1
|
Yang G, Zhang J, Ma X, Ma R, Shen J, Liu M, Yu D, Feng F, Huang C, Ma X, La Y, Guo X, Yan P, Liang C. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak ( Bos grunniens). Foods 2023; 12:4318. [PMID: 38231770 DOI: 10.3390/foods12234318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Coiled-coil serine-rich protein 1 (CCSER 1) gene is a regulatory protein gene. This gene has been reported to be associated with various economic traits in large mammals in recent years. The aim of this study was to investigate the association between CCSER1 gene single nucleotide polymorphisms (SNPs) and Gannan yaks and to identify potential molecular marker loci for breeding milk quality in Gannan yaks. We genotyped 172 Gannan yaks using Illumina Yak cGPS 7K liquid microarrays and analyzed the correlation between the three SNPs loci of the CCSER1 gene and the milk qualities of Gannan yaks, including milk fat, protein and casein. It was found that mutations at the g.183,843A>G, g.222,717C>G and g.388,723G>T loci all affected the fat, protein, casein and lactose traits of Gannan yak milk to varying extents, and that the milk quality of individuals with mutant phenotypes was significantly improved. Among them, the milk fat content of AG heterozygous genotype population at g.183,843A>G locus was significantly higher than that of AA and GG genotype populations (p < 0.05); the casein and protein content of mutant GG and CG genotype populations at g.222,717C>G locus was significantly higher than that of wild-type CC genotype population (p < 0.05); and the g.388,723G>T locus of the casein and protein contents of the mutant TT genotype population were significantly higher (p < 0.05) than those of the wild-type GG genotype population. These results provide potential molecular marker sites for Gannan yak breeding.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Juanxiang Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jinwei Shen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Modian Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Daoning Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Fen Feng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Lukic B, Curik I, Drzaic I, Galić V, Shihabi M, Vostry L, Cubric-Curik V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J Anim Sci Biotechnol 2023; 14:142. [PMID: 37932811 PMCID: PMC10626677 DOI: 10.1186/s40104-023-00936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.
Collapse
Affiliation(s)
- Boris Lukic
- Faculty of Agrobiotechnical Sciences Osijek, J.J, Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia.
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia.
| | - Ivana Drzaic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Luboš Vostry
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praque, Czech Republic
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
3
|
Xu Z, Wang X, Song X, An Q, Wang D, Zhang Z, Ding X, Yao Z, Wang E, Liu X, Ru B, Xu Z, Huang Y. Association between the copy number variation of CCSER1 gene and growth traits in Chinese Capra hircus (goat) populations. Anim Biotechnol 2023; 34:1377-1383. [PMID: 35108172 DOI: 10.1080/10495398.2022.2025818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Recently, Coiled-coil serine-rich protein 1 (CCSER1) gene is reported to be related to economic traits in livestock, and become a hotspot. In our study, we detected CCSER1 gene CNV in 693 goats from six breeds (GZB, GZW, AN, BH, HG, TH) by quantitative real-time PCR (qPCR) and the association analysis between the types of CNV and growth traits. Then, CCSER1 gene expression pattern was discovered in seven tissues from NB goats. Our results showed that the CCSER1 gene copy numbers were distributed differently in the aforementioned six breeds. The type of CCSER1 gene CNV was significantly associated with body weight and heart girth traits in GZW goat, in which individuals with deletion type were dominant in body weight trait (P < 0.05), while the normal type individuals were more advantageous in heart girth trait (P < 0.01); and there was a significant association with heart girth in TH goat (P < 0.05), which normal type was the dominant one. The expression profile revealed that CCSER1 gene has the highest level in the lung, followed by the small intestine and heart. In conclusion, our result is dedicated to an in-depth study of the novel CCSER1 gene CNV site and to provide essential information for Chinese goats molecular selective breeding in the future.
Collapse
Affiliation(s)
- Zijie Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Xingya Song
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Qingming An
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou, People's Republic of China
| | - Dahui Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Smith JL, Wilson ML, Nilson SM, Rowan TN, Schnabel RD, Decker JE, Seabury CM. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle. BMC Genomics 2022; 23:517. [PMID: 35842584 PMCID: PMC9287884 DOI: 10.1186/s12864-022-08667-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated. Results Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight. Conclusions Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08667-6.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA.,Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA.,Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA.
| |
Collapse
|
5
|
Prahl J, Coetzee GA. Genetic Elements at the Alpha-Synuclein Locus. Front Neurosci 2022; 16:889802. [PMID: 35898413 PMCID: PMC9309432 DOI: 10.3389/fnins.2022.889802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Genome-wide association studies have consistently shown that the alpha-synuclein locus is significantly associated with Parkinson's disease. The mechanism by which this locus modulates the disease pathology and etiology remains largely under-investigated. This is due to the assumption that SNCA is the only driver of the functional aspects of several single nucleotide polymorphism (SNP) risk-signals at this locus. Recent evidence has shown that the risk associated with the top GWAS-identified variant within this locus is independent of SNCA expression, calling into question the validity of assigning function to the nearest gene, SNCA. In this review, we examine additional genes and risk variants present at the SNCA locus and how they may contribute to Parkinson's disease. Using the SNCA locus as an example, we hope to demonstrate that deeper and detailed functional validations are required for high impact disease-linked variants.
Collapse
Affiliation(s)
- Jordan Prahl
- Department of Neurodegenerative Disease, Van Andel Institute, Grand Rapids, MI, United States
| | | |
Collapse
|
6
|
Nathan FM, Kibat C, Goel T, Stewart J, Claridge‐Chang A, Mathuru AS. Contingent stimulus delivery assay for zebrafish reveals a role for CCSER1 in alcohol preference. Addict Biol 2022; 27:e13126. [PMID: 35229935 DOI: 10.1111/adb.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorders are complex, multifactorial phenomena with a large footprint within the global burden of diseases. Here, we report the development of an accessible, two-choice self-administration zebrafish assay (SAZA) to study the neurobiology of addiction. Using this assay, we first demonstrated that, although zebrafish avoid higher concentrations of alcohol, they are attracted to low concentrations. Pre-exposure to alcohol did not change this relative preference, but acute exposure to an alcohol deterrent approved for human use decreased alcohol self-administration. A pigment mutant used in whole-brain imaging studies displayed a similar relative alcohol preference profile; however, mutants in CCSER1, a gene associated with alcohol dependence in human genetic studies, showed a reversal in relative preference. The presence of a biphasic response (hormesis) in zebrafish validated a key aspect of vertebrate responses to alcohol. SAZA adds a new dimension for discovering novel alcohol deterrents and studying the neurogenetics of addiction using the zebrafish.
Collapse
Affiliation(s)
| | - Caroline Kibat
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
| | - Tanisha Goel
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
| | - James Stewart
- Institute of Molecular and Cell Biology Singapore Singapore
- Duke‐NUS Medical School Singapore Singapore
| | - Adam Claridge‐Chang
- Institute of Molecular and Cell Biology Singapore Singapore
- Duke‐NUS Medical School Singapore Singapore
| | - Ajay S. Mathuru
- Yale‐NUS College Singapore Singapore
- Department of Physiology, YLL School of Medicine National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology Singapore Singapore
| |
Collapse
|
7
|
Garcia-Etxebarria K, Clos-Garcia M, Telleria O, Nafría B, Alonso C, Iruarrizaga-Lejarreta M, Franke A, Crespo A, Iglesias A, Cubiella J, Bujanda L, Falcón-Pérez JM. Interplay between Genome, Metabolome and Microbiome in Colorectal Cancer. Cancers (Basel) 2021; 13:6216. [PMID: 34944836 PMCID: PMC8699218 DOI: 10.3390/cancers13246216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC), a major health concern, is developed depending on environmental, genetic and microbial factors. The microbiome and metabolome have been analyzed to study their role in CRC. However, the interplay of host genetics with those layers in CRC remains unclear. METHODS 120 individuals were sequenced and association analyses were carried out for adenoma and CRC risk, and for selected components of the microbiome and metabolome. The epistasis between genes located in cholesterol pathways was analyzed; modifiable risk factors were studied using Mendelian randomization; and the three omic layers were used to integrate their data and to build risk prediction models. RESULTS We detected genetic variants that were associated to components of metabolome or microbiome and adenoma or CRC risk (e.g., in LINC01605, PROKR2 and CCSER1 genes). In addition, we found interactions between genes of cholesterol metabolism, and HDL cholesterol levels affected adenoma (p = 0.0448) and CRC (p = 0.0148) risk. The combination of the three omic layers to build risk prediction models reached high AUC values (>0.91). CONCLUSIONS The use of the three omic layers allowed for the finding of biological mechanisms related to the development of adenoma and CRC, and each layer provided complementary information to build risk prediction models.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Grupo de Genética Gastrointestinal, Biodonostia, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Marc Clos-Garcia
- Exosomes Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Grupo de Enfermedades Gastrointestinales, Biodonostia, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Oiana Telleria
- Exosomes Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
| | - Beatriz Nafría
- Grupo de Enfermedades Gastrointestinales, Biodonostia, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, 48160 Derio, Spain
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Anais Crespo
- Department of Gastroenterology, Instituto de Investigación Sanitario Galicia Sur, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain
| | - Agueda Iglesias
- Department of Gastroenterology, Instituto de Investigación Sanitario Galicia Sur, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain
| | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Department of Gastroenterology, Instituto de Investigación Sanitario Galicia Sur, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Grupo de Enfermedades Gastrointestinales, Biodonostia, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Juan Manuel Falcón-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Exosomes Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Basque Foundation for Sciences, Ikerbasque, 48013 Bilbao, Spain
- Metabolomics Platform, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
| |
Collapse
|
8
|
Santoliquido BM, Frenquelli M, Contadini C, Bestetti S, Gaviraghi M, Barbieri E, De Antoni A, Albarello L, Amabile A, Gardini A, Lombardo A, Doglioni C, Provero P, Soddu S, Cittaro D, Tonon G. Deletion of a pseudogene within a fragile site triggers the oncogenic expression of the mitotic CCSER1 gene. Life Sci Alliance 2021; 4:4/8/e202101019. [PMID: 34187875 PMCID: PMC8321653 DOI: 10.26508/lsa.202101019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The oncogenic role of common fragile sites (CFS), focal and pervasive gaps in the cancer genome arising from replicative stress, remains controversial. Exploiting the TCGA dataset, we found that in most CFS the genes residing within the associated focal deletions are down-regulated, including proteins involved in tumour immune recognition. In a subset of CFS, however, the residing genes are surprisingly overexpressed. Within the most frequent CFS in this group, FRA4F, which is deleted in up to 18% of cancer cases and harbours the CCSER1 gene, we identified a region which includes an intronic, antisense pseudogene, TMSB4XP8. TMSB4XP8 focal ablation or transcriptional silencing elicits the overexpression of CCSER1, through a cis-acting mechanism. CCSER1 overexpression increases proliferation and triggers centrosome amplifications, multinuclearity, and aberrant mitoses. Accordingly, FRA4F is associated in patient samples to mitotic genes deregulation and genomic instability. As a result, cells overexpressing CCSER1 become sensitive to the treatment with aurora kinase inhibitors. Our findings point to a novel tumourigenic mechanism where focal deletions increase the expression of a new class of "dormant" oncogenes.
Collapse
Affiliation(s)
- Benedetta M Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Contadini
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Bestetti
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia, PA, USA
| | - Anna De Antoni
- DNA Metabolism Laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Amabile
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia, PA, USA
| | - Angelo Lombardo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy.,Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Neurosciences "Rita Levi Montalcini," University of Torino, Turin, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Comparative genomics of CXCR4MUT and CXCR4WT single cells in Waldenström's macroglobulinemia. Blood Adv 2021; 4:4550-4553. [PMID: 32956451 DOI: 10.1182/bloodadvances.2020001775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Key Points
Single-cell whole-genome amplification can be used to interrogate the genomic architecture of Waldenström’s macroglobulinemia. The mutational signature of CXCR4MUT cells may be associated with alterations in DNA repairing genes and tumor suppressors.
Collapse
|
10
|
Thompson ED, Roberts NJ, Wood LD, Eshleman JR, Goggins MG, Kern SE, Klein AP, Hruban RH. The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Mod Pathol 2020; 33:2544-2563. [PMID: 32704031 PMCID: PMC8375585 DOI: 10.1038/s41379-020-0629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The publication of the "Pan-Cancer Atlas" by the Pan-Cancer Analysis of Whole Genomes Consortium, a partnership formed by The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), provides a wonderful opportunity to reflect on where we stand in our understanding of the genetics of pancreatic cancer, as well as on the opportunities to translate this understanding to patient care. From germline variants that predispose to the development of pancreatic cancer, to somatic mutations that are therapeutically targetable, genetics is now providing hope, where there once was no hope, for those diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott E Kern
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Smith JL, Wilson ML, Nilson SM, Rowan TN, Oldeschulte DL, Schnabel RD, Decker JE, Seabury CM. Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle. BMC Genomics 2019; 20:926. [PMID: 31801456 PMCID: PMC6892214 DOI: 10.1186/s12864-019-6231-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated. RESULTS GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05). CONCLUSIONS Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, 65211, USA
| | - David L Oldeschulte
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, 65211, USA
- Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, 65211, USA
- Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA.
| |
Collapse
|
12
|
Ilska-Warner JJ, Psifidi A, Seeker LA, Wilbourn RV, Underwood SL, Fairlie J, Whitelaw B, Nussey DH, Coffey MP, Banos G. The Genetic Architecture of Bovine Telomere Length in Early Life and Association With Animal Fitness. Front Genet 2019; 10:1048. [PMID: 31749836 PMCID: PMC6843005 DOI: 10.3389/fgene.2019.01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Health and survival are key goals for selective breeding in farm animals. Progress, however, is often limited by the low heritability of these animal fitness traits in addition to measurement difficulties. In this respect, relevant early-life biomarkers may be useful for breeding purposes. Telomere length (TL), measured in leukocytes, is a good candidate biomarker since TL has been associated with health, ageing, and stress in humans and other species. However, telomere studies are very limited in farm animals. Here, we examined the genetic background, genomic architecture, and factors affecting bovine TL measurements in early life, and the association of the latter with animal fitness traits expressed later in life associated with survival, longevity, health, and reproduction. We studied two TL measurements, one at birth (TLB) and another during the first lactation (TLFL) of a cow. We performed a genome-wide association study of dairy cattle TL, the first in a non-human species, and found that TLB and TLFL are complex, polygenic, moderately heritable, and highly correlated traits. However, genomic associations with distinct chromosomal regions were identified for the two traits suggesting that their genomic architecture is not identical. This is reflected in changes in TL throughout an individual’s life. TLB had a significant association with survival, length of productive life and future health status of the animal, and could be potentially used as an early-life biomarker for disease predisposition and longevity in dairy cattle.
Collapse
Affiliation(s)
- Joanna J Ilska-Warner
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Royal Veterinary College, University of London, London, United Kingdom
| | - Luise A Seeker
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mike P Coffey
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Georgios Banos
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Transcription-dependent regulation of replication dynamics modulates genome stability. Nat Struct Mol Biol 2018; 26:58-66. [PMID: 30598553 DOI: 10.1038/s41594-018-0170-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
Common fragile sites (CFSs) are loci that are hypersensitive to replication stress and hotspots for chromosomal rearrangements in cancers. CFSs replicate late in S phase, are cell-type specific and nest in large genes. The relative impact of transcription-replication conflicts versus a low density in initiation events on fragility is currently debated. Here we addressed the relationships between transcription, replication, and instability by manipulating the transcription of endogenous large genes in chicken and human cells. We found that inducing low transcription with a weak promoter destabilized large genes, whereas stimulating their transcription with strong promoters alleviated instability. Notably, strong promoters triggered a switch to an earlier replication timing, supporting a model in which high transcription levels give cells more time to complete replication before mitosis. Transcription could therefore contribute to maintaining genome integrity, challenging the dominant view that it is exclusively a threat.
Collapse
|
14
|
Kang SU, Park JT. Functional evaluation of alternative splicing in the FAM190A gene. Genes Genomics 2018; 41:193-199. [PMID: 30298359 DOI: 10.1007/s13258-018-0752-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
The human FAM190A gene undergoes frequent alteration in human cancer, most commonly involving in-frame deletions in exon 9 or exons 9 & 10. These deletions form novel peptide sequences, serving as presumptive cancer-specific neo antigens. However, it remains elusive whether these in-frame deletions of FAM190A could induce oncogenic properties in vivo. In this study, we aimed to explore the functional significance of in-frame deletions in FAM190A genes. We generated two deletion mutant forms, FAM190AΔexon9 and FAM190AΔexon9&10, and examined their gain-of-function effects in vitro and in vivo. Global transcript profiling in NIH3T3 cells revealed that the transcripts displaying altered expression following introduction of FAM190AΔexon9 and FAM190AΔexon9&10 were significantly enriched for genes assigned to cellular movement and cell-to-cell signaling, respectively. Furthermore, ectopic expression of FAM190AΔexon9 and FAM190AΔexon9&10 induced in vivo tumor formation in nu/nu mice. Taken together, our results are the first to demonstrate the in vivo oncogenic properties of in-frame deletions in the FAM190A gene and indicate that these transcript variants might be clinically applicable as therapeutic targets in patients with cancer.
Collapse
Affiliation(s)
- Sung Ung Kang
- Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea.
| |
Collapse
|
15
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
16
|
Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics 2014; 15:442. [PMID: 24906442 PMCID: PMC4102727 DOI: 10.1186/1471-2164-15-442] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background The availability of high-density SNP assays including the BovineSNP50 (50 K) enables the identification of novel quantitative trait loci (QTL) and improvement of the resolution of the locations of previously mapped QTL. We performed a series of genome-wide association studies (GWAS) using 50 K genotypes scored in 18,274 animals from 10 US beef cattle breeds with observations for twelve body weights, calving ease and carcass traits. Results A total of 159 large-effects QTL (defined as 1-Mb genome windows explaining more than 1% of additive genetic variance) were identified. In general, more QTL were identified in analyses with bigger sample sizes. Four large-effect pleiotropic or closely linked QTLs located on BTA6 at 37–42 Mb (primarily at 38 Mb), on BTA7 at 93 Mb, on BTA14 at 23–26 Mb (primarily at 25 Mb) and on BTA20 at 4 Mb were identified in more than one breed. Several breed-specific large-effect pleiotropic or closely linked QTL were also identified. Some identified QTL regions harbor genes known to have large effects on a variety of traits in cattle such as PLAG1 and MSTN and others harbor promising candidate genes including NCAPG, ARRDC3, ERGIC1, SH3PXD2B, HMGA2, MSRB3, LEMD3, TIGAR, SEPT7, and KIRREL3. Gene ontology analysis revealed that genes involved in ossification and in adipose tissue development were over-represented in the identified pleiotropic QTL. Also, the MAPK signaling pathway was identified as a common pathway affected by the genes located near the pleiotropic QTL. Conclusions This largest GWAS ever performed in beef cattle, led us to discover several novel across-breed and breed-specific large-effect pleiotropic QTL that cumulatively account for a significant percentage of additive genetic variance (e.g. more than a third of additive genetic variance of birth and mature weights; and calving ease direct in Hereford). These results will improve our understanding of the biology of growth and body composition in cattle. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-442) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Dorian J Garrick
- Department of Animal Science, Iowa State University, Ames 50011, USA.
| |
Collapse
|
17
|
Abo-Ismail MK, Vander Voort G, Squires JJ, Swanson KC, Mandell IB, Liao X, Stothard P, Moore S, Plastow G, Miller SP. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genet 2014; 15:14. [PMID: 24476087 PMCID: PMC3927660 DOI: 10.1186/1471-2156-15-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022] Open
Abstract
Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stephen P Miller
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W0, Canada.
| |
Collapse
|