1
|
Huang Y, Wang Y, Zheng T, Nie S, Wang Y, Shen H, Mo F. Development of Dual Diagnostic-Therapeutic Nanoformulation Effective Against Pancreatic Cancer in Animal Model. Int J Nanomedicine 2024; 19:9121-9143. [PMID: 39258004 PMCID: PMC11386073 DOI: 10.2147/ijn.s464788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China
| | - Tianyu Zheng
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yanli Wang
- International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan, People's Republic of China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Mateus Gonçalves L, Andrade Barboza C, Almaça J. Diabetes as a Pancreatic Microvascular Disease-A Pericytic Perspective. J Histochem Cytochem 2024; 72:131-148. [PMID: 38454609 PMCID: PMC10956440 DOI: 10.1369/00221554241236535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes is not only an endocrine but also a vascular disease. Vascular defects are usually seen as consequence of diabetes. However, at the level of the pancreatic islet, vascular alterations have been described before symptom onset. Importantly, the cellular and molecular mechanisms underlying these early vascular defects have not been identified, neither how these could impact the function of islet endocrine cells. In this review, we will discuss the possibility that dysfunction of the mural cells of the microvasculature-known as pericytes-underlies vascular defects observed in islets in pre-symptomatic stages. Pericytes are crucial for vascular homeostasis throughout the body, but their physiological and pathophysiological functions in islets have only recently started to be explored. A previous study had already raised interest in the "microvascular" approach to this disease. With our increased understanding of the crucial role of the islet microvasculature for glucose homeostasis, here we will revisit the vascular aspects of islet function and how their deregulation could contribute to diabetes pathogenesis, focusing in particular on type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
4
|
Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A, Faggiano A. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest 2023; 46:213-234. [PMID: 36038743 DOI: 10.1007/s40618-022-01905-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofibromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus on molecularly targeted therapies for these lesions. METHODS Literature search was systematically performed through online databases, including MEDLINE (via PubMed), and Scopus using multiple keywords' combinations up to June 2022. RESULTS Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted therapies with other antiangiogenic agents and immunotherapies have been also under evaluation. CONCLUSIONS Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the implementation of treatments and development of novel targeted therapies.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico "Gaetano Martino" University Hospital, 98125, Messina, Italy.
| | - E Benevento
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - F De Cicco
- SSD Endocrine Disease and Diabetology, ASL TO3, Pinerolo, TO, Italy
| | - B Fazzalari
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - E Guadagno
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - I Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M G Tarsitano
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - A M Isidori
- Gruppo NETTARE, Policlinico Umberto I, Università Sapienza, Rome, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Shen X, Wang X, Lu X, Zhao Y, Guan W. Molecular biology of pancreatic neuroendocrine tumors: From mechanism to translation. Front Oncol 2022; 12:967071. [PMID: 36248960 PMCID: PMC9554633 DOI: 10.3389/fonc.2022.967071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are a group of heterogeneous tumors originated from progenitor cells. As these tumors are predominantly non-functional, most of them display asymptomatic characteristics, making it difficult to be realized from early onset. Therefore, patients with pNETs are usually diagnosed with metastatic disease or at a late disease stage. The relatively low incidence also limits our understanding of the biological background of pNETs, which largely impair the development of new effective drugs. The fact that up to 10% of pNETs develop in patients with genetic syndromes have promoted researchers to focus on the gene mutations and driver mutations in MEN1, DAXX/ATRX and mTOR signaling pathway genes have been implicated in disease development and progression. Recent advances in sequencing technologies have further enriched our knowledge of the complex molecular landscape of pNETs, pointing out crucial roles of genes in DNA damage pathways, chromosomal and telomere alterations and epigenetic dysregulation. These novel findings may not only benefit early diagnosis of pNETs, but also help to uncover tumor heterogeneity and shape the future of translational medical treatment. In this review, we focus on the current molecular biology of pNETs and decipher how these findings may translate into future development of targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| |
Collapse
|
6
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
7
|
Lauricella E, Mandriani B, Cavallo F, Pezzicoli G, Chaoul N, Porta C, Cives M. Angiogenesis in NENs, with a focus on gastroenteropancreatic NENs: from biology to current and future therapeutic implications. Front Oncol 2022; 12:957068. [PMID: 36059642 PMCID: PMC9428554 DOI: 10.3389/fonc.2022.957068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are highly vascularized malignancies arising from cells of the diffuse neuroendocrine system. An intricated cross-talk exists between NEN cells and the tumor microenvironment, and three main molecular circuits (VEGF/VEGFR pathway, FGF-dependent signaling and PDGF/PDGFR axis) have been shown to regulate angiogenesis in these neoplasms. Multiple randomized trials have investigated antiangiogenic agents over the past two decades, and sunitinib is currently approved for the treatment of advanced, progressive, G1/G2 pancreatic NENs. In recent years, two phase III clinical trials have demonstrated the efficacy and safety of surufatinib, a multi-tyrosine kinase angioimmune inhibitor, in patients with well-differentiated pancreatic and extrapancreatic NENs, and two studies of this agent are currently underway in Europe and US. The HIF-2α inhibitor belzutifan has recently received regulatory approval for the treatment of tumors arising in the context of Von-Hippel Lindau syndrome including pancreatic NENs, and a study of this drug in patients with sporadic tumors is presently ongoing. Combinations of antiangiogenic agents with chemotherapeutics and targeted drugs have been tested, with accumulating toxicities being a matter of concern. The potential of antiangiogenic agents in fine-tuning the immune microenvironment of NENs to enhance the activity of immune checkpoint inhibitors has been only partially elucidated, and further research should be carried out at this regard. Here, we review the current understanding of the biology of angiogenesis in NENs and provide a summary of the latest clinical investigations on antiangiogenic drugs in this malignancy.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Cavallo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Nada Chaoul
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
- *Correspondence: Mauro Cives,
| |
Collapse
|
8
|
Gao H, Wang W, Zhang W, Xu H, Wu C, Li H, Ni Q, Yu X, Liu L. The distinctive characteristics of the micro-vasculature and immune cell infiltration in cystic pancreatic neuroendocrine tumors. J Endocrinol Invest 2021; 44:1011-1019. [PMID: 32856225 DOI: 10.1007/s40618-020-01396-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/15/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Hypervascularity is a main characteristic of pancreatic neuroendocrine tumors (PanNETs), and cystic PanNETs (CPanNETs) are unique type of PanNETs in which the microenvironment remains unknown. We aim to compare the micro-vasculature features and immune cell infiltration between CPanNETs and solid PanNETs (SPanNETs). METHODS Data of 301 SPanNET and 36 CPanNET patients from a high-volume institution were evaluated. CD4, CD8, CD11c, CD15, CD20, CD68, CD34 and α-SMA expression levels were assessed by immunohistochemistry and immunofluorescent double staining. The microvessel density (MVD) and microvessel integrity (MVI) were examined. RESULTS MVD and MVI expression levels in CPanNETs were significantly higher than those in SPanNETs (p = 0.025 and 0.0092, respectively). CPanNETs had higher proportions of T1 (p = 0.023) and G1 (p = 0.052) than SPanNETs. In SPanNETs, higher MVD occurred in stages T1, N0 and G1 than in the T2/T3, N1 and G2 subgroups. In CPanNETs, CD34-MVD was uncorrelated with the T stage or grade. Higher CD34-MVD, but not MVI, was associated with better DFS (HR 0.3209, 95% CI 0.1259-0.8176, p = 0.004). There were significantly more peritumoral infiltrating immune cells than their intratumoral counterparts (p < 0.001 for each) in CPanNETs and SPanNETs. The mean number of peritumoral CD68 + TAM in CPanNETs was significantly lower than that in SPanNETs (p = 0.008). The counts of other peritumoral immune cells did not significantly differ between CPanNETs and SPanNETs. CONCLUSIONS CPanNETs had a microenvironment distinct from that of SPanNETs, including higher CD34-MVD, higher MVI and lower TAM. This specific microenvironment structure may partially help predicting the prognosis of patients with PanNET.
Collapse
Affiliation(s)
- H Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - W Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - W Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - H Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - C Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - H Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - Q Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - X Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
| | - L Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Pancreatic Surgery, Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
9
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
10
|
Ren B, Rose JB, Liu Y, Jaskular-Sztul R, Contreras C, Beck A, Chen H. Heterogeneity of Vascular Endothelial Cells, De Novo Arteriogenesis and Therapeutic Implications in Pancreatic Neuroendocrine Tumors. J Clin Med 2019; 8:jcm8111980. [PMID: 31739580 PMCID: PMC6912347 DOI: 10.3390/jcm8111980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriogenesis supplies oxygen and nutrients in the tumor microenvironment (TME), which may play an important role in tumor growth and metastasis. Pancreatic neuroendocrine tumors (pNETs) are the second most common pancreatic malignancy and are frequently metastatic on presentation. Nearly a third of pNETs secrete bioactive substances causing debilitating symptoms. Current treatment options for metastatic pNETs are limited. Importantly, these tumors are highly vascularized and heterogeneous neoplasms, in which the heterogeneity of vascular endothelial cells (ECs) and de novo arteriogenesis may be critical for their progression. Current anti-angiogenetic targeted treatments have not shown substantial clinical benefits, and they are poorly tolerated. This review article describes EC heterogeneity and heterogeneous tumor-associated ECs (TAECs) in the TME and emphasizes the concept of de novo arteriogenesis in the TME. The authors also emphasize the challenges of current antiangiogenic therapy in pNETs and discuss the potential of tumor arteriogenesis as a novel therapeutic target. Finally, the authors prospect the clinical potential of targeting the FoxO1-CD36-Notch pathway that is associated with both pNET progression and arteriogenesis and provide insights into the clinical implications of targeting plasticity of cancer stem cells (CSCs) and vascular niche, particularly the arteriolar niche within the TME in pNETs, which will also provide insights into other types of cancer, including breast cancer, lung cancer, and malignant melanoma.
Collapse
Affiliation(s)
- Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition & Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - J. Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Renata Jaskular-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carlo Contreras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Beck
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Pozas J, San Román M, Alonso-Gordoa T, Pozas M, Caracuel L, Carrato A, Molina-Cerrillo J. Targeting Angiogenesis in Pancreatic Neuroendocrine Tumors: Resistance Mechanisms. Int J Mol Sci 2019; 20:E4949. [PMID: 31597249 PMCID: PMC6801829 DOI: 10.3390/ijms20194949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Despite being infrequent tumors, the incidence and prevalence of pancreatic neuroendocrine tumors (P-NETs) has been rising over the past few decades. In recent years, rigorous phase III clinical trials have been conducted, allowing the approval of several drugs that have become the standard of care in these patients. Although various treatments are used in clinical practice, including somatostatin analogues (SSAs), biological therapies like sunitinib or everolimus, peptide receptor radionuclide therapy (PRRT) or even chemotherapy, a consensus regarding the optimal sequence of treatment has not yet been reached. Notwithstanding, sunitinib is largely used in these patients after the promising results shown in SUN111 phase III clinical trial. However, both prompt progression as well as tumor recurrence after initial response have been reported, suggesting the existence of primary and acquired resistances to this antiangiogenic drug. In this review, we aim to summarize the most relevant mechanisms of angiogenesis resistance that are key contributors of tumor progression and dissemination. Furthermore, several targeted molecules acting selectively against these pathways have shown promising results in preclinical models, and preliminary results from ongoing clinical trials are awaited.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - María San Román
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
- The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain.
- Alcalá University, 28805 Madrid, Spain.
| | - Miguel Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Laura Caracuel
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Alfredo Carrato
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
- The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain.
- Alcalá University, 28805 Madrid, Spain.
| | - Javier Molina-Cerrillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
- The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain.
- Alcalá University, 28805 Madrid, Spain.
| |
Collapse
|
12
|
Lopez CL, Joos B, Bartsch DK, Manoharan J, Albers M, Slater EP, Bollmann C, Roth S, Bayer A, Fendrich V. Chemoprevention with Somatuline© Delays the Progression of Pancreatic Neuroendocrine Neoplasms in a Mouse Model of Multiple Endocrine Neoplasia Type 1 (MEN1). World J Surg 2019; 43:831-838. [PMID: 30600364 DOI: 10.1007/s00268-018-4839-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Long-acting synthetic somatostatin analogues (SSA) are an essential part of the treatment of neuroendocrine neoplasms. We evaluated the chemopreventive effects of a long-acting somatostatin analogue on the development of pancreatic neuroendocrine neoplasms (pNENs) in a genetically engineered MEN1 knockout mouse model. MATERIALS AND METHODS Heterozygote MEN1 knockout mice were injected every 28 days subcutaneously with the somatostatin analogue lanreotide (Somatuline Autogel©; Ipsen Pharma) or a placebo starting at day 35 after birth. Mice were euthanized after 6, 9, 12, 15 and 18 months, and the size and number of pNENs were measured due histological analysis and compared to the placebo group. RESULTS The median tumor size of pNENs was statistically significantly smaller after 9 (control group vs. SSA group; 706.476 µm2 vs. 195.271 µm2; p = 0.0012), 12 (placebo group vs. SSA group 822.022 vs. 255.482; p ≤ 0.001), 15 (placebo group vs. SSA group 1192.568 vs. 273.533; p ≤ 0.001) and after 18 months (placebo group vs. SSA group 1328.299 vs. 864.587; p ≤ 0.001) in the SSA group. Comparing the amount of tumors in both groups, a significant reduction was achieved in treated Men1(+/-) mice (41%, p = 0.002). Immunostaining showed, however, no significant difference in the expression of the apoptosis marker caspase-3, but a significant difference in Ki67 index as a marker for tumor cell proliferation (p ≤ 0.005). CONCLUSION Long-acting somatostatin analogues may be an effective chemopreventive approach to delay the progression of MEN1-associated pNENs. After our preclinical results, we would recommend to evaluate the effects of long-acting SSA in a prospective clinical trial.
Collapse
Affiliation(s)
- Caroline L Lopez
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Barbara Joos
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Jerena Manoharan
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Max Albers
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Emily P Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Carmen Bollmann
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Sylvia Roth
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Aninja Bayer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35041, Marburg, Germany
| | - Volker Fendrich
- Department of Endocrine Surgery, Schön Klinik Hamburg Eilbek, Dehnhaide 120, 22081, Hamburg, Germany.
| |
Collapse
|
13
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
15
|
Stevenson M, Lines KE, Thakker RV. Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors: New Therapeutic Approaches. Endocrinol Metab Clin North Am 2018; 47:525-548. [PMID: 30098714 PMCID: PMC7614857 DOI: 10.1016/j.ecl.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise sporadically or as part of familial syndromes. Genetic studies of hereditary syndromes and whole exome sequencing analysis of sporadic NETs have revealed the roles of some genes involved in PNET tumorigenesis. The multiple endocrine neoplasia type 1 (MEN1) gene is most commonly mutated. Its encoded protein, menin, has roles in transcriptional regulation, genome stability, DNA repair, protein degradation, cell motility and adhesion, microRNA biogenesis, cell division, cell cycle control, and epigenetic regulation. Therapies targeting epigenetic regulation and MEN1 gene replacement have been reported to be effective in preclinical models.
Collapse
Affiliation(s)
- Mark Stevenson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Kate E Lines
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Rajesh V Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
16
|
Abstract
Pancreatic neuroendocrine tumours (PNETs) might occur as a non-familial isolated endocrinopathy or as part of a complex hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1). MEN1 is an autosomal dominant disorder characterized by the combined occurrence of PNETs with tumours of the parathyroids and anterior pituitary. Treatments for primary PNETs include surgery. Treatments for non-resectable PNETs and metastases include biotherapy (for example, somatostatin analogues, inhibitors of receptors and monoclonal antibodies), chemotherapy and radiological therapy. All these treatments are effective for PNETs in patients without MEN1; however, there is a scarcity of clinical trials reporting the efficacy of the same treatments of PNETs in patients with MEN1. Treatment of PNETs in patients with MEN1 is challenging owing to the concomitant development of other tumours, which might have metastasized. In recent years, preclinical studies have identified potential new therapeutic targets for treating MEN1-associated neuroendocrine tumours (including PNETs), and these include epigenetic modification, the β-catenin-wingless (WNT) pathway, Hedgehog signalling, somatostatin receptors and MEN1 gene replacement therapy. This Review discusses these advances.
Collapse
Affiliation(s)
- Morten Frost
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
- Endocrine Research Unit, University of Southern Denmark, Odense, 5000, Denmark
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| |
Collapse
|
17
|
Almaça J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A. The Pericyte of the Pancreatic Islet Regulates Capillary Diameter and Local Blood Flow. Cell Metab 2018; 27:630-644.e4. [PMID: 29514070 PMCID: PMC5876933 DOI: 10.1016/j.cmet.2018.02.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
Efficient insulin secretion requires a well-functioning pancreatic islet microvasculature. The dense network of islet capillaries includes the islet pericyte, a cell that has barely been studied. Here we show that islet pericytes help control local blood flow by adjusting islet capillary diameter. Islet pericytes cover 40% of the microvasculature, are contractile, and are innervated by sympathetic axons. Sympathetic adrenergic input increases pericyte activity and reduces capillary diameter and local blood flow. By contrast, activating beta cells by increasing glucose concentration inhibits pericytes, dilates islet capillaries, and increases local blood flow. These effects on pericytes are mediated by endogenous adenosine, which is likely derived from ATP co-released with insulin. Pericyte coverage of islet capillaries drops drastically in type 2 diabetes, suggesting that, under diabetic conditions, islets lose this mechanism to control their own blood supply. This may lead to inadequate insulin release into the circulation, further deteriorating glycemic control.
Collapse
Affiliation(s)
- Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jonathan Weitz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular Cell and Developmental Biology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
18
|
Jansson L, Barbu A, Bodin B, Drott CJ, Espes D, Gao X, Grapensparr L, Källskog Ö, Lau J, Liljebäck H, Palm F, Quach M, Sandberg M, Strömberg V, Ullsten S, Carlsson PO. Pancreatic islet blood flow and its measurement. Ups J Med Sci 2016; 121:81-95. [PMID: 27124642 PMCID: PMC4900068 DOI: 10.3109/03009734.2016.1164769] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.
Collapse
Affiliation(s)
- Leif Jansson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- CONTACT Leif Jansson, Department of Medical Cell Biology, Biomedical Centre, Box 571, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Andreea Barbu
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Birgitta Bodin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Carl Johan Drott
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiang Gao
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Liza Grapensparr
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Örjan Källskog
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hanna Liljebäck
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - My Quach
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Monica Sandberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sara Ullsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Progranulin Stimulates Proliferation of Mouse Pancreatic Islet Cells and Is Overexpressed in the Endocrine Pancreatic Tissue of an MEN1 Mouse Model. Pancreas 2016; 45:533-40. [PMID: 26495792 DOI: 10.1097/mpa.0000000000000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Progranulin (PGRN) promotes cell growth and cell cycle progression in several cell types and contributes to tumorigenesis in diverse cancers. We have recently reported PGRN expression in islets and tumors developed in an MEN1 transgenic mouse. Here we sought to investigate PGRN expression and regulation after exposure to hypoxia as well as its effects on pancreatic islet cells and neuroendocrine tumors (NETs) in MEN1(+/−) mice. METHODS Gene and protein expression were analyzed by quantitative polymerase chain reaction, immunohistochemistry, and Western blot. We also investigated PGRN expression in samples from patients carrying pancreatic NETs associated or not with the multiple endocrine neoplasia 1 syndrome, using enzyme-linked immunosorbent assay and immunohistochemistry analysis. RESULTS Progranulin is upregulated in tumors and islets of the MEN1 mouse as well as in the serum of patients with pancreatic NETs associated with glucagonoma syndrome. In normal mice islets and pancreatic tumors, PGRN expression was strongly potentiated by hypoxia. Progranulin promotes cell proliferation in islet cells and βTC-6 cells, a process paralleled by activation of the mitogen-activated protein kinase signaling cascade. CONCLUSIONS Our findings identify PGRN as an effective inducer of pancreatic islet cell proliferation and a possible important factor for pancreatic endocrine tumor development.
Collapse
|
20
|
Agarwal SK. Exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for basic and preclinical studies. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2014; 1:153-161. [PMID: 25685317 DOI: 10.2217/ije.14.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most patients (70-90%) with the multiple endocrine neoplasia type 1 (MEN1) syndrome possess germline heterozygous mutations in MEN1 that predisposes to tumors of multiple endocrine and nonendocrine tissues. Some endocrine tumors of the kinds seen in MEN1 that occur sporadically in the general population also possess somatic mutations in MEN1. Interestingly, the endocrine tumors of MEN1 are recapitulated in mouse models of Men1 loss that serve as a valuable resource to understand the pathophysiology and molecular basis of tumorigenesis. Exploring these endocrine tumors in mouse models using in vivo, ex vivo and in vitro methods can help to follow the process of tumorigenesis, and can be useful for preclinical testing of therapeutics and understanding their mechanisms of action.
Collapse
Affiliation(s)
- Sunita K Agarwal
- National Institutes of Health, NIDDK, Metabolic Diseases Branch, Bldg 10, Room 8C-101, Bethesda, MD 20892, USA, Tel.: +1 301 402 7834
| |
Collapse
|
21
|
Yazdani S, Kasajima A, Tamaki K, Nakamura Y, Fujishima F, Ohtsuka H, Motoi F, Unno M, Watanabe M, Sato Y, Sasano H. Angiogenesis and vascular maturation in neuroendocrine tumors. Hum Pathol 2014; 45:866-74. [PMID: 24656098 DOI: 10.1016/j.humpath.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 10/25/2022]
Abstract
Neuroendocrine tumors (NETs) are highly vascularized, but the process of proliferation and maturation of vascular structures during tumor development and progression has remained unknown. We examined the structural alterations of intratumoral blood vessels in human gastroenteropancreatic NET. Microvessel density was evaluated using the endothelial cell markers vasohibin-1 (VASH-1), CD31, and endoglin in 135 cases. Double immunohistochemistry staining was performed to localize endothelium and pericytes on the same vessels using the pericyte marker nestin. The ratio of Ki-67/CD31 was significantly correlated with that of VASH-1/CD31 positivity (P<.001), indicating that the ratio of VASH-1/CD31 also reflects the status of neovascularization in NET. This ratio was higher in NET than in its nonneoplastic counterpart (P=.10) and tended to increase according to World Health Organization (WHO) grade, although the differences were not statistically significant (P=.32). The ratio of VASH-1/nestin-positive vessels, representing the maturation of neovessels, was also significantly higher in NET than in its nonneoplastic counterparts (P=.003). Among WHO grades, the ratio increased from grade 1 to grade 2 (P=.36) and decreased in neuroendocrine carcinoma (P=.34). Our results demonstrated that VASH-1/CD31 can be an ideal immunohistochemical marker for characterizing neovascularization in NET. The VASH-1/CD31 content increased with WHO grade, and the vessels covered by pericytes decreased in higher grades. These structural changes in the vessels are considered to play an important role in inducing tumor-cell proliferation.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Hospital, Sendai 980-8575, Japan.
| | - Kentaro Tamaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Pathology, Tohoku University Hospital, Sendai 980-8575, Japan; Department of Surgery, Tohoku University Hospital, Sendai 980-8575, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Hospital, Sendai 980-8575, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Hospital, Sendai 980-8575, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Hospital, Sendai 980-8575, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai 980-8575, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Pathology, Tohoku University Hospital, Sendai 980-8575, Japan
| |
Collapse
|