1
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
2
|
Yue X, Stauff E, Boyapati S, Langhans SA, Xu W, Makrogiannis S, Okorie UJ, Okorie AM, Kandula VVR, Kecskemethy HH, Nikam RM, Averill LW, Shaffer TH. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. Pharmaceuticals (Basel) 2024; 17:685. [PMID: 38931352 PMCID: PMC11206478 DOI: 10.3390/ph17060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder. Plexiform neurofibromas (PNFs) are benign tumors commonly formed in patients with NF1. PNFs have a high incidence of developing into malignant peripheral nerve sheath tumors (MPNSTs) with a 5-year survival rate of only 30%. Therefore, the accurate diagnosis and differentiation of MPNSTs from benign PNFs are critical to patient management. We studied a fluorine-18 labeled tryptophan positron emission tomography (PET) radiotracer, 1-(2-[18F]fluoroethyl)-L-tryptophan (L-[18F]FETrp), to detect NF1-associated tumors in an animal model. An ex vivo biodistribution study of L-[18F]FETrp showed a similar tracer distribution and kinetics between the wild-type and triple mutant mice with the highest uptake in the pancreas. Bone uptake was stable. Brain uptake was low during the 90-min uptake period. Static PET imaging at 60 min post-injection showed L-[18F]FETrp had a comparable tumor uptake with [1⁸F]fluorodeoxyglucose (FDG). However, L-[18F]FETrp showed a significantly higher tumor-to-brain ratio than FDG (n = 4, p < 0.05). Sixty-minute-long dynamic PET scans using the two radiotracers showed similar kidney, liver, and lung kinetics. A dysregulated tryptophan metabolism in NF1 mice was further confirmed using immunohistostaining. L-[18F]FETrp is warranted to further investigate differentiating malignant NF1 tumors from benign PNFs. The study may reveal the tryptophan-kynurenine pathway as a therapeutic target for treating NF1.
Collapse
Affiliation(s)
- Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Shriya Boyapati
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sokratis Makrogiannis
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Uchenna J. Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Azubuike M. Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Rahul M. Nikam
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Thomas H. Shaffer
- Nemours Biomedical Research, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
3
|
Turner-Ivey B, Longo JF, Jenkins DP, Guest ST, Carroll SL. Genetic Profiling and Genome-Scale Dropout Screening to Identify Therapeutic Targets in Mouse Models of Malignant Peripheral Nerve Sheath Tumor. J Vis Exp 2023:10.3791/65430. [PMID: 37677047 PMCID: PMC11188578 DOI: 10.3791/65430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are derived from Schwann cells or their precursors. In patients with the tumor susceptibility syndrome neurofibromatosis type 1 (NF1), MPNSTs are the most common malignancy and the leading cause of death. These rare and aggressive soft-tissue sarcomas offer a stark future, with 5-year disease-free survival rates of 34-60%. Treatment options for individuals with MPNSTs are disappointingly limited, with disfiguring surgery being the foremost treatment option. Many once-promising therapies such as tipifarnib, an inhibitor of Ras signaling, have failed clinically. Likewise, phase II clinical trials with erlotinib, which targets the epidermal growth factor (EFGR), and sorafenib, which targets the vascular endothelial growth factor receptor (VEGF), platelet-derived growth factor receptor (PDGF), and Raf, in combination with standard chemotherapy, have also failed to produce a response in patients. In recent years, functional genomic screening methods combined with genetic profiling of cancer cell lines have proven useful for identifying essential cytoplasmic signaling pathways and the development of target-specific therapies. In the case of rare tumor types, a variation of this approach known as cross-species comparative oncogenomics is increasingly being used to identify novel therapeutic targets. In cross-species comparative oncogenomics, genetic profiling and functional genomics are performed in genetically engineered mouse (GEM) models and the results are then validated in the rare human specimens and cell lines that are available. This paper describes how to identify candidate driver gene mutations in human and mouse MPNST cells using whole exome sequencing (WES). We then describe how to perform genome-scale shRNA screens to identify and compare critical signaling pathways in mouse and human MPNST cells and identify druggable targets in these pathways. These methodologies provide an effective approach to identifying new therapeutic targets in a variety of human cancer types.
Collapse
Affiliation(s)
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Stephen T Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor
| | - Steven L Carroll
- Hollings Cancer Center, Medical University of South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina;
| |
Collapse
|
4
|
Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol (Dordr) 2022; 45:1137-1153. [PMID: 36327093 DOI: 10.1007/s13402-022-00723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors. CONCLUSION In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.
Collapse
|
5
|
de Blank PMK, Gross AM, Akshintala S, Blakeley JO, Bollag G, Cannon A, Dombi E, Fangusaro J, Gelb BD, Hargrave D, Kim A, Klesse LJ, Loh M, Martin S, Moertel C, Packer R, Payne JM, Rauen KA, Rios JJ, Robison N, Schorry EK, Shannon K, Stevenson DA, Stieglitz E, Ullrich NJ, Walsh KS, Weiss BD, Wolters PL, Yohay K, Yohe ME, Widemann BC, Fisher MJ. MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro Oncol 2022; 24:1845-1856. [PMID: 35788692 PMCID: PMC9629420 DOI: 10.1093/neuonc/noac165] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.
Collapse
Affiliation(s)
- Peter M K de Blank
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Fangusaro
- Children's Hospital of Atlanta, Emory University and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Bruce D Gelb
- Department of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Darren Hargrave
- Department of Oncology, Great Ormond Street Hospital for Children, London, UK
| | - AeRang Kim
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mignon Loh
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Staci Martin
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roger Packer
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Nathan Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Elizabeth K Schorry
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin Shannon
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Elliot Stieglitz
- Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine and Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Brian D Weiss
- Department of Pediatrics, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kaleb Yohay
- Department of Neurology and Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
7
|
Longo JF, Brosius SN, Carroll SL. Defining Gene Functions in Tumorigenesis by Ex vivo Ablation of Floxed Alleles in Malignant Peripheral Nerve Sheath Tumor Cells. J Vis Exp 2021:10.3791/62740. [PMID: 34515675 PMCID: PMC9286026 DOI: 10.3791/62740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The development of new drugs that precisely target key proteins in human cancers is fundamentally altering cancer therapeutics. However, before these drugs can be used, their target proteins must be validated as therapeutic targets in specific cancer types. This validation is often performed by knocking out the gene encoding the candidate therapeutic target in a genetically engineered mouse (GEM) model of cancer and determining what effect this has on tumor growth. Unfortunately, technical issues such as embryonic lethality in conventional knockouts and mosaicism in conditional knockouts often limit this approach. To overcome these limitations, an approach to ablating a floxed embryonic lethal gene of interest in short-term cultures of malignant peripheral nerve sheath tumors (MPNSTs) generated in a GEM model was developed. This paper describes how to establish a mouse model with the appropriate genotype, derive short-term tumor cultures from these animals, and then ablate the floxed embryonic lethal gene using an adenoviral vector that expresses Cre recombinase and enhanced green fluorescent protein (eGFP). Purification of cells transduced with adenovirus using fluorescence-activated cell sorting (FACS) and the quantification of the effects that gene ablation exerts on cellular proliferation, viability, the transcriptome, and orthotopic allograft growth is then detailed. These methodologies provide an effective and generalizable approach to identifying and validating therapeutic targets in vitro and in vivo. These approaches also provide a renewable source of low-passage tumor-derived cells with reduced in vitro growth artifacts. This allows the biological role of the targeted gene to be studied in diverse biologic processes such as migration, invasion, metastasis, and intercellular communication mediated by the secretome.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Stephanie N Brosius
- Department of Pediatrics and Neurology, Perelman School of Medicine of the University of Pennsylvania; Division of Child Neurology, Children's Hospital of Philadelphia
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina;
| |
Collapse
|
8
|
Mohamad T, Plante C, Brosseau JP. Toward Understanding the Mechanisms of Malignant Peripheral Nerve Sheath Tumor Development. Int J Mol Sci 2021; 22:ijms22168620. [PMID: 34445326 PMCID: PMC8395254 DOI: 10.3390/ijms22168620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) originate from the neural crest lineage and are associated with the neurofibromatosis type I syndrome. MPNST is an unmet clinical need. In this review article, we summarize the knowledge and discuss research perspectives related to (1) the natural history of MPNST development; (2) the mouse models recapitulating the progression from precursor lesions to MPNST; (3) the role of the tumor microenvironment in MPNST development, and (4) the signaling pathways linked to MPNST development.
Collapse
Affiliation(s)
- Teddy Mohamad
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Camille Plante
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 72477)
| |
Collapse
|
9
|
Brosseau JP, Liao CP, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer 2020; 123:178-186. [PMID: 32439933 PMCID: PMC7374719 DOI: 10.1038/s41416-020-0903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumour syndrome that predisposes to benign and malignant tumours originating from neural crest cells. Biallelic inactivation of the tumour-suppressor gene NF1 in glial cells in the skin, along a nerve plexus or in the brain results in the development of benign tumours: cutaneous neurofibroma, plexiform neurofibroma and glioma, respectively. Despite more than 40 years of research, only one medication was recently approved for treatment of plexiform neurofibroma and no drugs have been specifically approved for the management of other tumours. Work carried out over the past several years indicates that inhibiting different cellular signalling pathways (such as Hippo, Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase and those mediated by sex hormones) in tumour cells or targeting cells in the microenvironment (nerve cells, macrophages, mast cells and T cells) might benefit NF1 patients. In this review, we outline previous strategies aimed at targeting these signalling pathways or cells in the microenvironment, agents that are currently in clinical trials, and the latest advances in basic research that could culminate in the development of novel therapeutics for patients with NF1.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
10
|
Williams KB, Largaespada DA. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes (Basel) 2020; 11:E477. [PMID: 32353955 PMCID: PMC7290716 DOI: 10.3390/genes11050477] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder and cancer predisposition syndrome (1:3000 births) caused by mutations in the tumor suppressor gene NF1. NF1 encodes neurofibromin, a negative regulator of the Ras signaling pathway. Individuals with NF1 often develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage, some of which progress further to malignant peripheral nerve sheath tumors (MPNSTs). Treatment options for neurofibromas and MPNSTs are extremely limited, relying largely on surgical resection and cytotoxic chemotherapy. Identification of novel therapeutic targets in both benign neurofibromas and MPNSTs is critical for improved patient outcomes and quality of life. Recent clinical trials conducted in patients with NF1 for the treatment of symptomatic plexiform neurofibromas using inhibitors of the mitogen-activated protein kinase (MEK) have shown very promising results. However, MEK inhibitors do not work in all patients and have significant side effects. In addition, preliminary evidence suggests single agent use of MEK inhibitors for MPNST treatment will fail. Here, we describe the preclinical efforts that led to the identification of MEK inhibitors as promising therapeutics for the treatment of NF1-related neoplasia and possible reasons they lack single agent efficacy in the treatment of MPNSTs. In addition, we describe work to find targets other than MEK for treatment of MPNST. These have come from studies of RAS biochemistry, in vitro drug screening, forward genetic screens for Schwann cell tumors, and synthetic lethal screens in cells with oncogenic RAS gene mutations. Lastly, we discuss new approaches to exploit drug screening and synthetic lethality with NF1 loss of function mutations in human Schwann cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Longo JF, Brosius SN, Black L, Worley SH, Wilson RC, Roth KA, Carroll SL. ErbB4 promotes malignant peripheral nerve sheath tumor pathogenesis via Ras-independent mechanisms. Cell Commun Signal 2019; 17:74. [PMID: 31291965 PMCID: PMC6621970 DOI: 10.1186/s12964-019-0388-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have found that erbB receptor tyrosine kinases drive Ras hyperactivation and growth in NF1-null malignant peripheral nerve sheath tumors (MPNSTs). However, MPNSTs variably express multiple erbB receptors with distinct functional characteristics and it is not clear which of these receptors drive MPNST pathogenesis. Here, we test the hypothesis that altered erbB4 expression promotes MPNST pathogenesis by uniquely activating key cytoplasmic signaling cascades. METHODS ErbB4 expression was assessed using immunohistochemistry, immunocytochemistry, immunoblotting and real-time PCR. To define erbB4 functions, we generated mice that develop MPNSTs with floxed Erbb4 alleles (P0-GGFβ3;Trp53+/-;Erbb4flox/flox mice) and ablated Erbb4 in these tumors. MPNST cell proliferation and survival was assessed using 3H-thymidine incorporation, MTT assays, Real-Time Glo and cell count assays. Control and Erbb4-null MPNST cells were orthotopically xenografted in immunodeficient mice and the growth, proliferation (Ki67 labeling), apoptosis (TUNEL labeling) and angiogenesis of these grafts was analyzed. Antibody arrays querying cytoplasmic kinases were used to identify erbB4-responsive kinases. Pharmacologic or genetic inhibition was used to identify erbB4-responsive kinases that drive proliferation. RESULTS Aberrant erbB4 expression was evident in 25/30 surgically resected human MPNSTs and in MPNSTs from genetically engineered mouse models (P0-GGFβ3 and P0-GGFβ3;Trp53+/- mice); multiple erbB4 splice variants that differ in their ability to activate PI3 kinase and nuclear signaling were present in MPNST-derived cell lines. Erbb4-null MPNST cells demonstrated decreased proliferation and survival and altered morphology relative to non-ablated controls. Orthotopic allografts of Erbb4-null cells were significantly smaller than controls, with reduced proliferation, survival and vascularization. ERBB4 knockdown in human MPNST cells similarly inhibited DNA synthesis and viability. Although we have previously shown that broad-spectrum erbB inhibitors inhibit Ras activation, Erbb4 ablation did not affect Ras activation, suggesting that erbB4 drives neoplasia via non-Ras dependent pathways. An analysis of 43 candidate kinases identified multiple NRG1β-responsive and erbB4-dependent signaling cascades including the PI3K, WNK1, STAT3, STAT5 and phospholipase-Cγ pathways. Although WNK1 inhibition did not alter proliferation, inhibition of STAT3, STAT5 and phospholipase-Cγ markedly reduced proliferation. CONCLUSIONS ErbB4 promotes MPNST growth by activating key non-Ras dependent signaling cascades including the STAT3, STAT5 and phospholipase-Cγ pathways. ErbB4 and its effector pathways are thus potentially useful therapeutic targets in MPNSTs.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Stephanie N. Brosius
- Department of Pathology (SNB, KAR) and the Medical Scientist Training Program (SNB), University of Alabama at Birmingham, Birmingham, AL 35294-0017 USA
- Present address: Department of Pediatrics at The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurel Black
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Stuart H. Worley
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Robert C. Wilson
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Kevin A. Roth
- Department of Pathology (SNB, KAR) and the Medical Scientist Training Program (SNB), University of Alabama at Birmingham, Birmingham, AL 35294-0017 USA
- Present address: Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY USA
| | - Steven L. Carroll
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| |
Collapse
|
12
|
Ma KH, Duong P, Moran JJ, Junaidi N, Svaren J. Polycomb repression regulates Schwann cell proliferation and axon regeneration after nerve injury. Glia 2018; 66:2487-2502. [PMID: 30306639 PMCID: PMC6289291 DOI: 10.1002/glia.23500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
The transition of differentiated Schwann cells to support of nerve repair after injury is accompanied by remodeling of the Schwann cell epigenome. The EED-containing polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 methylation and represses key nerve repair genes such as Shh, Gdnf, and Bdnf, and their activation is accompanied by loss of H3K27 methylation. Analysis of nerve injury in mice with a Schwann cell-specific loss of EED showed the reversal of polycomb repression is required and a rate limiting step in the increased transcription of Neuregulin 1 (type I), which is required for efficient remyelination. However, mouse nerves with EED-deficient Schwann cells display slow axonal regeneration with significantly low expression of axon guidance genes, including Sema4f and Cntf. Finally, EED loss causes impaired Schwann cell proliferation after injury with significant induction of the Cdkn2a cell cycle inhibitor gene. Interestingly, PRC2 subunits and CDKN2A are commonly co-mutated in the transition from benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST's). RNA-seq analysis of EED-deficient mice identified PRC2-regulated molecular pathways that may contribute to the transition to malignancy in neurofibromatosis.
Collapse
Affiliation(s)
- Ki H. Ma
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Phu Duong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John J. Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nabil Junaidi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. The role of nerve microenvironment for neurofibroma development. Oncotarget 2018; 7:61500-61508. [PMID: 27517146 PMCID: PMC5308667 DOI: 10.18632/oncotarget.11133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/28/2016] [Indexed: 01/07/2023] Open
Abstract
Deregulation of RAS signaling in Neurofibromatosis type 1 (NF1) results in the development of multiple neurofibromas, complex tumor of the peripheral nerves with no effective medical treatment. There is increasing evidences that neurofibroma initiates through loss of NF1 function in the Schwann cell lineage, followed by a cascade of interactions with other cell types in the surrounding tumor microenvironment. In NF1 patients, neurofibromas always develop along peripheral nerves and do not migrate to distant organs, including the central nervous system. In this study, we sought to identify the contributions of these peripheral nerves in neurofibroma formation. Using in vivo and in vitro three-dimensional (3D) culturing system, we show that peripheral nerves are absolutely required for neurofibroma tumorigenesis and report a novel 3D skin raft culture system for neurofibroma formation in vitro to decipher tumor pathogenesis. This interaction between neoplastic Schwann cells and their surrounding neural microenvironment has important implications for understanding early cellular events that dictate tumorigenesis. It also provides fertile ground for the elucidation of intrinsic and extrinsic factors within the nerve microenvironment that likely play essential roles in neurofibroma development and, therefore, viable therapeutic targets in neurofibroma therapy.
Collapse
Affiliation(s)
- Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanjay Pradhan
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reid C Booker
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,UTSW Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
|
15
|
Kim A, Pratilas CA. The promise of signal transduction in genetically driven sarcomas of the nerve. Exp Neurol 2017; 299:317-325. [PMID: 28859862 DOI: 10.1016/j.expneurol.2017.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome. Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas arising from peripheral nerve sheaths, and the most commonly lethal feature associated with NF1. The hallmark of NF1 and NF1-related MPNST is the loss of neurofibromin expression. Loss of neurofibromin is considered a tumor-promoting event, and leads to constitutive activation of RAS and its downstream effectors. However, RAS activation alone is not sufficient for MPNST formation, and additional tumor suppressors and signaling pathways have been implicated in tumorigenesis of MPNST. Taking advantage of the rapid development of novel therapeutics targeting key molecular pathways across all cancer types, the best-in-class modulators of these pathways can be assessed in pre-clinical models and translated into clinical trials for patients with MPNST. Here, we describe the genetic changes and molecular pathways that drive MPNST formation and highlight the promise of signal transduction to identify therapies that may treat these tumors more effectively.
Collapse
Affiliation(s)
- AeRang Kim
- Children's National Medical Center, Washington, D.C., United States
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.
| |
Collapse
|
16
|
Malignant Peripheral Nerve Sheath Tumors State of the Science: Leveraging Clinical and Biological Insights into Effective Therapies. Sarcoma 2017; 2017:7429697. [PMID: 28592921 PMCID: PMC5448069 DOI: 10.1155/2017/7429697] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST.
Collapse
|
17
|
Hirbe AC, Dahiya S, Friedmann-Morvinski D, Verma IM, Clapp DW, Gutmann DH. Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget 2016; 7:7403-14. [PMID: 26859681 PMCID: PMC4884927 DOI: 10.18632/oncotarget.7232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ∼60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1flox/flox mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ∼70% of Nf1+/− mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1flox/null mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/− mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/− stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Inder M Verma
- The Salk Institute of Biological Studies, Laboratory of Genetics, La Jolla, CA, USA
| | - D Wade Clapp
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, MO, USA
| |
Collapse
|
18
|
Wu J, Liu W, Williams JP, Ratner N. EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene 2016; 36:1669-1677. [PMID: 27748759 DOI: 10.1038/onc.2016.386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an inherited disease in which affected patients are predisposed to develop benign Schwann cell (SC) tumours called neurofibromas. In the mouse, loss of Nf1 in the SC lineage causes neurofibroma formation. The tyrosine kinase receptor EGFR is expressed in Schwann cell precursors (SCP), which have been implicated in plexiform neurofibroma initiation. To test if EGFR activity affects neurofibroma initiation, size, and/or number, we studied mice expressing human EGFR in SCs and SCP in the context of mice that form neurofibromas. Neurofibroma number increased in homozygous CNP-hEGFR mice versus heterozygous littermates, and neurofibroma number and size increased when CNP-hEGFR was crossed to Nf1fl/fl;DhhCre mice. Conversely, diminished EGFR signalling in Nf1fl/fl;DhhCre;Wa2/+ mice decreased neurofibroma number. In vivo transplantation verified the correlation between EGFR activity and neurofibroma formation. Mechanistically, expression of CNP-hEGFR increased SCP/neurofibroma-initiating cell self-renewal, a surrogate for tumour initiation, and activated P-Stat3. Further, Il-6 reinforced Jak2/Stat3 activation in SCPs and SCs. These gain- and loss-of function assays show that levels of tyrosine kinase expression in SCPs modify neurofibroma initiation.
Collapse
Affiliation(s)
- J Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - W Liu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - J P Williams
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - N Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
19
|
Neuregulin-1 Administration Protocols Sufficient for Stimulating Cardiac Regeneration in Young Mice Do Not Induce Somatic, Organ, or Neoplastic Growth. PLoS One 2016; 11:e0155456. [PMID: 27175488 PMCID: PMC4866786 DOI: 10.1371/journal.pone.0155456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
Background We previously developed and validated a strategy for stimulating heart regeneration by administration of recombinant neuregulin (rNRG1), a growth factor, in mice. rNRG1 stimulated proliferation of heart muscle cells, cardiomyocytes, and was most effective when administration began during the neonatal period. Our results suggested the use of rNRG1 to treat pediatric patients with heart failure. However, administration in this age group may stimulate growth outside of the heart. Methods NRG1 and ErbB receptor expression was determined by RT-PCR. rNRG1 concentrations in serum were quantified by ELISA. Mice that received protocols of recombinant neuregulin1-β1 administration (rNRG1, 100 ng/g body weight, daily subcutaneous injection for the first month of life), previously shown to induce cardiac regeneration, were examined at pre-determined intervals. Somatic growth was quantified by weighing. Organ growth was quantified by MRI and by weighing. Neoplastic growth was examined by MRI, visual inspection, and histopathological analyses. Phospho-ERK1/2 and S6 kinase were analyzed with Western blot and ELISA, respectively. Results Lung, spleen, liver, kidney, brain, and breast gland exhibited variable expression of the NRG1 receptors ErbB2, ErbB3, ErbB4, and NRG1. Body weight and tibia length were not altered in mice receiving rNRG1. MRI showed that administration of rNRG1 did not alter the volume of the lungs, liver, kidneys, brain, or spinal cord. Administration of rNRG1 did not alter the weight of the lungs, spleen, liver, kidneys, or brain. MRI, visual inspection, and histopathological analyses showed no neoplastic growth. Follow-up for 6 months showed no alteration of somatic or organ growth. rNRG1 treatment increased the levels of phospho-ERK1/2, but not phospho-S6 kinase. Conclusions Administration protocols of rNRG1 for stimulating cardiac regeneration in mice during the first month of life did not induce unwanted growth effects. Further studies may be required to determine whether this is the case in a corresponding human population.
Collapse
|
20
|
Jackson JD, Markert JM, Li L, Carroll SL, Cassady KA. STAT1 and NF-κB Inhibitors Diminish Basal Interferon-Stimulated Gene Expression and Improve the Productive Infection of Oncolytic HSV in MPNST Cells. Mol Cancer Res 2016; 14:482-92. [PMID: 26883073 DOI: 10.1158/1541-7786.mcr-15-0427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 01/20/2023]
Abstract
UNLABELLED Interferon-stimulated genes (ISG) encode diverse proteins that mediate intrinsic antiviral resistance in infected cells. Here it was hypothesized that malignant peripheral nerve sheath tumor (MPNST) cells resist the productive infection of oncolytic herpes simplex virus (oHSV) through activation of the JAK/STAT1 pathway and resultant upregulation of ISGs. Multiple human and mouse MPNST cells were used to explore the relationship between STAT1 activation and the productive infection of Δγ134.5 oHSVs. STAT1 activation in response to oHSV infection was found to associate with diminished Δγ134.5 oHSVs replication and spread. Multiday pretreatment, but not cotreatment, with a JAK inhibitor significantly improved viral titer and spread. ISG expression was found to be elevated prior to infection and downregulated when treated with the inhibitor, suggesting that the JAK/STAT1 pathway is active prior to infection. Conversely, upregulation of ISG expression in normally permissive cells significantly decreased oHSV productivity. Finally, a possible link between NF-κB pathway activation and ISG expression was established through the expression of inhibitor of kB (IκB) which decreased basal STAT1 transcription and ISG expression. These results demonstrate that basal ISG expression prior to infection contributes to the resistance of Δγ134.5 oHSVs in MPNST cells. IMPLICATIONS Although cancer-associated ISG expression has been previously reported to impart resistance to chemotherapy and radiotherapy, these data show that basal ISG expression also contributes to oncolytic HSV resistance. Mol Cancer Res; 14(5); 482-92. ©2016 AACR.
Collapse
Affiliation(s)
- Joshua D Jackson
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama. Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Li Li
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin A Cassady
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama. Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio.
| |
Collapse
|
21
|
The Challenge of Cancer Genomics in Rare Nervous System Neoplasms: Malignant Peripheral Nerve Sheath Tumors as a Paradigm for Cross-Species Comparative Oncogenomics. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:464-77. [PMID: 26740486 DOI: 10.1016/j.ajpath.2015.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Comprehensive genomic analyses of common nervous system cancers provide new insights into their pathogenesis, diagnosis, and treatment. Although analogous studies of rare nervous system tumors are needed, there are major barriers to performing such studies. Cross-species comparative oncogenomics, identifying driver mutations in mouse cancer models and validating them in human tumors, is a promising alternative. Although still in its infancy, this approach is being applied to malignant peripheral nerve sheath tumors (MPNSTs), rare Schwann cell-derived malignancies that occur sporadically, after radiotherapy, and in neurofibromatosis type 1. Studies of human neurofibromatosis type 1-associated tumors suggest that NF1 tumor suppressor loss in Schwann cells triggers cell-autonomous and intercellular changes, resulting in development of benign neurofibromas; subsequent neurofibroma-MPNST progression is caused by aberrant growth factor signaling and mutations affecting the p16(INK4A)-cyclin D1-CDK4-Rb and p19(ARF)-Mdm2-p53 cell cycle pathways. Mice with Nf1, Trp53, and/or Cdkn2a mutations that overexpress the Schwann cell mitogen neuregulin-1 or overexpress the epidermal growth factor receptor validate observations in human tumors and, to various degrees, model human tumorigenesis. Genomic analyses of MPNSTs arising in neuregulin-1 and epidermal growth factor receptor-overexpressing mice and forward genetic screens with Sleeping Beauty transposons implicate additional signaling cascades in MPNST pathogenesis. These studies confirm the utility of mouse models for MPNST driver gene discovery and provide new insights into the complexity of MPNST pathogenesis.
Collapse
|
22
|
Beckner ME, Pollack IF, Nordberg ML, Hamilton RL. Glioblastomas with copy number gains in EGFR and RNF139 show increased expressions of carbonic anhydrase genes transformed by ENO1. BBA CLINICAL 2015; 5:1-15. [PMID: 27051584 PMCID: PMC4802406 DOI: 10.1016/j.bbacli.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022]
Abstract
Background Prominence of glycolysis in glioblastomas may be non-specific or a feature of oncogene-related subgroups (i.e. amplified EGFR, etc.). Relationships between amplified oncogenes and expressions of metabolic genes associated with glycolysis, directly or indirectly via pH, were therefore investigated. Methods Using multiplex ligation-dependent probe amplification, copy numbers (CN) of 78 oncogenes were quantified in 24 glioblastomas. Related expressions of metabolic genes encoding lactate dehydrogenases (LDHA, LDHC), carbonic anhydrases (CA3, CA12), monocarboxylate transporters (SLC16A3 or MCT4, SLC16A4 or MCT5), ATP citrate lyase (ACLY), glycogen synthase1 (GYS1), hypoxia inducible factor-1A (HIF1A), and enolase1 (ENO1) were determined in 22 by RT-qPCR. To obtain supra-glycolytic levels and adjust for heterogeneity, concurrent ENO1 expression was used to mathematically transform the expression levels of metabolic genes already normalized with delta-delta crossing threshold methodology. Results Positive correlations with EGFR occurred for all metabolic genes. Significant differences (Wilcoxon Rank Sum) for oncogene CN gains in tumors of at least 2.00-fold versus less than 2.00-fold occurred for EGFR with CA3's expression (p < 0.03) and for RNF139 with CA12 (p < 0.004). Increased CN of XIAP associated negatively. Tumors with less than 2.00-fold CN gains differed from those with gains for XIAP with CA12 (p < 0.05). Male gender associated with CA12 (p < 0.05). Conclusions Glioblastomas with CN increases in EGFR had elevated CA3 expression. Similarly, tumors with RNF149 CN gains had elevated CA12 expression. General significance In larger studies, subgroups of glioblastomas may emerge according to oncogene-related effects on glycolysis, such as control of pH via effects on carbonic anhydrases, with prognostic and treatment implications. PCR of glioblastomas show oncogene copy numbers relate to metabolic gene expressions. ENO1(ENOLASE1) transformations yielded “supra-glycolytic” metabolic gene expressions. EGFR, RNF139, and XIAP associated with expressions of two carbonic anhydrase genes. Male gender associated (+) with the transformed expression of carbonic anhydrase 12. Oncogene amplifications may aid control of pH to protect glycolysis in glioblastomas.
Collapse
Key Words
- Amplified oncogenes
- CN, copy number
- Carbonic anhydrase
- DAPI, diaminephylindole
- EGFR
- GB, glioblastoma
- GOI, gene of interest
- Glycolysis
- HKG, housekeeping gene
- IRES, internal ribosome entry site
- MLPA, multiplex ligation-dependent probe amplification
- MPNST, malignant peripheral nerve sheath tumor
- MTB/GF, metabolic/growth factor
- NB, normal brain
- REMBRANDT, Repository of Molecular Brain Neoplasia Database
- RNF139
- RT-qPCR, real time quantitative PCR
- SLC, solute carrier
- WHO, World Health Organization
- XIAP
- ddCt, delta-delta crossing threshold
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, RM. 3-438, 1501 Kings Highway, Shreveport, LA 71130, United States 1(former position)
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, United States; 4th Floor, Children's Hospital of Pittsburgh, UPMC, 4129 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Mary L Nordberg
- Department of Medicine, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71130, United States; The Delta Pathology Group, One Saint Mary Place, Shreveport, LA 71101, United States
| | - Ronald L Hamilton
- Department of Pathology, Division of Neuropathology, S724.1, Scaife Hall, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
23
|
Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2082-98. [PMID: 24832557 DOI: 10.1016/j.ajpath.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are genetically diverse, aggressive sarcomas that occur sporadically or in association with neurofibromatosis type 1 syndrome. Reduced TP53 gene expression and amplification/overexpression of the epidermal growth factor receptor (EGFR) gene occur in MPNST formation. We focused on determining the cooperativity between reduced TP53 expression and EGFR overexpression for Schwann cell transformation in vitro (immortalized human Schwann cells) and MPNST formation in vivo (transgenic mice). Human gene copy number alteration data, microarray expression data, and TMA analysis indicate that TP53 haploinsufficiency and increased EGFR expression co-occur in human MPNST samples. Concurrent modulation of EGFR and TP53 expression in HSC1λ cells significantly increased proliferation and anchorage-independent growth in vitro. Transgenic mice heterozygous for a Trp53-null allele and overexpressing EGFR in Schwann cells had a significant increase in neurofibroma and grade 3 PNST (MPNST) formation compared with single transgenic controls. Histological analysis of tumors identified a significant increase in pAkt expression in grade 3 PNSTs compared with neurofibromas. Array comparative genome hybridization analysis of grade 3 PNSTs identified recurrent focal regions of chromosomal gains with significant enrichment in genes involved in extracellular signal-regulated kinase 5 signaling. Collectively, altered p53 expression cooperates with overexpression of EGFR in Schwann cells to enhance in vitro oncogenic properties and tumorigenesis and progression in vivo.
Collapse
|
24
|
Neuregulin-1 overexpression and Trp53 haploinsufficiency cooperatively promote de novo malignant peripheral nerve sheath tumor pathogenesis. Acta Neuropathol 2014; 127:573-91. [PMID: 24232507 DOI: 10.1007/s00401-013-1209-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are Schwann cell-derived malignancies that arise from plexiform neurofibromas in patients with mutation of the neurofibromin 1 (NF1) gene. We have shown that the growth factor neuregulin-1 (NRG1) also contributes to human neurofibroma and MPNST pathogenesis and that outbred C57BL/6J × SJL/J transgenic mice overexpressing NRG1 in Schwann cells (P0-GGFβ3 mice) recapitulate the process of neurofibroma-MPNST progression. However, it is unclear whether NRG1 acts predominantly within NF1-regulated signaling cascades or instead activates other essential cascades that cooperate with NF1 loss to promote tumorigenesis. We now report that tumorigenesis is suppressed in inbred P0-GGFβ3 mice on a C57BL/6J background. To determine whether NRG1 overexpression interacts with reduced Nf1 or Trp53 gene dosage to "unmask" tumorigenesis in these animals, we followed cohorts of inbred P0-GGFβ3;Nf1+/−, P0-GGFβ3;Trp53+/− and control (P0-GGFβ3, Nf1+/− and Trp53+/−) mice for 1 year. We found no reduction in survival or tumors in control and P0-GGFβ3;Nf1+/− mice. In contrast, P0-GGFβ3;Trp53+/− mice died on average at 226 days, with MPNSTs present in 95 % of these mice. MPNSTs in inbred P0-GGFβ3;Trp53+/− mice arose de novo from micro-MPNSTs that uniformly develop intraganglionically. These micro-MPNSTs are of lower grade (WHO grade II-III) than the major MPNSTs (WHO grade III-IV); array comparative genomic hybridization showed that lower grade MPNSTs also had fewer genomic abnormalities. Thus, P0-GGFβ3;Trp53+/− mice represent a novel model of low- to high-grade MPNST progression. We further conclude that NRG1 promotes peripheral nervous system neoplasia predominantly via its effects on the signaling cascades affected by Nf1 loss.
Collapse
|
25
|
Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Beert E, Catchen JM, Farrington S, Postlethwait JH, Legius E, Hopkins N, Lees JA. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery. PLoS Genet 2013; 9:e1003734. [PMID: 24009526 PMCID: PMC3757083 DOI: 10.1371/journal.pgen.1003734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/05/2013] [Indexed: 01/11/2023] Open
Abstract
The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs) are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs). Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.
Collapse
Affiliation(s)
- GuangJun Zhang
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Sebastian Hoersch
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Bioinformatics Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Eline Beert
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sarah Farrington
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Eric Legius
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Nancy Hopkins
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Van Raamsdonk CD, Deo M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res 2013; 26:634-45. [DOI: 10.1111/pcmr.12134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/28/2013] [Indexed: 01/31/2023]
Affiliation(s)
| | - Mugdha Deo
- Department of Medical Genetics; University of British Columbia; Vancouver; BC; Canada
| |
Collapse
|