ENCODE project, and gene sets from the Molecular Signatures and KEGG databases. Our results showed that 54 percent of the predictions examined have literature support and that REPA's recall is roughly 54 percent. This level of precision is promising as several of REPA's predictions are expected to be novel and can be used to guide new research avenues. In addition, the results of our case studies showed that REPA enhances the interpretation of genome-wide transcription profiling studies by suggesting putative regulators behind the observed transcriptional responses.
Collapse
|
50
|
SOX7 Target Genes and Their Contribution to Its Tumor Suppressive Function. Int J Mol Sci 2018; 19:ijms19051451. [PMID: 29757932 PMCID: PMC5983648 DOI: 10.3390/ijms19051451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
SOX7 is a transcription factor and acts as a tumor suppressor, but its target genes in cancers are poorly explored. We revealed SOX7-mediated gene expression profile in breast cancer cells using microarray chips and discovered multiple altered signaling pathways. When combinatorially analyzing the microarray data with a gene array dataset from 759 breast cancer patients, we identified four genes as potential targets of SOX7 and validated them by quantitative PCR and chromatin immunoprecipitation assays. Among these four genes, we determined that SOX7-activated SPRY1 and SLIT2, and SOX7-repressed TRIB3 and MTHFD2 could all differentially contribute to SOX7-mediated tumor suppression. Overall, we identified multiple cancer-related pathways mediated by SOX7 and for the first time revealed SOX7-regulated target genes in a cancer-relevant context.
Collapse
|