1
|
Nik Amirah Auni NMA, Mohd Redzwan N, Fauzi AN, Yahya MM, Wong KK. Hypomethylating agents as emerging therapeutics for triple-negative breast cancer. Life Sci 2025; 363:123403. [PMID: 39824347 DOI: 10.1016/j.lfs.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties. In this review, the efficacy and anti-tumor immune responses triggered by HMAs in TNBC are presented and discussed. Essentially, overexpression of DNMTs is associated with poor prognosis and reduced TNBC survival rates, and these effects are negated by HMAs. In particular, HMAs could reverse epigenetic silencing of tumor suppressor genes and enhance immune recognition of TNBC cells. Clinical trials of HMAs in TNBCs are limited but early-stage trials indicate that HMAs are safe and tolerable. More clinical studies are required to establish the effectiveness of HMAs against the disease, as supported by preclinical data substantiating their effectiveness especially guadecitabine. Future research should focus on optimizing dosing and exploring combinations with immunotherapies to maximize the potential of HMAs in TNBC treatment.
Collapse
Affiliation(s)
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Agustine Nengsih Fauzi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Mahendran G, Shangaradas AD, Romero-Moreno R, Wickramarachchige Dona N, Sarasija SHGS, Perera S, Silva GN. Unlocking the epigenetic code: new insights into triple-negative breast cancer. Front Oncol 2024; 14:1499950. [PMID: 39744000 PMCID: PMC11688480 DOI: 10.3389/fonc.2024.1499950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets. This review delves into the therapeutic potential of epigenetic interventions in TNBC, with a focus on DNA methylation, histone modifications, and miRNA therapeutics. We examine the role of DNA methylation in gene silencing within TNBC and the development of DNA methylation inhibitors designed to reactivate silenced tumor suppressor genes. Histone modifications, through histone deacetylation and acetylation in particular, are critical in regulating gene expression. We explore the efficacy of histone deacetylase inhibitors (HDACi), which have shown promise in reversing aberrant histone deacetylation patterns, thereby restoring normal gene function, and suppressing tumor growth. Furthermore, the review highlights the dual role of miRNAs in TNBC as both oncogenes and tumor suppressors and discusses the therapeutic potential of miRNA mimics and inhibitors in modulating these regulatory molecules to inhibit cancer progression. By integrating these epigenetic therapies, we propose a multifaceted approach to target the underlying epigenetic mechanisms that drive TNBC progression. The synergistic use of DNA methylation inhibitors, HDACi, and the miRNA-based therapies offers a promising avenue for personalized treatment strategies, aiming to enhance the clinical outcome for patients with TNBC.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | | | | | | | - Sumeth Perera
- Department of Biochemistry, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
| | - Gayathri N. Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
3
|
Sato T, Oshi M, Huang JL, Chida K, Roy AM, Endo I, Takabe K. CD133 expression is associated with less DNA repair, better response to chemotherapy and survival in ER-positive/HER2-negative breast cancer. Breast Cancer Res Treat 2024; 208:415-427. [PMID: 39017815 PMCID: PMC11849687 DOI: 10.1007/s10549-024-07434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE CD133, a cancer stem cells (CSC) marker, has been reported to be associated with treatment resistance and worse survival in triple-negative breast cancer (BC). However, the clinical relevance of CD133 expression in ER-positive/HER2-negative (ER + /HER2-) BC, the most abundant subtype, remains unknown. METHODS The BC cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1904) and The Cancer Genome Atlas (TCGA, n = 1065) were used to obtain biological variables and gene expression data. RESULTS Epithelial cells were the exclusive source of CD133 gene expression in a bulk BC. CD133-high ER + /HER2- BC was associated with CD24, NOTCH1, DLL1, and ALDH1A1 gene expressions, as well as with WNT/β-Catenin, Hedgehog, and Notch signaling pathways, all characteristic for CSC. Consistent with a CSC phenotype, CD133-low BC was enriched with gene sets related to cell proliferation, such as G2M Checkpoint, MYC Targets V1, E2F Targets, and Ki67 gene expression. CD133-low BC was also linked with enrichment of genes related to DNA repair, such as BRCA1, E2F1, E2F4, CDK1/2. On the other hand, CD133-high tumors had proinflammatory microenvironment, higher activity of immune cells, and higher expression of genes related to inflammation and immune response. Finally, CD133-high tumors had better pathological complete response after neoadjuvant chemotherapy in GSE25066 cohort and better disease-free survival and overall survival in both TCGA and METABRIC cohorts. CONCLUSION CD133-high ER + /HER2- BC was associated with CSC phenotype such as less cell proliferation and DNA repair, but also with enhanced inflammation, better response to neoadjuvant chemotherapy and better prognosis.
Collapse
Affiliation(s)
- Takumi Sato
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- University of Tokyo Hospital, Tokyo, 113-8655, Japan
- National Hospital Organization Disaster Medical Center, Tokyo, 190-0014, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Jing Li Huang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Arya Mariam Roy
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, 14263, USA.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8520, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan.
| |
Collapse
|
4
|
Schmeing S, Hart P'. Challenges in Therapeutically Targeting the RNA-Recognition Motif. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1877. [PMID: 39668490 PMCID: PMC11638515 DOI: 10.1002/wrna.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention. However, it is still very challenging to find selective and potent RNA-competitors due to the small size of the domain and high structural conservation of its RNA binding interface. Despite these challenges, a selection of compounds has been reported for several RRM containing proteins, but often with limited biophysical evidence and low selectivity. A solution to selectively targeting RRM domains might be through avoiding the RNA-binding surface altogether, but rather look for composite pockets formed with other proteins or for protein-protein interaction sites that regulate the target's activity but are less conserved. Alternative modalities, such as oligonucleotides, peptides, and molecular glues, are exciting new approaches to address these challenging targets and achieve the goal of therapeutic intervention at the RNA regulatory level.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
5
|
Li J, Zhang X, Liu X, Ma X, Wang Y, Liu Y. JARID2 activation by NFYA promotes stemness of triple-negative breast cancer cells through the PI3K/AKT pathway. Expert Rev Anticancer Ther 2024; 24:1029-1040. [PMID: 39254227 DOI: 10.1080/14737140.2024.2394167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND This study aimed to investigate the role of Jumonji AT Rich Interacting Domain 2 (JARID2) in regulating triple-negative breast cancer (TNBC) stemness and its mechanism. RESEARCH DESIGN AND METHODS Bioinformatics analysis examined JARID2 expression, prognosis, and transcription factors. Quantitative polymerase chain reaction, western blot, and immunohistochemistry detected expression. Dual luciferase reporter gene and chromatin immunoprecipitation assays verified binding. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay detected viability and proliferation. Sphere formation assay detected the sphere formation efficiency. Flow cytometry detected CD44+/CD24- -marked stem cells. A xenograft tumor model verified the effect of JARID2 in vivo. RESULTS JARID2 and nuclear transcription factor Y subunit α (NFYA) were upregulated in TNBC tissues and positively correlated. Knockdown of JARID2 or NFYA inhibited cell stemness by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway. Enforced JARID2 expression rescued the suppressive effect of NFYA knockdown on the PI3K/AKT signaling pathway and cell stemness. Knockdown of JARID2 inhibited tumor growth and cell stemness in mice but was alleviated by concurrent overexpression of NFYA. CONCLUSIONS NFYA promotes TNBC cell stemness by upregulating JARID2 expression and regulating the PI3K/AKT signaling pathway, suggesting JARID2 as a potential target for innovating drugs that target TNBC stem cells.
Collapse
Affiliation(s)
- Jianjie Li
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangmei Zhang
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueliang Liu
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangmin Ma
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanfang Wang
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Mungra N, Nsole Biteghe FA, Huysamen AM, Hardcastle NS, Bunjun R, Naran K, Lang D, Richter W, Hunter R, Barth S. An Investigation into the In Vitro Targeted Killing of CD44-Expressing Triple-Negative Breast Cancer Cells Using Recombinant Photoimmunotherapeutics Compared to Auristatin-F-Based Antibody-Drug Conjugates. Mol Pharm 2024; 21:4098-4115. [PMID: 39047292 DOI: 10.1021/acs.molpharmaceut.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Centre for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, United States
| | - Fleury A Nsole Biteghe
- College of Science, Department of Biotechnology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Allan M Huysamen
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Natasha S Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
7
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, Troschel FM. The Musashi RNA-binding proteins in female cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res 2023; 11:76. [PMID: 37620963 PMCID: PMC10463710 DOI: 10.1186/s40364-023-00516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins have increasingly been identified as important regulators of gene expression given their ability to bind distinct RNA sequences and regulate their fate. Mounting evidence suggests that RNA-binding proteins are involved in the onset and progression of multiple malignancies, prompting increasing interest in their potential for therapeutic intervention.The Musashi RNA binding proteins Musashi-1 and Musashi-2 were initially identified as developmental factors of the nervous system but have more recently been found to be ubiquitously expressed in physiological tissues and may be involved in pathological cell behavior. Both proteins are increasingly investigated in cancers given dysregulation in multiple tumor entities, including in female malignancies. Recent data suggest that the Musashi proteins serve as cancer stem cell markers as they contribute to cancer cell proliferation and therapy resistance, prompting efforts to identify mechanisms to target them. However, as the picture remains incomplete, continuous efforts to elucidate their role in different signaling pathways remain ongoing.In this review, we focus on the roles of Musashi proteins in tumors of the female - breast, endometrial, ovarian and cervical cancer - as we aim to summarize current knowledge and discuss future perspectives.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Isabel Falke
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maria T Löblein
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Th Eich
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
10
|
Corsaro L, Gambino VS. Notch, SUMOylation, and ESR-Mediated Signalling Are the Main Molecular Pathways Showing Significantly Different Epimutation Scores between Expressing or Not Oestrogen Receptor Breast Cancer in Three Public EWAS Datasets. Cancers (Basel) 2023; 15:4109. [PMID: 37627137 PMCID: PMC10452656 DOI: 10.3390/cancers15164109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that, although not completely homogeneous, differ in biological characteristics, clinical behaviour, and therapeutic options. The study, based on three publicly available EWAS (Epigenetic Wide Association Study) datasets, focuses on the comparison between these two groups of breast cancer using an epimutation score. The score is calculated not only based on the presence of the epimutation, but also on the deviation amplitude of the methylation outlier value. For each dataset, we performed a functional analysis based first on the functional gene region of each annotated gene (we aggregated the data per gene region TSS1500, TSS200, first-exon, and body-gene identified by the information from the Illumina Data Sheet), and then, we performed a pathway enrichment analysis through the REACTOME database based on the genes with the highest epimutation score. Thus, we blended our results and found common pathways for all three datasets. We found that a higher and significant epimutation score due to hypermethylation in ER-positive BC is present in the promoter region of the genes belonging to the SUMOylation pathway, the Notch pathway, the IFN-γ signalling pathway, and the deubiquitination protease pathway, while a higher and significant level of epimutation due to hypomethylation in ER-positive BC is present in the promoter region of the genes belonging to the ESR-mediated pathway. The presence of this state of promoter hypomethylation in the ESR-mediated signalling genes is consistent and coherent with an active signalling pathway mediated by oestrogen function in the group of ER-positive BC. The SUMOylation and Notch pathways are associated with BC pathogenesis and have been found to play distinct roles in the two BC subgroups. We speculated that the altered methylation profile may play a role in regulating signalling pathways with specific functions in the two subgroups of ER BC.
Collapse
Affiliation(s)
- Luigi Corsaro
- Centro Diagnostico Italiano, Università di Pavia, 20100 Milan, Italy
| | | |
Collapse
|
11
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
12
|
Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol 2023; 102:151321. [PMID: 37137199 DOI: 10.1016/j.ejcb.2023.151321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The ability of cancer cells to finally overcome various lines of treatment in due course has always baffled the scientific community. Even with the most promising therapies, relapse is ultimately seen, and this resilience has proved to be a major hurdle in the management of cancer. Accumulating evidence now attributes this resilience to plasticity. Plasticity is the ability of cells to change their properties and is substantial as it helps in normal tissue regeneration or post-injury repair processes. It also helps in the overall maintenance of homeostasis. Unfortunately, this critical ability of cells, when activated incorrectly, can lead to numerous diseases, including cancer. Therefore, in this review, we focus on the plasticity aspect with an emphasis on cancer stem cells (CSCs). We discuss the various forms of plasticity that provide survival advantages to CSCs. Moreover, we explore various factors that affect plasticity. Furthermore, we provide the therapeutic implications of plasticity. Finally, we provide an insight into the future targeted therapies involving plasticity for better clinical outcomes.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nachiket Kelkar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Carol Tresa Johnson
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
13
|
Kameda-Smith MM, Zhu H, Luo EC, Suk Y, Xella A, Yee B, Chokshi C, Xing S, Tan F, Fox RG, Adile AA, Bakhshinyan D, Brown K, Gwynne WD, Subapanditha M, Miletic P, Picard D, Burns I, Moffat J, Paruch K, Fleming A, Hope K, Provias JP, Remke M, Lu Y, Reya T, Venugopal C, Reimand J, Wechsler-Reya RJ, Yeo GW, Singh SK. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat Commun 2022; 13:7506. [PMID: 36473869 PMCID: PMC9726987 DOI: 10.1038/s41467-022-35118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.
Collapse
Affiliation(s)
- Michelle M. Kameda-Smith
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Helen Zhu
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.231844.80000 0004 0474 0428University Health Network, Toronto, ON Canada ,grid.494618.6Vector Institute Toronto, Toronto, ON Canada
| | - En-Ching Luo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Yujin Suk
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Agata Xella
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Brian Yee
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Chirayu Chokshi
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Sansi Xing
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Frederick Tan
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Raymond G. Fox
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Ashley A. Adile
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - David Bakhshinyan
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Kevin Brown
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William D. Gwynne
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Minomi Subapanditha
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada
| | - Petar Miletic
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Daniel Picard
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ian Burns
- grid.25073.330000 0004 1936 8227Michael G DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jason Moffat
- grid.17063.330000 0001 2157 2938Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kamil Paruch
- grid.10267.320000 0001 2194 0956Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ,grid.483343.bInternational Clinical Research Center, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Adam Fleming
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Pediatrics, Hematology and Oncology Division, Hamilton, Canada
| | - Kristin Hope
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - John P. Provias
- grid.25073.330000 0004 1936 8227McMaster University, Departments of Neuropathology, Hamilton, Canada
| | - Marc Remke
- grid.14778.3d0000 0000 8922 7789Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yu Lu
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Tannishtha Reya
- grid.266100.30000 0001 2107 4242Departments of Pharmacology and Medicine, University of California San Diego School of Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Chitra Venugopal
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Jüri Reimand
- grid.419890.d0000 0004 0626 690XComputational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J. Wechsler-Reya
- grid.479509.60000 0001 0163 8573Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA ,grid.239585.00000 0001 2285 2675Present Address: Herbert Irving Comprehensive Cancer Center, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY USA
| | - Gene W. Yeo
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Stem Cell Program, University of California San Diego, La Jolla, CA USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, CA USA
| | - Sheila K. Singh
- grid.25073.330000 0004 1936 8227Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227McMaster University, Department of Pediatrics, Hamilton, Canada
| |
Collapse
|
14
|
Chen Y, Qin H, Zheng L. Research progress on RNA-binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Muhammad A, Forcados GE, Katsayal BS, Bako RS, Aminu S, Sadiq IZ, Abubakar MB, Yusuf AP, Malami I, Faruk M, Ibrahim S, Pase PA, Ahmed S, Abubakar IB, Abubakar M, Yates C. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics 2022; 14:711-726. [PMID: 35473304 DOI: 10.2217/epi-2022-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria.,Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | | | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Rabiatu Suleiman Bako
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | | | - Ibrahim Malami
- Department of Pharmacognosy & Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | - Mohammed Faruk
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Peter Abur Pase
- Department of Surgery, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Saad Ahmed
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Kebbi State University of Science & Technology, PMB 1144, Aliero, Kebbi State, Nigeria
| | - Murtala Abubakar
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Clayton Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
17
|
Mazloumi Z, Farahzadi R, Rafat A, Asl KD, Karimipour M, Montazer M, Movassaghpour AA, Dehnad A, Charoudeh HN. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol 2022; 125:104757. [PMID: 35339454 DOI: 10.1016/j.yexmp.2022.104757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
DNA methylation, as an epigenetic mechanism, occurs by adding a methyl group of cytosines in position 5 by DNA methyltransferases and has essential roles in cellular function, especially in the transcriptional regulation of embryonic and adult stem cells. Hypomethylation and hypermethylation cause either the expression or inhibition of genes, and there is a tight balance between regulating the activation or repression of genes in normal cellular activity. Abnormal methylation is well-known hallmark of cancer development and progression and can switch normal stem cells into cancer stem cells. Cancer Stem Cells (CSCs) are minor populations of tumor cells that exhibit unique properties such as self-regeneration, resistance to chemotherapy, and high ability of metastasis. The purpose of this paper is to show how aberrant DNA methylation accumulation affects self-renewal, differentiation, multidrug-resistant, and metastasis processes in cancer stem cells.
Collapse
Affiliation(s)
- Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Cardiovascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Dehnad
- Department of Bacterial Disease Research, Razi Vaccine and Serum Research Institute, AREEO, Tabriz, Iran
| | | |
Collapse
|
18
|
Eldridge L, Berrigan D. Structural Racism and Triple-Negative Breast Cancer Among Black and White Women in the United States. Health Equity 2022; 6:116-123. [PMID: 35261938 PMCID: PMC8896209 DOI: 10.1089/heq.2021.0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Linsey Eldridge
- National Cancer Institute, Center for Global Health, Rockville, Maryland, USA
| | - David Berrigan
- National Cancer Institute, Division of Cancer Control and Population Sciences, Rockville, Maryland, USA
| |
Collapse
|
19
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
20
|
Multifaceted roles of long non-coding RNAs in triple-negative breast cancer: biology and clinical applications. Biochem Soc Trans 2021; 48:2791-2810. [PMID: 33258920 DOI: 10.1042/bst20200666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype that lacks targeted therapy due to the absence of estrogen, progesterone, and HER2 receptors. Moreover, TNBC was shown to have a poor prognosis, since it involves aggressive phenotypes that confer significant hindrance to therapeutic treatments. Recent state-of-the-art sequencing technologies have shed light on several long non-coding RNAs (lncRNAs), previously thought to have no biological function and were considered as genomic junk. LncRNAs are involved in various physiological as well as pathological conditions, and play a key role in drug resistance, gene expression, and epigenetic regulation. This review mainly focuses on exploring the multifunctional roles of candidate lncRNAs, and their strong association with TNBC development. We also summarise various emerging research findings that establish novel paradigms of lncRNAs function as oncogenes and/or tumor suppressors in TNBC development, suggesting their role as prospective therapeutic targets.
Collapse
|
21
|
Kumari M, Krishnamurthy PT, Sola P. Targeted Drug Therapy to Overcome Chemoresistance in Triple-negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:559-572. [PMID: 32370716 DOI: 10.2174/1568009620666200506110850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative Breast Cancer (TNBC) is the most aggressive and prevailing breast cancer subtype. The chemotherapeutics used in the treatment of TNBC suffer from chemoresistance, dose-limiting toxicities and off-target side effects. As a result, conventional chemotherapeutics are unable to prevent tumor growth, metastasis and result in failure of therapy. Various new targets such as BCSCs surface markers (CD44, CD133, ALDH1), signaling pathways (IL-6/JAK/STAT3, notch), pro and anti-apoptotic proteins (Bcl-2, Bcl-xL, DR4, DR5), hypoxic factors (HIF-1α, HIF-2α) and drug efflux transporters (ABCC1, ABCG2 and ABCB1) have been exploited to treat TNBC. Further, to improve the efficacy and safety of conventional chemotherapeutics, researchers have tried to deliver anticancer agents specifically to the TNBCs using nanocarrier based drug delivery. In this review, an effort has been made to highlight the various factors responsible for the chemoresistance in TNBC, novel molecular targets of TNBC and nano-delivery systems employed to achieve sitespecific drug delivery to improve efficacy and reduce off-target side effects.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| |
Collapse
|
22
|
Sin RWY, Foo DCC, Iyer DN, Fan MSY, Li X, Lo OSH, Law WL, Ng L. A Pilot Study Investigating the Expression Levels of Pluripotency-Associated Genes in Rectal Swab Samples for Colorectal Polyp and Cancer Diagnosis and Prognosis. Stem Cells Int 2021; 2021:4139528. [PMID: 34335790 PMCID: PMC8324395 DOI: 10.1155/2021/4139528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Change in gene expression is inevitable in cancer development. With more studies demonstrating the contributions of cancer stem cells (CSCs) in colorectal cancer (CRC) development, this study is aimed at investigating whether rectal swab specimen serves as a tool for detection of dysregulation of CSC or stem cell (SC) markers and at evaluating its potential as a new promising screening method for high-risk patients. Expression levels of 15 pluripotency-associated genes were assessed by quantitative PCR in 53 rectal swab specimens referred for endoscopic screening. Dysregulated genes and joint panels based on such genes were examined for their diagnostic potentials for both polyp and CRC. Out of 15 genes, Oct4, CD26, c-MYC, and CXCR4 showed significantly differential expression among normal, polyp, and CRC patients. A panel of Oct4 and CD26 showed an AUC value of 0.80 (p = 0.003) in identifying CRC patients from polyp/normal subjects, with sensitivity and specificity of 84.6% and 69.2%. A panel of c-MYC and CXCR4 achieved CRC/polyp identification with an AUC value of 0.79 (p = 0.002), with a sensitivity of 82.8% and specificity of 80.0%. The sensitivity for polyp and CRC was 80.0% and 85.7%, respectively. Further analysis showed that higher c-MYC and CXCR4 level was detected in normal subjects who developed polyps after 5-6 years, in comparison with subjects with no lesion developed, and the AUC of the c-MYC and CXCR4 panel increased to 0.88 (p < 0.001), with sensitivity and specificity of 84.4% and 92.3%, respectively, when these patients were included in the polyp group. This study suggests that the Oct4 and CD26 panel is a promising biomarker for distinguishing CRC from normal and polyp patients, whereas the c-MYC and CXCR4 panel may identify polyp and CRC from normal individuals.
Collapse
Affiliation(s)
- Ryan Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dominic Chi-Chung Foo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Sau-Yee Fan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oswens Siu-Hung Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Lun Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
24
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
25
|
French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer 2021; 148:2884-2897. [PMID: 33197277 PMCID: PMC8246550 DOI: 10.1002/ijc.33398] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Cancerous tumours contain a rare subset of cells with stem-like properties that are termed cancer stem cells (CSCs). CSCs are defined by their ability to divide both symmetrically and asymmetrically, to initiate new tumour growth and to tolerate the foreign niches required for metastatic dissemination. Accumulating evidence suggests that tumours arise from cells with stem-like properties, the generation of CSCs is therefore likely to be an initiatory event in carcinogenesis. Furthermore, CSCs in established tumours exist in a dynamic and plastic state, with nonstem tumour cells thought to be capable of de-differentiation to CSCs. The regulation of the CSC state both during tumour initiation and within established tumours is a desirable therapeutic target and is mediated by epigenetic factors. In this review, we will explore the epigenetic parallels between induced pluripotency and the generation of CSCs, and discuss how the epigenetic regulation of CSCs opens up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
26
|
Ghasemi S, Xu S, Nabavi SM, Amirkhani MA, Sureda A, Tejada S, Lorigooini Z. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother Res 2021; 35:3649-3664. [PMID: 33619811 DOI: 10.1002/ptr.7059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations are one of the main factors that disrupt the expression of genes and consequently, they have an important role in the carcinogenicity and the progression of different cancers. Cancer stem cells (CSCs) are accountable for the recurrence, metastasis, and therapeutic failure of cancer. The noticeable and specific pathways in CSCs can be organized by epigenetic mechanisms such as DNA methylation, chromatin remodeling, regulatory RNAs, among others. Since epigenetics modifications can be changed and reversed, it is a possible tool for cancer control and treatment. Epigenetic therapies against CSCs are emerging as a very new strategy with a good future expectation to treat cancer patients. Phenolic compounds are a vast group of substances with anticarcinogenic functions, antiinflammatory, and antioxidative activities. It seems these characteristics are related to neutralizing CSCs development, their microenvironment, and metabolism through epigenetic mechanisms. In the current work, the types of epigenetic changes known in these cells are introduced. In addition, some studies about the use of polyphenols acting through a variety of epigenetic mechanisms to counteract these cells will be reviewed. The reported results seem to indicate that the use of these phenolic compounds may be useful for CSCs defeat.
Collapse
Affiliation(s)
- Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of neurophysiology. Biology Department, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
27
|
Tolkach Y, Zarbl R, Bauer S, Ritter M, Ellinger J, Hauser S, Hüser L, Klauck SM, Altevogt P, Sültmann H, Dietrich D, Kristiansen G. DNA Promoter Methylation and ERG Regulate the Expression of CD24 in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:618-630. [PMID: 33485866 DOI: 10.1016/j.ajpath.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
CD24 is overexpressed in many human cancers and is a driver of tumor progression. Herein, molecular mechanisms leading to up-regulation of CD24 in prostate cancer were studied. DNA methylation of the CD24 gene promoter at four loci using quantitative methylation-specific PCR was evaluated. Expression of CD24 in tumor tissues was studied by immunohistochemistry. To corroborate the results in vitro, ERG-inducible LNCaP TMPRSS2:ERG (T2E) cells and luciferase promoter assays were used. DNA methylation of the CD24 promoter was significantly higher in tumors than in benign tissue and was associated with biochemical recurrence-free survival, tumor grade, and stage. CD24 mRNA and protein expression were significantly higher in T2E-positive, ERG-overexpressing, and/or PTEN-deficient cases. Higher levels of CD24 protein expression conferred shorter biochemical recurrence-free survival, and these observations were confirmed using The Cancer Genome Atlas prostate adenocarcinoma data. In silico analysis of the CD24 promoter revealed an ERG binding site in between the DNA methylation sites. ERG overexpression led to a strong induction of CD24 mRNA and protein expression. Luciferase promoter assays using the wild-type and mutated ERG binding site within the CD24 promoter showed ERG-dependent activation. Collectively, our results suggest that promoter DNA methylation of the CD24 gene and T2E fusion status are factors involved in the up-regulation of CD24 in patients with prostate cancer.
Collapse
Affiliation(s)
- Yuri Tolkach
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany
| | - Romina Zarbl
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center, German Cancer Consortium, and National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Ritter
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Stephan Hauser
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center, German Cancer Consortium, and National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center, German Cancer Consortium, and National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Dimo Dietrich
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany.
| |
Collapse
|
28
|
Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol 2020; 157:103196. [PMID: 33307198 DOI: 10.1016/j.critrevonc.2020.103196] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this review is to elucidate the role of miRNAs in triple negative breast cancer (TNBC). To achieve our goal, we searched databases such as PubMed, ScienceDirect, Springer, Web of Science and Scopus. We retrieved up to 1233 articles, based a rigorous selection criterion, only 197 articles were extensively reviewed. We selected articles only addressing TNBC, but not other types of breast cancer, with the employed approach being miRNA analysis and/or profiling. Our extensive review resulted in grouping of miRNAs into categories in which specific members of miRNAs have roles in specific mechanism in TNBC i.e., carcinogenesis, invasion, metastasis, apoptosis, diagnosis, prognosis, and treatment. TNBC is an aggressive subtype of breast cancer; therefore, different approaches for accurate diagnosis, prognosis and treatment are needed. In this review we summarize the up-to-date miRNA profiling, prognostic, and therapeutic findings that add to the route of controlling TNBC.
Collapse
|
29
|
Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Gure AO, Ghaedi K. Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells. Stem Cell Res Ther 2020; 11:193. [PMID: 32448364 PMCID: PMC7245930 DOI: 10.1186/s13287-020-01703-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding protein, musashi1 (MSI1), is a main protein in asymmetric cell division of the sensory organ precursor cells, whereas its expression is reported to be upregulated in cancers. This protein is a critical element in proliferation of stem and cancer stem cells, which acts through Wnt and Notch signaling pathways. Moreover, MSI1 modulates malignancy and chemoresistance of lung cancer cells via activating the Akt signaling. Due to the main role of MSI1 in metastasis and cancer development, MSI1 would be an appropriate candidate for cancer therapy. Downregulation of MSI1 inhibits proliferation of cancer stem cells and reduces the growth of solid tumors in several cancers. On the other hand, MSI1 expression is regulated by microRNAs in such a way that several different tumor suppressor miRNAs negatively regulate oncogenic MSI1 and inhibit migration and tumor metastasis. The aim of this review is summarizing the role of MSI1 in stem cell proliferation and cancer promotion.
Collapse
Affiliation(s)
- Mahboobeh Forouzanfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran
| | - Liana Lachinani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
30
|
Liang W, Lin Z, Du C, Qiu D, Zhang Q. mRNA modification orchestrates cancer stem cell fate decisions. Mol Cancer 2020; 19:38. [PMID: 32101138 PMCID: PMC7043046 DOI: 10.1186/s12943-020-01166-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
Despite their small numbers, cancer stem cells play a central role in driving cancer cell growth, chemotherapeutic resistance, and distal metastasis. Previous studies mainly focused on how DNA or histone modification determines cell fate in cancer. However, it is still largely unknown how RNA modifications orchestrate cancer cell fate decisions. More than 170 distinct RNA modifications have been identified in the RNA world, while only a few RNA base modifications have been found in mRNA. Growing evidence indicates that three mRNA modifications, inosine, 5-methylcytosine, and N6-methyladenosine, are essential for the regulation of spatiotemporal gene expression during cancer stem cell fate transition. Furthermore, transcriptome-wide mapping has found that the aberrant deposition of mRNA modification, which can disrupt the gene regulatory network and lead to uncontrollable cancer cell growth, is widespread across different cancers. In this review, we try to summarize the recent advances of these three mRNA modifications in maintaining the stemness of cancer stem cells and discuss the underlying molecular mechanisms, which will shed light on the development of novel therapeutic approaches for eradicating cancer stem cells.
Collapse
Affiliation(s)
- Weicheng Liang
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexiao Lin
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Cong Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Qi Zhang
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China. .,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Cole AJ, Fayomi AP, Anyaeche VI, Bai S, Buckanovich RJ. An evolving paradigm of cancer stem cell hierarchies: therapeutic implications. Theranostics 2020; 10:3083-3098. [PMID: 32194856 PMCID: PMC7053211 DOI: 10.7150/thno.41647] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over a decade of research has confirmed the critical role of cancer stem-like cells (CSCs) in tumor initiation, chemoresistance, and metastasis. Increasingly, CSC hierarchies have begun to be defined with some recurring themes. This includes evidence that these hierarchies are 'flexible,' with both cell state transitions and dedifferentiation events possible. These findings pose therapeutic hurdles and opportunities. Here, we review cancer stem cell hierarchies and their interactions with the tumor microenvironment. We also discuss the current therapeutic approaches designed to target CSC hierarchies and initial clinical trial results for CSC targeting agents. While cancer stem cell targeted therapies are still in their infancy, we are beginning to see encouraging results that suggest a positive outlook for CSC-targeting approaches.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Yu J, Zayas J, Qin B, Wang L. Targeting DNA methylation for treating triple-negative breast cancer. Pharmacogenomics 2019; 20:1151-1157. [PMID: 31755366 PMCID: PMC7026764 DOI: 10.2217/pgs-2019-0078] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.
Collapse
Affiliation(s)
- Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacqueline Zayas
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine & The Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
34
|
CD133 in Breast Cancer Cells: More than a Stem Cell Marker. JOURNAL OF ONCOLOGY 2019; 2019:7512632. [PMID: 31636668 PMCID: PMC6766124 DOI: 10.1155/2019/7512632] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
Initially correlated with hematopoietic precursors, the surface expression of CD133 was also found in epithelial and nonepithelial cells from adult tissues in which it has been associated with a number of biological events. CD133 is expressed in solid tumors as well, including breast cancer, in which most of the studies have been focused on its use as a surface marker for the detection of cells with stem-like properties (i.e., cancer stem cells (CSCs)). Differently with other solid tumors, very limited and in part controversial are the information about the significance of CD133 in breast cancer, the most common malignancy among women in industrialized countries. In this review, we summarize the latest findings about the implication of CD133 in breast tumors, highlighting its role in tumor cells with a triple negative phenotype in which it directly regulates the expression of proteins involved in metastasis and drug resistance. We provide updates about the prognostic role of CD133, underlining its value as an indicator of increased malignancy of both noninvasive and invasive breast tumor cells. The molecular mechanisms at the basis of the regulation of CD133 levels in breast tumors have also been reviewed, highlighting experimental strategies capable to restrain its level that could be taken into account to reduce malignancy and/or to prevent the progression of breast tumors.
Collapse
|
35
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
36
|
Wu Y, Shi W, Tang T, Wang Y, Yin X, Chen Y, Zhang Y, Xing Y, Shen Y, Xia T, Guo C, Pan Y, Jin L. miR-29a contributes to breast cancer cells epithelial-mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death Dis 2019; 10:176. [PMID: 30792382 PMCID: PMC6385178 DOI: 10.1038/s41419-019-1437-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most prevalent cancer in women worldwide, which remains incurable once metastatic. Breast cancer stem cells (BCSCs) are a small subset of breast cancer cells which are essential in tumor formation, metastasis, and drug resistance. microRNAs (miRNAs) play important roles in the breast cancer cells and BCSCs by regulating specific genes. In this study, we found that miR-29a was up-regulated in BCSCs, in aggressive breast cancer cell line and in breast cancer tissues. We also confirmed suppressor of variegation 4–20 homolog 2 (SUV420H2), which is a histone methyltransferase that specifically trimethylates Lys-20 of histone H4 (H4K20), as the target of miR-29a. Both miR-29a overexpression and SUV420H2 knockdown in breast cancer cells promoted their migration and invasion in vitro and in vivo. Furthermore, we discovered that SUV420H2-targeting miR-29a attenuated the repression of connective tissue growth factor (CTGF) and growth response protein-1 (EGR1) by H4K20 trimethylation and promoted the EMT progress of breast cancer cells. Taken together, our findings reveal that miR-29a plays critical roles in the EMT and metastasis of breast cancer cells through targeting SUV420H2. These findings may provide new insights into novel molecular therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Wanyue Shi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Tingting Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yidong Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Xin Yin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yanlin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yun Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Tiansong Xia
- Department of Breast Surgery, Breast Disease Center of Jiangsu Province, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu province, China
| | - Changying Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu province, China.
| |
Collapse
|
37
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Garrido-Castro AC, Lin NU, Polyak K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discov 2019; 9:176-198. [PMID: 30679171 PMCID: PMC6387871 DOI: 10.1158/2159-8290.cd-18-1177] [Citation(s) in RCA: 889] [Impact Index Per Article: 148.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) remains the most challenging breast cancer subtype to treat. To date, therapies directed to specific molecular targets have rarely achieved clinically meaningful improvements in outcomes of patients with TNBC, and chemotherapy remains the standard of care. Here, we seek to review the most recent efforts to classify TNBC based on the comprehensive profiling of tumors for cellular composition and molecular features. Technologic advances allow for tumor characterization at ever-increasing depth, generating data that, if integrated with clinical-pathologic features, may help improve risk stratification of patients, guide treatment decisions and surveillance, and help identify new targets for drug development. SIGNIFICANCE: TNBC is characterized by higher rates of relapse, greater metastatic potential, and shorter overall survival compared with other major breast cancer subtypes. The identification of biomarkers that can help guide treatment decisions in TNBC remains a clinically unmet need. Understanding the mechanisms that drive resistance is key to the design of novel therapeutic strategies to help prevent the development of metastatic disease and, ultimately, to improve survival in this patient population.
Collapse
Affiliation(s)
- Ana C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Mohamad Hanif EA, Shah SA. Overview on Epigenetic Re-programming: A Potential Therapeutic Intervention in Triple Negative Breast Cancers. Asian Pac J Cancer Prev 2018; 19:3341-3351. [PMID: 30583339 PMCID: PMC6428526 DOI: 10.31557/apjcp.2018.19.12.3341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer treatments leads to variable responses. Hormonal therapy is beneficial to receptor positive breast cancer subtypes and display better clinical outcome than triple negative breast cancers (TNBCs) with FEC (5-Fluorouracil, Epirubicin and Cyclophosphamide) the mainstay chemotherapy regiment. Owning to their negative expressions of estrogen (ER), progesterone (PR) and HER2 receptors, disease recurrence and metastasis befalls some patients indicating resistance to FEC. Involvement of epigenetic silencing through DNA methylation, histone methylation, acetylation and sumoylation may be the key player in FEC chemoresistance. Epigenetic and molecular profiling successfully classified breast cancer subtypes, indicating potential driver mechanisms to the progression of TNBCs but functional mechanisms behind chemoresistance of these molecular markers are not well defined. Several epigenetic inhibitors and drugs have been used in the management of cancers but these attempts are mainly beneficial in hematopoietic cancers and not specifically favourable in solid tumours. Hypothetically, upon administration of epigenetic drugs, recovery of tumour suppressor genes is expected. However, high tendency of switching on global metastatic genes is predicted. Polycomb repressive complex (PRC) such as EZH2, SETD1A, DNMT, is known to have repressive effects in gene regulation and shown to inhibit cell proliferation and invasion in breast cancers. Individual epigenetic regulators may be an option to improve chemo-drug delivery in cancers. This review discussed on molecular signatures of various breast cancer subtypes and on-going attempts in understanding underlying molecular mechanisms of epigenetic regulators as well as providing insights on possible ways to utilize epigenetic enzymes/inhibitors with responses to chemotherapeutic drugs to re-program cellular and biological outcome in TNBCs.
Collapse
|
40
|
Abstract
Although we have come a long way in our understanding of the signals that drive cancer growth, and how these signals can be targeted, effective control of this disease remains a key scientific and medical challenge. The therapy resistance and relapse that are commonly seen are driven in large part by the inherent heterogeneity within cancers that allows drugs to effectively eliminate some, but not all, malignant cells. Here, we focus on the fundamental drivers of this heterogeneity by examining emerging evidence that shows that these traits are often controlled by the disruption of normal cell fate and aberrant adoption of stem cell signals. We discuss how undifferentiated cells are preferentially primed for transformation and often serve as the cell of origin for cancers. We also consider evidence showing that activation of stem cell programmes in cancers can lead to progression, therapy resistance and metastatic growth and that targeting these attributes may enable better control over a difficult disease.
Collapse
Affiliation(s)
- Nikki K Lytle
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Alison G Barber
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA.
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA.
| |
Collapse
|
41
|
Temian DC, Pop LA, Irimie AI, Berindan-Neagoe I. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J Breast Cancer 2018; 21:233-243. [PMID: 30275851 PMCID: PMC6158152 DOI: 10.4048/jbc.2018.21.e41] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies–the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis–DNA methylation, histone modifications, and noncoding RNAs–advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.
Collapse
Affiliation(s)
- Daiana Cosmina Temian
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Division of Dental Propaedeutics, Aesthetic, Department of Prosthetic Dentistry and Dental Materials, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MedFUTURE Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
42
|
|
43
|
Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, Jung I, Matvekas A, Stuckey JA, Sun D. Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem 2018; 293:2125-2136. [PMID: 29263092 PMCID: PMC5808772 DOI: 10.1074/jbc.m117.811463] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/14/2017] [Indexed: 01/07/2023] Open
Abstract
The transcription factor BCL11A has recently been reported to be a driving force in triple-negative breast cancer (TNBC), contributing to the maintenance of a chemoresistant breast cancer stem cell (BCSC) population. Although BCL11A was shown to suppress γ-globin and p21 and to induce MDM2 expression in the hematopoietic system, its downstream targets in TNBC are still unclear. For its role in transcriptional repression, BCL11A was found to interact with several corepressor complexes; however, the mechanisms underlying these interactions remain unknown. Here, we reveal that BCL11A interacts with histone methyltransferase (PRC2) and histone deacetylase (NuRD and SIN3A) complexes through their common subunit, RBBP4/7. In fluorescence polarization assays, we show that BCL11A competes with histone H3 for binding to the negatively charged top face of RBBP4. To define that interaction, we solved the crystal structure of RBBP4 in complex with an N-terminal peptide of BCL11A (residues 2-16, BCL11A(2-16)). The crystal structure identifies novel interactions between BCL11A and the side of the β-propeller of RBBP4 that are not seen with histone H3. We next show that BCL11A(2-16) pulls down RBBP4, RBBP7, and other components of PRC2, NuRD, and SIN3A from the cell lysate of the TNBC cell line SUM149. Furthermore, we demonstrate the therapeutic potential of targeting the RBBP4-BCL11A binding by showing that a BCL11A peptide can decrease aldehyde dehydrogenase-positive BCSCs and mammosphere formation capacity in SUM149. Together, our findings have uncovered a previously unidentified mechanism that BCL11A may use to recruit epigenetic complexes to regulate transcription and promote tumorigenesis.
Collapse
Affiliation(s)
- Rebecca Reed Moody
- From the Chemical Biology Program, ,Department of Pharmaceutical Sciences, College of Pharmacy
| | - Miao-Chia Lo
- Department of Pharmaceutical Sciences, College of Pharmacy, , To whom correspondence may be addressed. Tel.:
858-784-1624; Fax:
734-936-7675; E-mail:
| | | | | | | | | | - Inkyung Jung
- Department of Pharmaceutical Sciences, College of Pharmacy
| | | | - Jeanne A. Stuckey
- Life Sciences Institute, and ,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Duxin Sun
- From the Chemical Biology Program, ,Department of Pharmaceutical Sciences, College of Pharmacy, , To whom correspondence may be addressed. Tel.:
734-615-8740; Fax:
734-936-7675; E-mail:
| |
Collapse
|
44
|
Cantile M, Collina F, D'Aiuto M, Rinaldo M, Pirozzi G, Borsellino C, Franco R, Botti G, Di Bonito M. Nuclear Localization of Cancer Stem Cell Marker CD133 in Triple-Negative Breast Cancer: A Case Report. TUMORI JOURNAL 2018; 99:e245-50. [DOI: 10.1177/030089161309900523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aim and background It has been recently demonstrated that the detection of stem cell niches in triple-negative (TN) breast cancer may provide good prognostic clues for this tumor. Methods and study design We investigated the subcellular expression and localization of the cancer stem cell marker CD133 in a TN breast cancer biopsy from a 42-year-old Caucasian woman with a histological diagnosis of high-grade invasive ductal breast carcinoma by immunohistochemistry, flow cytometry and quantitative real-time PCR (qRT-PCR). Results We describe for the first time in a TN breast cancer the nuclear mislocalization of CD133, which normally shows membrane localization and more sporadically cytoplasmic localization. We also found this aberrant expression with qRT-PCR analysis but not flow cytometry. Conclusions Nuclear localization of CD133 may be an indicator of poor prognosis in TN breast cancer, as it is known that surface molecules, when moving into the nucleus, can act as transcriptional regulators by interfering with molecular pathways directly connected to the proliferation and differentiation of tumor cells.
Collapse
Affiliation(s)
- Monica Cantile
- Pathology Unit, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | - Francesca Collina
- Pathology Unit, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | - Massimiliano D'Aiuto
- Department of Breast Surgery and Oncology, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | - Massimo Rinaldo
- Department of Breast Surgery and Oncology, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | - Giuseppe Pirozzi
- Pathology Unit, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | | | - Renato Franco
- Pathology Unit, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | - Gerardo Botti
- Pathology Unit, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| | - Maurizio Di Bonito
- Pathology Unit, Division of Breast Surgery, National Cancer Institute, Pascale Foundation, Naples
| |
Collapse
|
45
|
Chen HY, Lin LT, Wang ML, Lee SH, Tsai ML, Tsai CC, Liu WH, Chen TC, Yang YP, Lee YY, Chang YL, Huang PI, Chen YW, Lo WL, Chiou SH, Chen MT. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma. Oncotarget 2018; 7:42485-42501. [PMID: 27285760 PMCID: PMC5173150 DOI: 10.18632/oncotarget.9890] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiform (GBM) is one of the most lethal human malignant brain tumors with high risks of recurrence and poor treatment outcomes. The RNA-binding protein Musashi-1 (MSI1) is a marker of neural stem/progenitor cells. Recent study showed that high expression level of MSI1 positively correlates with advanced grade of GBM, where MSI1 increases the growth of GBM. Herein, we explore the roles of MSI1 as well as the underlying mechanisms in the regulation of drug resistance and tumorigenesis of GBM cells. Our results demonstrated that overexpression of MSI1 effectively protected GBM cells from drug-induced apoptosis through down-regulating pro-apoptotic genes; whereas inhibition of AKT withdrew the MSI1-induced anti-apoptosis and cell survival. We further showed that MSI1 robustly promoted the secretion of the pro-inflammatory cytokine IL-6, which was governed by AKT activity. Autonomously, the secreted IL-6 enhanced AKT activity in an autocrine/paracrine manner, forming a positive feedback regulatory loop with the MSI1-AKT pathway. Our results conclusively demonstrated a novel drug resistance mechanism in GBM cells that MSI1 inhibits drug-induced apoptosis through AKT/IL6 regulatory circuit. MSI1 regulates both cellular signaling and tumor-microenvironmental cytokine secretion to create an intra- and intercellular niche for GBM to survive from chemo-drug attack.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Hsien Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Long Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Tsai
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chien Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Teh Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
46
|
Brugnoli F, Grassilli S, Lanuti P, Marchisio M, Al-Qassab Y, Vezzali F, Capitani S, Bertagnolo V. Up-modulation of PLC-β2 reduces the number and malignancy of triple-negative breast tumor cells with a CD133 +/EpCAM + phenotype: a promising target for preventing progression of TNBC. BMC Cancer 2017; 17:617. [PMID: 28870198 PMCID: PMC5584040 DOI: 10.1186/s12885-017-3592-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/22/2017] [Indexed: 01/16/2023] Open
Abstract
Background The malignant potential of triple negative breast cancer (TNBC) is also dependent on a sub-population of cells with a stem-like phenotype. Among the cancer stem cell markers, CD133 and EpCAM strongly correlate with breast tumor aggressiveness, suggesting that simultaneous targeting of the two surface antigens may be beneficial in treatment of TNBC. Since in TNBC-derived cells we demonstrated that PLC-β2 induces the conversion of CD133high to CD133low cells, here we explored its possible role in down-modulating the expression of both CD133 and EpCAM and, ultimately, in reducing the number of TNBC cells with a stem-like phenotype. Methods A magnetic step-by-step cell isolation with antibodies directed against CD133 and/or EpCAM was performed on the TNBC-derived MDA-MB-231 cell line. In the same cell model, PLC-β2 was over-expressed or down-modulated and cell proliferation and invasion capability were evaluated by Real-time cell assays. The surface expression of CD133, EpCAM and CD44 in the different experimental conditions were measured by multi-color flow cytometry immunophenotyping. Results A CD133+/EpCAM+ sub-population with high proliferation rate and invasion capability is present in the MDA-MB-231 cell line. Over-expression of PLC-β2 in CD133+/EpCAM+ cells reduced the surface expression of both CD133 and EpCAM, as well as proliferation and invasion capability of this cellular subset. On the other hand, the up-modulation of PLC-β2 in the whole MDA-MB-231 cell population reduced the number of cells with a CD44+/CD133+/EpCAM+ stem-like phenotype. Conclusions Since selective targeting of the cells with the highest aggressive potential may have a great clinical importance for TNBC, the up-modulation of PLC-β2, reducing the number of cells with a stem-like phenotype, may be a promising goal for novel therapies aimed to prevent the progression of aggressive breast tumors. Electronic supplementary material The online version of this article (10.1186/s12885-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Brugnoli
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Silvia Grassilli
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Yasamin Al-Qassab
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.,College of Medicine, Department of Anatomy, University of Baghdad, Baghdad, Iraq
| | - Federica Vezzali
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Silvano Capitani
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.
| |
Collapse
|
47
|
Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets. Clin Cancer Res 2017; 23:2143-2153. [PMID: 28143872 DOI: 10.1158/1078-0432.ccr-16-2728] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila, the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR.
Collapse
Affiliation(s)
- Alexander E Kudinov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yanis Boumber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochim Biophys Acta Rev Cancer 2017; 1868:16-28. [PMID: 28108348 DOI: 10.1016/j.bbcan.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Despite efforts at various levels, racial health disparities still exist in cancer patients. These inequalities in incidence and/or clinical outcome can only be explained by a multitude of factors, with genetic basis being one of them. Several investigations have provided convincing evidence to support epigenetic regulation of cancer-associated genes, which results in the differential transcriptome and proteome, and may be linked to a pre-disposition of individuals of certain race/ethnicity to early or more aggressive cancers. Recent technological advancements and the ability to quickly analyze whole genome have aided in these efforts, and owing to their relatively easy detection, methylation events are much well-characterized, than the acetylation events, across human populations. The early trend of investigating a pre-determined set of genes for differential epigenetic regulation is paving way for more unbiased screening. This review summarizes our current understanding of the epigenetic events that have been tied to the racial differences in cancer incidence and mortality. A better understanding of the epigenetics of racial diversity holds promise for the design and execution of novel strategies targeting the human epigenome for reducing the disparity gaps.
Collapse
|
49
|
Choi YM, Kim KB, Lee JH, Chun YK, An IS, An S, Bae S. DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer. Oncogene 2016; 36:2802-2812. [PMID: 27941885 PMCID: PMC5442418 DOI: 10.1038/onc.2016.441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/10/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022]
Abstract
The gene encoding ‘deleted in breast cancer 2' (DBC2), also referred to as RHOBTB2 (Rho-related BTB domain-containing protein 2), is classified as a tumor suppressor gene. DBC2 is a substrate-specific adaptor protein for a novel class of Cullin-3 (CUL3)-based E3 ubiquitin ligases; however, it is unclear if the substrate adaptor function of DBC2 is required for its tumor suppressor activity. Furthermore, the key substrates of DBC2-mediated ubiquitination have yet to be identified. In the present study, we established a genome-wide human cDNA library-based in vitro ubiquitination target screening assay and identified Musashi-2 (MSI2) as a novel ubiquitination target protein of DBC2. MSI2 directly interacted with DBC2, and this interaction promoted MSI2 polyubiquitination and proteasomal degradation in breast cancer cells. Overexpression and knockdown experiments demonstrated that DBC2 suppressed MSI2-associated oncogenic functions and induced apoptosis. Immunohistochemistry analysis of a breast cancer tissue microarray revealed that DBC2 and MSI2 protein levels are inversely correlated in both normal breast tissues and breast cancer tissues. Taken together, these findings provide evidence that DBC2 suppresses tumorigenesis in breast cancer by ubiquitinating MSI2.
Collapse
Affiliation(s)
- Y M Choi
- KU Center for Integrated Science and Technology, Konkuk University, Seoul, South Korea.,Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building, Chungcheongbuk-do, South Korea
| | - K B Kim
- Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building, Chungcheongbuk-do, South Korea
| | - J H Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University, College of Medicine, Seoul, South Korea
| | - Y K Chun
- Department of Pathology, Cheil General Hospital and Women's Healthcare Center, Dankook University, College of Medicine, Seoul, South Korea
| | - I S An
- Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building, Chungcheongbuk-do, South Korea
| | - S An
- KU Center for Integrated Science and Technology, Konkuk University, Seoul, South Korea
| | - S Bae
- KU Center for Integrated Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
50
|
Dong P, Xiong Y, Watari H, Hanley SJB, Konno Y, Ihira K, Yamada T, Kudo M, Yue J, Sakuragi N. MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:132. [PMID: 27596137 PMCID: PMC5011787 DOI: 10.1186/s13046-016-0415-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
Background In ovarian cancer (OC) cells, Snail was reported to induce the epithelial-to-mesenchymal transition (EMT), which is a critical step in OC metastasis. At present little is known about controlling Snail expression in OC cells by using specific microRNAs (miRNAs). Methods We first used a computational target prediction analysis to identify 6 candidate miRNAs that bind to the 3′-untranslated region (3′-UTR) region of the Snail mRNA. Among these miRNAs, two miRNAs (miR-137 and miR-34a) with a potential to regulate Snail were validated by quantitative real-time PCR, Western blot analysis, and Snail 3′-UTR reporter assays. We assessed the effects of miR-137 and miR-34a on EMT, invasion and sphere formation in OC cells. We also evaluated the expression of miR-137 and miR-34a in OC tissues and adjacent normal tissues and analyzed the relationship between their expression and patient survival. Results We report that OC tissues possess significantly decreased levels of miR-137 and miR-34a and increased expression of Snail when compared to their adjacent normal tissues, and lower miR-137 and miR-34a expression correlates with worse patient survival. Using luciferase constructs containing the 3′-UTR region of Snail mRNA combined with miRNA overexpression and mutagenesis, we identified miR-137 and miR-34a as direct suppressors of Snail in OC cells. The introduction of miR-137 and miR-34a resulted in the suppression of Snail at both the transcript and protein levels, and effectively suppressed the EMT phenotype and sphere formation of OC cells. However, the inhibition of miR-137 and miR-34a with antisense oligonucleotides promoted EMT and OC cell invasion. Moreover, ectopic expression of Snail significantly reversed the inhibitory effects of miR-137 and miR-34a on OC cell invasion and sphere formation. Conclusions These findings suggest that both miR-137 and miR-34a act as Snail suppressors to negatively regulate EMT, invasive and sphere-forming properties of OC cells.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan.
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan
| | - Yosuke Konno
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan
| | - Kei Ihira
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan
| | - Takahiro Yamada
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan
| | - Masataka Kudo
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Noriaki Sakuragi
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan.,Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo, 0608638, Japan
| |
Collapse
|