1
|
Abulaban A, Al‐kuraishy H, Al‐Gareeb A, Ahmed E, Alruwaili M, Alexiou A, Papadakis M, El‐Saber Batiha G. The Possible Role of Metformin and Fibroblast Growth Factor-21 in Multiple Sclerosis Neuropathology: Birds of a Feather Flock Together. Eur J Neurosci 2025; 61:e70067. [PMID: 40172524 PMCID: PMC11963988 DOI: 10.1111/ejn.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
Multiple sclerosis (MS) is a progressive demyelinating disease of the CNS, characterized by inflammation, the formation of CNS plaques, and damage to the neuronal myelin sheath (Graphical abstract). Fibroblast growth factor 21 (FGF21) is involved in various metabolic disorders and neurodegenerative diseases. FGF21 and its co-receptor β-Kloth are essential in the remyelination process of MS. Metformin, an insulin-sensitizing drug that is the first-line treatment for type 2 diabetes mellitus (T2DM), may have a potential neuroprotective impact by up-regulating the production of FGF21, which may prevent the onset of neurodegenerative diseases including MS. The purpose of this review is to clarify how metformin affects MS neuropathology mechanistically via modifying FGF21. Metformin increases the expression of FGF21. Metformin also increases the expression of β-Klotho, modulates oxidative stress, reduces glutamate-induced excitotoxicity, and regulates platelet function and coagulation cascades. In conclusion, metformin can enhance the functional activity of FGF21 in counteracting the development and progression of MS. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Ahmad A. Abulaban
- College of MedicineKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
- Division of Neurology, King Abdulaziz Medical CityMinistry of the National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBagdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBagdadIraq
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
2
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Mehdipour Arbastan A, Ghasemi-Kasman M. AMP-activated protein kinase as a mediator of mitochondrial dysfunction of multiple sclerosis in animal models: A systematic review. J Cell Physiol 2024; 239:e31230. [PMID: 38403972 DOI: 10.1002/jcp.31230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Mehdipour Arbastan
- School of Medicine, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Abdelgaied MY, Rashad MH, El-Tayebi HM, Solayman MH. The impact of metformin use on the outcomes of relapse-remitting multiple sclerosis patients receiving interferon beta 1a: an exploratory prospective phase II open-label randomized controlled trial. J Neurol 2024; 271:1124-1132. [PMID: 38070031 DOI: 10.1007/s00415-023-12113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disorder. Elevated levels of pro-inflammatory mediators and some oxidative stress parameters can accelerate the demyelination process. We aimed to investigate the efficacy and safety of metformin as an adjuvant therapy to interferon beta 1a (IFNβ-1a) in relapsing-remitting multiple sclerosis (RRMS) patients. METHOD Eighty RRMS patients were equally divided into 2 groups: the intervention group receiving IFNβ-1a plus 2 gm of metformin once daily and the control group receiving IFNβ-1a alone. Interleukin 17 (IL17), interleukin 22 (IL22), malondialdehyde (MDA), T2 lesions in magnetic resonance imaging (MRI) and expanded disability status scale (EDSS) were assessed at the baseline and then after 6 months. RESULTS At baseline, there were no statistically significant differences between the two groups (p > 0.05). After 6 months, the change in the median (interquartile range) of the results for both the intervention and control group were; IL17 (- 1.39 (4.19) vs - 0.93 (5.48), p = 0.48), IL22 (- 0.14 (0.48) vs - 0.09 (0.6), p = 0.53), and EDSS (0 vs 0, p = 1), respectively. The mean (standard deviation) change in MDA for the intervention and control group was - 0.93 (2.2) vs - 0.5 (2.53), p = 0.038, respectively. For MRI results, 21 patients had stationary and regressive course and 1 patient had a progressive course in the intervention arm vs 12 patients had stationary and regressive course and 4 had a progressive course in the control arm, p = 0.14. CONCLUSION Adding metformin to IFNβ-1a demonstrated a potential effect on an oxidative stress marker (MDA). However, there is no statistically significant effect on immunological, MRI and clinical outcomes. We recommend larger scale studies to confirm or negate these findings. TRIAL REGISTRATION ClinicalTrials.gov number: NCT05298670, 28/3/2022.
Collapse
Affiliation(s)
- Mohamed Y Abdelgaied
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo (GUC), Cairo, Egypt
- Clinical Pharmacology and Pharmacogenomics Research Group, Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Hend M El-Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed H Solayman
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo (GUC), Cairo, Egypt.
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
De Keersmaecker AV, Van Doninck E, Popescu V, Willem L, Cambron M, Laureys G, D’ Haeseleer M, Bjerke M, Roelant E, Lemmerling M, D’hooghe MB, Derdelinckx J, Reynders T, Willekens B. A metformin add-on clinical study in multiple sclerosis to evaluate brain remyelination and neurodegeneration (MACSiMiSE-BRAIN): study protocol for a multi-center randomized placebo controlled clinical trial. Front Immunol 2024; 15:1362629. [PMID: 38680485 PMCID: PMC11046490 DOI: 10.3389/fimmu.2024.1362629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Despite advances in immunomodulatory treatments of multiple sclerosis (MS), patients with non-active progressive multiple sclerosis (PMS) continue to face a significant unmet need. Demyelination, smoldering inflammation and neurodegeneration are important drivers of disability progression that are insufficiently targeted by current treatment approaches. Promising preclinical data support repurposing of metformin for treatment of PMS. The objective of this clinical trial is to evaluate whether metformin, as add-on treatment, is superior to placebo in delaying disease progression in patients with non-active PMS. Methods and analysis MACSiMiSE-BRAIN is a multi-center two-arm, 1:1 randomized, triple-blind, placebo-controlled clinical trial, conducted at five sites in Belgium. Enrollment of 120 patients with non-active PMS is planned. Each participant will undergo a screening visit with assessment of baseline magnetic resonance imaging (MRI), clinical tests, questionnaires, and a safety laboratory assessment. Following randomization, participants will be assigned to either the treatment (metformin) or placebo group. Subsequently, they will undergo a 96-week follow-up period. The primary outcome is change in walking speed, as measured by the Timed 25-Foot Walk Test, from baseline to 96 weeks. Secondary outcome measures include change in neurological disability (Expanded Disability Status Score), information processing speed (Symbol Digit Modalities Test) and hand function (9-Hole Peg test). Annual brain MRI will be performed to assess evolution in brain volumetry and diffusion metrics. As patients may not progress in all domains, a composite outcome, the Overall Disability Response Score will be additionally evaluated as an exploratory outcome. Other exploratory outcomes will consist of paramagnetic rim lesions, the 2-minute walking test and health economic analyses as well as both patient- and caregiver-reported outcomes like the EQ-5D-5L, the Multiple Sclerosis Impact Scale and the Caregiver Strain Index. Ethics and dissemination Clinical trial authorization from regulatory agencies [Ethical Committee and Federal Agency for Medicines and Health Products (FAMHP)] was obtained after submission to the centralized European Clinical Trial Information System. The results of this clinical trial will be disseminated at scientific conferences, in peer-reviewed publications, to patient associations and the general public. Trial registration ClinicalTrials.gov Identifier: NCT05893225, EUCT number: 2023-503190-38-00.
Collapse
Affiliation(s)
- Anna-Victoria De Keersmaecker
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Eline Van Doninck
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Center of Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | - Veronica Popescu
- Immunology and Infection, University of Hasselt, Diepenbeek, Belgium
- Biomedical Research Institute, University of Hasselt, Diepenbeek, Belgium
- Department of Neurology, Noorderhart Maria Hospital, Pelt, Belgium
- University Multiple Sclerosis Centre, University of Hasselt, Hasselt, Belgium
| | - Lander Willem
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Center of Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | - Melissa Cambron
- Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
- Department of Neurology, Algemeen Ziekenhuis Sint Jan, Bruges, Belgium
| | - Guy Laureys
- Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
| | - Miguel D’ Haeseleer
- Department of Neurology, University Hospital Brussels, Brussels, Belgium
- Department of Neurology, National Multiple Sclerosis Center, Melsbroek, Belgium
- Department Neuroprotection and Neuromodulation, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Bjerke
- Department Neuroprotection and Neuromodulation, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Neurochemistry Laboratory, Department of Clinical Biology, Brussels, University Hospital Brussels, Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ella Roelant
- Clinical Trial Center, Antwerp University Hospital, Edegem, Belgium
| | - Marc Lemmerling
- Department of Radiology, Antwerp University Hospital, Edegem, Wilrijk, Belgium
| | - Marie Beatrice D’hooghe
- Department of Neurology, University Hospital Brussels, Brussels, Belgium
- Department of Neurology, National Multiple Sclerosis Center, Melsbroek, Belgium
- Department Neuroprotection and Neuromodulation, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Judith Derdelinckx
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tatjana Reynders
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
8
|
He Y, Li Z, Shi X, Ding J, Wang X. Metformin attenuates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2023; 43:78-94. [PMID: 37177813 PMCID: PMC10638997 DOI: 10.1177/0271678x231175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023]
Abstract
Vascular cognitive impairment and dementia (VCID) is a series of cognitive dysfunction associated with cerebrovascular diseases and currently lacks effective treatments. The white matter, which is essential for neuronal information processing and integration, is nourished by a network of capillaries and is vulnerable to chronic hypoperfusion. Here, we show that metformin, a widely used drug for the treatment of type 2 diabetes, alleviates the white matter damage and improves cognitive impairment in a mouse model of VCID established by bilateral carotid artery stenosis (BCAS)-induced chronic hypoperfusion. Mechanistically, metformin restores the dysfunctions of oligodendrocyte precursor cells (OPCs) under hypoxia. Metformin up-regulates prolyl hydroxylases 2 via activating the AMP-activated protein kinase pathway, leading to hypoxia-inducible factor-1α (HIF-1α) degradation in OPCs. These findings suggest that metformin may have a promising therapeutic role in alleviating cognitive abnormalities by ameliorating white matter damage of VCID.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenghao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai, China
| | - Xiaoyu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Narine M, Azmi MA, Umali M, Volz A, Colognato H. The AMPK activator metformin improves recovery from demyelination by shifting oligodendrocyte bioenergetics and accelerating OPC differentiation. Front Cell Neurosci 2023; 17:1254303. [PMID: 37904733 PMCID: PMC10613472 DOI: 10.3389/fncel.2023.1254303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic disease characterized by immune-mediated destruction of myelinating oligodendroglia in the central nervous system. Loss of myelin leads to neurological dysfunction and, if myelin repair fails, neurodegeneration of the denuded axons. Virtually all treatments for MS act by suppressing immune function, but do not alter myelin repair outcomes or long-term disability. Excitingly, the diabetes drug metformin, a potent activator of the cellular "energy sensor" AMPK complex, has recently been reported to enhance recovery from demyelination. In aged mice, metformin can restore responsiveness of oligodendrocyte progenitor cells (OPCs) to pro-differentiation cues, enhancing their ability to differentiate and thus repair myelin. However, metformin's influence on young oligodendroglia remains poorly understood. Here we investigated metformin's effect on the temporal dynamics of differentiation and metabolism in young, healthy oligodendroglia and in oligodendroglia following myelin damage in young adult mice. Our findings reveal that metformin accelerates early stages of myelin repair following cuprizone-induced myelin damage. Metformin treatment of both isolated OPCs and oligodendrocytes altered cellular bioenergetics, but in distinct ways, suppressing oxidative phosphorylation and enhancing glycolysis in OPCs, but enhancing oxidative phosphorylation and glycolysis in both immature and mature oligodendrocytes. In addition, metformin accelerated the differentiation of OPCs to oligodendrocytes in an AMPK-dependent manner that was also dependent on metformin's ability to modulate cell metabolism. In summary, metformin dramatically alters metabolism and accelerates oligodendroglial differentiation both in health and following myelin damage. This finding broadens our knowledge of metformin's potential to promote myelin repair in MS and in other diseases with myelin loss or altered myelination dynamics.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Program in Neurosciences, Stony Brook University, Stony Brook, NY, United States
| | - Maryam A. Azmi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Martin Umali
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Ashley Volz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
10
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
11
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
12
|
Li RZ, Guan XX, Wang XR, Bao WQ, Lian LR, Choi SW, Zhang FY, Yan PY, Leung ELH, Pan HD, Liu L. Sinomenine hydrochloride bidirectionally inhibits progression of tumor and autoimmune diseases by regulating AMPK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154751. [PMID: 37004400 DOI: 10.1016/j.phymed.2023.154751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.
Collapse
Affiliation(s)
- Run Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Xiao Xiang Guan
- State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China
| | - Xuan Run Wang
- State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China
| | - Wei-Qian Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Li-Rong Lian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Seong Wang Choi
- State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China
| | - Fang Yuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China
| | - Elaine Lai Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Hu-Dan Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China.
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
14
|
Abdi M, Pasbakhsh P, Shabani M, Nekoonam S, Sadeghi A, Fathi F, Abouzaripour M, Mohamed W, Zibara K, Kashani IR, Zendedel A. Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis. Neurotox Res 2021; 39:1732-1746. [PMID: 34570348 DOI: 10.1007/s12640-021-00417-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.
Collapse
Affiliation(s)
- Mahdad Abdi
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Shabani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Nekoonam
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Wael Mohamed
- Basic Medical Science Department, International Islamic University Malaysia, Pahang, Malaysia.,Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El Kom, Egypt
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Iraj Ragerdi Kashani
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
15
|
Arabmoazzen S, Mirshekar MA. Evaluation of the effects of metformin as adenosine monophosphate-activated protein kinase activator on spatial learning and memory in a rat model of multiple sclerosis disease. Biomed Pharmacother 2021; 141:111932. [PMID: 34323699 DOI: 10.1016/j.biopha.2021.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
In patients with multiple sclerosis (MS) disease, cognitive deficits have been detected because of destruction of hippocampus. Cognitive impairment is one of the common signs in MS. Recent studies showed that metformin (Met) has wide-ranging effects in the treatment of diseases. Here, we have tried to study the preservative effects of Met as adenosine monophosphate-activated protein kinase (AMPK) activator on the hippocampus dentate gyrus (DG) neuronal firing pattern, motor coordination, and learning & memory loss following MS induction. The MS induction was done by local ethidium bromide (EB) injection into the rat hippocampus. Then, rats were treated with Met (200 mg/kg) for two weeks. Spatial memory and learning status were assessed using Morris water maze. A neuronal single-unit recording was measured from hippocampus DG. After decapitation, the bilateral hippocampi separated to measure malondialdehyde (MDA). Treatment with Met ameliorated latency times and path lengths (P < 0.05, P < 0.01, P < 0.001 in 1th, 2th, 3th and 4th days) in the Met + MS group respectively. The percent of total time spent in goal quarter and the average number of spikes/bin were decreased significantly in MS rats compared with the sham group (p < 0.001) but significantly increased in the metformin-treated MS group (Met + MS), (p < 0.01, p < 0.001). Met treatment in rats with MS significantly reduced the concentration of MDA, which is an indicator of lipid peroxidation compared to untreated groups. These observations show that increase of neuronal activity, sensory-motor coordination, and improvement of spatial memory in MS rats treated with Met appears via an increment of AMPK.
Collapse
Affiliation(s)
- Saiedeh Arabmoazzen
- Deputy of Research and Technology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
16
|
Eltony SA, Mohaseb HS, Sayed MM, Ahmed AA. Metformin treatment confers protection of the optic nerve following photoreceptor degeneration. Anat Cell Biol 2021; 54:249-258. [PMID: 34162765 PMCID: PMC8225472 DOI: 10.5115/acb.20.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/27/2022] Open
Abstract
Acquired or inherited or photoreceptor loss causes retinal ganglion cell loss and ultimately axonal transport alteration. Thus, therapies should be applied early during photoreceptors degeneration before the remodeling process reaches the inner retina. This study aimed to evaluate the protective effect of metformin on the rat optic nerve following photoreceptors loss induced by N-Ethyl-N-nitrosourea (ENU). Eighteen adults male Wistar rats were divided into two groups. Group I: normal vehicle control (n=6). Group II: ENU-induced photoreceptors degeneration (n=12) received a single intraperitoneal injection of ENU at a dose of 600 mg/kg. Rats in group II were equally divided into two subgroups: IIa: photoreceptor degeneration induced group and IIb: metformin treated group (200 mg/kg) for 7 days. Specimens from the optic nerve were processed for light and electron microscopy. In ENU treated group, the optic nerve revealed reduction in the diameter of the optic nerve fibers and thinning of myelin sheath with morphological changes in the glia (astrocytes, oligodendrocytes, and microglia). Caspase-3 (apoptotic marker), iNOS (oxidative stress marker) and CD68 (macrophage marker) expression increased. In metformin-treated group, the diameter of optic nerve fibers and myelin sheath thickness increased with improvement of the deterioration in the glia. Caspase-3, iNOS and CD68 expression decreased. Metformin ameliorates the histological changes of the rat optic nerve following photoreceptors loss induced by ENU.
Collapse
Affiliation(s)
- Sohair A Eltony
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba S Mohaseb
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amel A Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Pluchino S. Metabolic Control of Smoldering Neuroinflammation. Front Immunol 2021; 12:705920. [PMID: 34249016 PMCID: PMC8262770 DOI: 10.3389/fimmu.2021.705920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence exists that patients with chronic neurological conditions, which includes progressive multiple sclerosis, display pathological changes in neural metabolism and mitochondrial function. However, it is unknown if a similar degree of metabolic dysfunction occurs also in non-neural cells in the central nervous system. Specifically, it remains to be clarified (i) the full extent of metabolic changes in tissue-resident microglia and infiltrating macrophages after prolonged neuroinflammation (e.g., at the level of chronic active lesions), and (ii) whether these alterations underlie a unique pathogenic phenotype that is amenable for therapeutic targeting. Herein, we discuss how cell metabolism and mitochondrial function govern the function of chronic active microglia and macrophages brain infiltrates and identify new metabolic targets for therapeutic approaches aimed at reducing smoldering neuroinflammation.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci 2021; 274:119343. [PMID: 33716063 PMCID: PMC8996678 DOI: 10.1016/j.lfs.2021.119343] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
19
|
Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. Int J Mol Sci 2021; 22:ijms22105351. [PMID: 34069559 PMCID: PMC8160983 DOI: 10.3390/ijms22105351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is a drug in the family of biguanide compounds that is widely used in the treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin administration has beneficial effects on different neurological conditions. In this work, we review the beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus epilepsy. In addition, we review the different proposed mechanisms of action of metformin to understand its function at the neurological level.
Collapse
|
20
|
Xu T, Wu X, Lu X, Liang Y, Mao Y, Loor JJ, Yang Z. Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells. BMC Vet Res 2021; 17:97. [PMID: 33648513 PMCID: PMC7923493 DOI: 10.1186/s12917-021-02797-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Lipopolysaccharides (LPS) derived from gram-negative bacterial are often regarded as primary inducer of bovine mammary inflammation. This study evaluated the biological response of metformin activated AMPK signaling on LPS-induced inflammatory responses and metabolic changes in primary bovine mammary epithelial cells (pbMEC). The pbMEC were exposed to either 3 mmol/L Metf. for 12 h as Metf. group (Metf.) or 2 μg/mL LPS for 6 h as LPS group (LPS). Cells pretreated with 3 mmol/L metformin for 12 h followed by washing and 2 μg/mL LPS exposure for 6 h were served as ML group (ML). PBS was added to cells as the control group (Con.). Results Pre-incubation with Metf. inhibited LPS-induced expression of pro-inflammatory genes (TNF, IL1B, IL6, CXCL8, MYD88 and TLR4) and proteins (IL-1β, TNF-α, NLRP3, Caspase1, ASC) and was accompanied by increased activation of AMPK signaling. Compared with the LPS group, phosphorylation of p65 and IκBα in the ML group were decreased and accumulation of NF-κB in the nucleus was significantly reduced by pretreatment with metformin. Metformin protects the cells from the increase of LPS-induced binding activity of NF-κB on both TNFA and IL1B promoters. Compared with the LPS group, genes (G6PC, PCK2) and proteins (SREBP1, SCD1) related to lipogenesis and carbohydrate metabolism were downregulated while catabolic ones (PPARA, ACSL1, Glut1, HK1) were upregulated in the ML group. Furthermore, increased acetylation of H3K14 by LPS challenge was reversed by pretreatment with metformin. Conclusion Altogether, our results indicated that pretreatment with metformin dampens LPS-induced inflammatory responses mediated in part by AMPK/NF-κB/NLRP3 signaling and modification of histone H3K14 deacetylation and metabolic changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02797-x.
Collapse
Affiliation(s)
- Tianle Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyue Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
21
|
Lin JY, Zhu N, He YN, Xu BL, Peng B. Stereological study on the numerical plasticity of myelinated fibers and oligodendrocytes in the rat spinal cord with painful diabetic neuropathy. Neuroreport 2021; 31:319-324. [PMID: 32058434 PMCID: PMC7041624 DOI: 10.1097/wnr.0000000000001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Painful diabetic neuropathy may associate with nerve morphological plasticity in both peripheral and central nervous system. The aim of this study was to determine numerical changes of myelinated fibers in the spinothalamic tract region and oligodendrocytes in the spinal dorsal horn of rats with painful diabetic neuropathy and the effects of metformin on the above changes. Male Sprague–Dawley rats were randomly allocated into the control group (n = 7), the painful diabetic neuropathy group (n = 6) and the painful diabetic neuropathy treated with metformin group (the PDN + M group, n = 7), respectively. Twenty-eight days after medication, numbers of myelinated fibers in the spinothalamic tract and oligodendrocytes in the spinal dorsal horn were estimated by the optical disector (a stereological technique). Compared to the control group, number of myelinated fibers in the spinothalamic tract increased significantly in the painful diabetic neuropathy and PDN + M group, compared to the painful diabetic neuropathy group, number of myelinated fibers decreased in the PDN + M group (P < 0.05). As the oligodendrocyte in the spinal dorsal horn was considered, its number increased significantly in the painful diabetic neuropathy group compared to the control and the PDN + M group (P < 0.05), there was no significant difference between the control and the PDN + M group (P > 0.05). Our results indicate that painful diabetic neuropathy is associated with a serial of morphometric plasticity in the rat spinal cord including the numerical increase of the myelinated fibers in the spinothalamic tract and the oligodendrocytes in the spinal dorsal horn. The analgesic effect of metformin against painful diabetic neuropathy might be related to its adverse effects on the above morphometric plasticity.
Collapse
Affiliation(s)
- Jing-Yan Lin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Na Zhu
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong.,Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Chengdu
| | - Yi-Na He
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong.,Department of Anesthesiology, Nanchong Central Hospital, Nanchong
| | - Bo-Lin Xu
- Department of Anesthesiology, Santai County People's Hospital (Affiliated Hospital of North Sichuan Medical College in Santai County), Mianyang
| | - Bin Peng
- Research Unit of Electron Microscopy Structures, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
22
|
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2020; 21:45-63. [PMID: 33161784 PMCID: PMC9482886 DOI: 10.1080/14737175.2021.1847645] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson’s disease, Huntington’s disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.
Collapse
Affiliation(s)
- Sarah Demaré
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Asha Kothari
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego , La Jolla, CA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| |
Collapse
|
23
|
Is metformin a geroprotector? A peek into the current clinical and experimental data. Mech Ageing Dev 2020; 191:111350. [DOI: 10.1016/j.mad.2020.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
|
24
|
Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175957. [PMID: 32825027 PMCID: PMC7503488 DOI: 10.3390/ijms21175957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, a synthetic derivative of guanidine, is commonly used as an oral antidiabetic agent and is considered a multi-vector application agent in the treatment of other inflammatory diseases. Recent studies have confirmed the beneficial effect of metformin on immune cells, with special emphasis on immunological mechanisms. Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by various clinical courses. Although the pathophysiology of MS remains unknown, it is most likely a combination of disturbances of the immune system and biochemical pathways with a disruption of blood-brain barrier (BBB), and it is strictly related to injury of intracerebral blood vessels. Metformin has properties which are greatly desirable for MS therapy, including antioxidant, anti-inflammatory or antiplatelet functions. The latest reports relating to the cardiovascular disease confirm an increased risk of ischemic events in MS patients, which are directly associated with a coagulation cascade and an elevated pro-thrombotic platelet function. Hence, this review examines the potential favourable effects of metformin in the course of MS, its role in preventing inflammation and endothelial dysfunction, as well as its potential antiplatelet role.
Collapse
|
25
|
Safa A, Taheri M, Fallah H, Salmani T, Arsang-Jang S, Ghafouri-Fard S, Omrani MD. Downregulation of Cancer-Associated lncRNAs in Peripheral Blood of Multiple Sclerosis Patients. J Mol Neurosci 2020; 70:1533-1540. [PMID: 32578033 DOI: 10.1007/s12031-020-01646-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
Recent studies have shown contribution of long non-coding RNAs (lncRNAs) in the pathogenesis of immune-related disorders including multiple sclerosis (MS). Based on the role of these transcripts in the regulation of immune response, peripheral levels of lncRNAs can reflect the level of immune activation. In the present study, we quantified expression of four lncRNAs namely SPRY4-IT1, HOXA-AS2, LINC-ROR, and MEG3 in venous blood of MS patients and controls using quantitative real-time PCR method. Relative expressions of SPRY4-IT1, HOXA-AS2, LINC-ROR, and MEG3 were significantly lower in female MS patients compared with female healthy subjects. For MEG3, this pattern of expression was also observed in male subjects. However, for other lncRNAs, no significant difference was detected between male patients and male controls. Expression of HOXA-AS2 was correlated with progression index (r = 0.36, P < 0.001). Besides, there was a significant correlation between expression of this lncRNA and expression of LINC-ROR in MS patients (r = 0.44, P < 0.0001). There was no other correlation between expression of lncRNAs and clinical data in MS patients. In control group, expressions of none of lncRNAs were correlated with age of persons. Notably, significant correlations were demonstrated between expression levels of all lncRNAs in healthy subjects with r values ranging from 0.23 to 0.42. The current investigation shows dysregulation of lncRNAs in MS patients in a sex-specific manner and warrants further studies to unravel the clinical and therapeutic implications of such dysregulation.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Fallah
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebali Salmani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Li X, Gao Q, Yang L, Han M, Zhou C, Mu H. Matairesinol ameliorates experimental autoimmune uveitis by suppression of IRBP-specific Th17 cells. J Neuroimmunol 2020; 345:577286. [PMID: 32559555 DOI: 10.1016/j.jneuroim.2020.577286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
We investigated the effects of matairesinol (MAT) in the experimental autoimmune uveitis (EAU), a classical animal model of uveitis. We found that treatment with MAT could alleviate intraocular inflammation of EAU. Notably, Th17 cells in eyes of EAU mice could be predominantly restrained by MAT. Furthermore, MAT could inhibit Th17 differentiation in vitro. In addition, MAT inhibited the signaling of MAPK and ROR-γt, a pivotal transcription factor for Th17 cell differentiation in vitro and in vivo. Taken together, these results suggested that MAT had immune-suppressive effects on autoimmune inflammation through Th17 cells.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Laboratory, Tianjin First Centre Hospital, Tianjin, China
| | - Qiang Gao
- Department of Clinical Laboratory, Tianjin First Centre Hospital, Tianjin, China
| | - Lei Yang
- Department of Clinical Laboratory, Tianjin First Centre Hospital, Tianjin, China
| | - Meng Han
- Department of Clinical Laboratory, Tianjin First Centre Hospital, Tianjin, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Centre Hospital, Tianjin, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Centre Hospital, Tianjin, China.
| |
Collapse
|
27
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
28
|
Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 2019; 72:641-658. [PMID: 32048246 DOI: 10.1007/s43440-019-00019-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a devastating autoimmune disorder characterized by oligodendrocytes (OLGs) loss and demyelination. In this study, we have examined the effects of metformin (MET) on the oligodendrogenesis, redox signaling, apoptosis, and glial responses during a self-repairing period (1-week) in the animal model of MS. METHODS For induction of demyelination, C57BL/6 J mice were fed a 0.2% cuprizone (CPZ) for 5 weeks. Thereafter, CPZ was removed for 1-week and molecular and behavioral changes were monitored in the presence or absence of MET (50 mg/kg body weight/day). RESULTS MET remarkably increased the localization of precursor OLGs (NG2+/O4+ cells) and subsequently the renewal of mature OLGs (MOG+ cells) in the corpus callosum via AMPK/mammalian target of rapamycin (mTOR) pathway. Moreover, we observed a significant elevation in the antioxidant responses, especially in mature OLGs (MOG+/nuclear factor erythroid 2-related factor 2 (Nrf2+) cells) after MET intervention. MET also reduced brain apoptosis markers and lessened motor dysfunction in the open-field test. While MET was unable to decrease active astrogliosis (GFAP mRNA), it reduced microgliosis by down-regulation of Mac-3 mRNA a marker of pro-inflammatory microglia/macrophages. Molecular modeling studies, likewise, confirmed that MET exerts its effects via direct interaction with AMPK. CONCLUSIONS Altogether, our study reveals that MET effectively induces lesion reduction and elevated molecular processes that support myelin recovery via direct activation of AMPK and indirect regulation of AMPK/Nrf2/mTOR pathway in OLGs. These findings facilitate the development of new therapeutic strategies based on AMPK activation for MS in the near future.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Fariba Houshmand
- Department of Physiology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14155-6451, Tehran, Iran.
| |
Collapse
|
29
|
Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. ACTA ACUST UNITED AC 2019; 27:583-592. [PMID: 31620963 DOI: 10.1007/s40199-019-00286-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Oligodendrocytes (OLGs) damage and myelin distraction is considered as a critical step in many neurological disorders especially multiple sclerosis (MS). Cuprizone (cup) animal model of MS targets OLGs degeneration and frequently used to the mechanistic understanding of de- and remyelination. The aim of this study was exploring the effects of metformin on the OLGs regeneration, myelin repair and profile of neurotrophic factors in the mice brain after cup-induced acute demyelination. METHODS Mice (C57BL/6 J) were fed with chow containing 0.2% cup for 5 weeks to induce specific OLGs degeneration and acute demyelination. Next, the cup was withdrawn to allow one-week recovery (spontaneous remyelination). At the end of this period, mature OLGs markers, myelin-associated neurite outgrowth inhibitor protein A (NogoA), premature specific OLGs transcription factor (Olig2), anti-apoptosis marker (survivin), neurotrophic factors, and AMPK activation were monitored in the presence or absence of metformin (50 mg/kg body weight/day) in the corpus callosum (CC). RESULTS Our finding indicated that consumption of metformin during the recovery period potentially induced an active form of AMPK (p-AMPK) and promoted repopulation of mature OLGs (MOG+ cells, MBP+ cells) in CC through up-regulation of BDNF, CNTF, and NGF as well as down-regulation of NogoA and recruitment of Olig2+ precursor cells. CONCLUSIONS This study for the first time reveals that metformin-induced AMPK, a master regulator of energy homeostasis, activation following toxic demyelination could potentially accelerate regeneration and supports spontaneous demyelination. These findings suggest the development of new therapeutic strategies based on AMPK activation for MS in the near future. Graphical abstract An overview of the possible molecular mechanisms of action of metformin-mediated remyelinationa.
Collapse
|
30
|
Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J Mol Histol 2019; 50:263-271. [DOI: 10.1007/s10735-019-09824-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
|
31
|
Laidley HM, Noble DJ, Barnett GC, Forman JR, Bates AM, Benson RJ, Jefferies SJ, Jena R, Burnet NG. Identifying risk factors for L'Hermitte's sign after IMRT for head and neck cancer. Radiat Oncol 2018; 13:84. [PMID: 29728105 PMCID: PMC5936022 DOI: 10.1186/s13014-018-1015-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND L'Hermitte's sign (LS) after chemoradiotherapy for head and neck cancer appears related to higher spinal cord doses. IMRT plans limit spinal cord dose, but the incidence of LS remains high. METHODS One hundred seventeen patients treated with TomoTherapy™ between 2008 and 2015 prospectively completed a side-effect questionnaire (VoxTox Trial Registration: UK CRN ID 13716). Baseline patient and treatment data were collected. Radiotherapy plans were analysed; mean and maximum spinal cord dose and volumes receiving 10, 20, 30 and 40 Gy were recorded. Dose variation across the cord was examined. These data were included in a logistic regression model. RESULTS Forty two patients (35.9%) reported LS symptoms. Concurrent weekly cisplatin did not increase LS risk (p = 0.70, OR = 1.23 {95% CI 0.51-2.34}). Of 13 diabetic participants (9 taking metformin), only 1 developed LS (p = 0.025, OR = 0.13 {95% CI 0.051-3.27}). A refined binary logistic regression model showed that patients receiving unilateral radiation (p = 0.019, OR = 2.06 {95% CI 0.15-0.84}) were more likely to develop LS. Higher V40Gy (p = 0.047, OR = 1.06 {95% CI 1.00-1.12}), and younger age (mean age 56.6 vs 59.7, p = 0.060, OR = 0.96 {95% CI 0.92-1.00}) were associated with elevated risk of LS, with borderline significance. CONCLUSIONS In this cohort, concomitant cisplatin did not increase risk, and LS incidence was lower in diabetic patients. Patient age and dose gradients across the spinal cord may be important factors.
Collapse
Affiliation(s)
- Hannah M. Laidley
- 0000 0004 0398 9723grid.416531.4Foundation Doctor, Northampton General Hospital, Cliftonville, Northampton, NN1 5BD UK ,0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | - David J. Noble
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,0000 0004 0383 8386grid.24029.3dOncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ UK
| | - Gill C. Barnett
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,0000 0004 0383 8386grid.24029.3dOncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ UK
| | - Julia R. Forman
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,0000 0004 0383 8386grid.24029.3dCambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge, CB2 0QQ UK
| | - Amy M. Bates
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | - Richard J. Benson
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | - Sarah J. Jefferies
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | - Rajesh Jena
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK
| | - Neil G. Burnet
- 0000000121885934grid.5335.0VoxTox Research Group, Cambridge University Dept. of Oncology, Hutchison/MRC Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and the Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
32
|
Singh I, Samuvel DJ, Choi S, Saxena N, Singh AK, Won J. Combination therapy of lovastatin and AMP-activated protein kinase activator improves mitochondrial and peroxisomal functions and clinical disease in experimental autoimmune encephalomyelitis model. Immunology 2018; 154:434-451. [PMID: 29331024 DOI: 10.1111/imm.12893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023] Open
Abstract
Recent studies report that loss and dysfunction of mitochondria and peroxisomes contribute to the myelin and axonal damage in multiple sclerosis (MS). In this study, we investigated the efficacy of a combination of lovastatin and AMP-activated protein kinase (AMPK) activator (AICAR) on the loss and dysfunction of mitochondria and peroxisomes and myelin and axonal damage in spinal cords, relative to the clinical disease symptoms, using a mouse model of experimental autoimmune encephalomyelitis (EAE, a model for MS). We observed that lovastatin and AICAR treatments individually provided partial protection of mitochondria/peroxisomes and myelin/axons, and therefore partial attenuation of clinical disease in EAE mice. However, treatment of EAE mice with the lovastatin and AICAR combination provided greater protection of mitochondria/peroxisomes and myelin/axons, and greater improvement in clinical disease compared with individual drug treatments. In spinal cords of EAE mice, lovastatin-mediated inhibition of RhoA and AICAR-mediated activation of AMPK cooperatively enhanced the expression of the transcription factors and regulators (e.g. PPARα/β, SIRT-1, NRF-1, and TFAM) required for biogenesis and the functions of mitochondria (e.g. OXPHOS, MnSOD) and peroxisomes (e.g. PMP70 and catalase). In summary, these studies document that oral medication with a combination of lovastatin and AICAR, which are individually known to have immunomodulatory effects, provides potent protection and repair of inflammation-induced loss and dysfunction of mitochondria and peroxisomes as well as myelin and axonal abnormalities in EAE. As statins are known to provide protection in progressive MS (Phase II study), these studies support that supplementation statin treatment with an AMPK activator may provide greater efficacy against MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Seungho Choi
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol 2017; 298:31-41. [PMID: 28844606 DOI: 10.1016/j.expneurol.2017.08.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status and has been reported to be involved in chronic inflammatory disorders. AMPK is expressed in immune cells, such as dendritic cells, macrophages, lymphocytes and neutrophils, and is an important regulator of inflammatory responses through the regulation of complex signaling networks in part by inhibiting downstream cascade pathways, such as nuclear factor kB, which is a key regulator of innate immunity and inflammation, as well as acting as a negative regulator of toll-like receptors. Recent data suggest that AMPK dysregulation may participate in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and neuropathies. However, there are conflicting reports on the benefits or detrimental effects of AMPK in distinct pathological conditions. This paper offers a review of the recent literature on the pharmacological modulation of the AMPK system as a potential molecular target in the management of neurodegenerative diseases.
Collapse
|
34
|
Weng Q, Wang J, Wang J, Tan B, Wang J, Wang H, Zheng T, Lu QR, Yang B, He Q. Folate Metabolism Regulates Oligodendrocyte Survival and Differentiation by Modulating AMPKα Activity. Sci Rep 2017; 7:1705. [PMID: 28496133 PMCID: PMC5431811 DOI: 10.1038/s41598-017-01732-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/03/2017] [Indexed: 01/13/2023] Open
Abstract
Folate, an essential micronutrient, is a critical cofactor in one-carbon metabolism for many cellular pathways including DNA synthesis, metabolism and maintenance. Folate deficiency has been associated with an increased risk of neurological disease, cancer and cognitive dysfunction. Dihydrofolate reductase (DHFR) is a key enzyme to regulate folate metabolism, however folate/DHFR activity in oligodendrocyte development has not been fully understood. Here we show that folate enhances oligodendrocyte maturation both in vitro and in vivo, which is accompanied with upregulation of oligodendrocyte-specific DHFR expression. On the other hand, pharmacological inhibition of DHFR by methotrexate (MTX) causes severe defects in oligodendrocyte survival and differentiation, which could be reversed by folate intake. We further demonstrate that folate activates a metabolic regulator AMPKα to promote oligodendrocyte survival and differentiation. Moreover, activation of AMPKα partially rescues oligodendrocyte defects caused by DHFR-inhibition both in vitro and in vivo. Taken together, these findings identify a previously uncharacterized role of folate/DHFR/AMPKα axis in regulating oligodendrocyte survival and myelination during CNS development.
Collapse
Affiliation(s)
- Qinjie Weng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for drug safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibo Wang
- Department of Pediatrics, Brain Tumor Center, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tao Zheng
- School of Preclinical and Forensic Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Center for drug safety Evaluation and Research, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Wang J, Zhao C, Kong P, Bian G, Sun Z, Sun Y, Guo L, Li B. Methylene blue alleviates experimental autoimmune encephalomyelitis by modulating AMPK/SIRT1 signaling pathway and Th17/Treg immune response. J Neuroimmunol 2016; 299:45-52. [DOI: 10.1016/j.jneuroim.2016.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
|
36
|
Wang J, Zhao C, Kong P, Sun H, Sun Z, Bian G, Sun Y, Guo L. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice. Int Immunopharmacol 2016; 39:287-294. [PMID: 27500459 DOI: 10.1016/j.intimp.2016.07.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 10/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored.
Collapse
Affiliation(s)
- Jueqiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Congying Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Peng Kong
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, Hebei 050000, China
| | - Zhe Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Guanyun Bian
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
37
|
Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 2016; 292:58-67. [PMID: 26943960 DOI: 10.1016/j.jneuroim.2016.01.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders.
Collapse
Affiliation(s)
- Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Tian Tian
- Department of neurosurgery, Affiliated Hospital of Chengde Medical College, Chengde, 06700, Hebei, China
| | - Juan Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Xiaoqian Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Huiqing Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Runjing Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China
| | - Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Key Laboratory of Hebei Neurology, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
38
|
Samuvel DJ, Saxena N, Dhindsa JS, Singh AK, Gill GS, Grobelny DW, Singh I. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis. PLoS One 2015; 10:e0141781. [PMID: 26513477 PMCID: PMC4626178 DOI: 10.1371/journal.pone.0141781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Nishant Saxena
- Charles P. Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jasdeep S. Dhindsa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gurmit S. Gill
- Akaal Pharma Pty Ltd., 310E Thomas Cherry Building, Bundoora, Australia
| | | | - Inderjit Singh
- Charles P. Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Weisová P, Pfeiffer S, Prehn JHM. AMP‐Activated Protein Kinase (AMPK) as a Cellular Energy Sensor and Therapeutic Target for Neuroprotection. THE FUNCTIONS, DISEASE‐RELATED DYSFUNCTIONS, AND THERAPEUTIC TARGETING OF NEURONAL MITOCHONDRIA 2015:130-145. [DOI: 10.1002/9781119017127.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
41
|
Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki A. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 2015; 30:747-54. [PMID: 25413451 DOI: 10.1007/s11011-014-9632-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022]
Abstract
Global cerebral ischemia arises in patients who have a variety of clinical conditions including cardiac arrest, shock and asphyxia. In spite of advances in understanding of the brain ischemia and stroke etiology, therapeutic approaches to improve ischemic injury still remain limited. It has been established that metformin can attenuate cell death in cerebral ischemia. One of the main functions of metformin is proposed to be conducted via AMP-activated protein kinase (AMPK)-dependent pathway in the experimental cerebral ischemia model. It is also established that metformin can suppress inflammation and activate Nuclear factor erythroid 2-related factor (Nrf2) pathways in neurons. In the current study, the role of metformin in regulating inflammatory and antioxidant pathways in the global cerebral ischemia was investigated. Our results indicated that pretreatment of rats by metformin attenuated cellular levels of nuclear factor-κB, Tumor Necrosis Factor alpha and Cyclooxygenase-2 which are considered as three important proteins involved in the inflammation pathway. Pretreatment by metformin increased the level of Nrf2 and heme oxygenase-1 in the hippocampus of ischemic rats compared with untreated ischemic group. Moreover, pretreatment by metformin enhanced the level of glutathione and catalase activities compared with them in ischemic group. Such protective changes detected by metformin pretreatment were reversed by injecting compound c, an AMPK inhibitor. These findings suggested that metformin might protect cells through modulating inflammatory and antioxidant pathways via induction of AMPK. However, more experimental and clinical trial studies regarding neuroprotective potential of metformin and the involved mechanisms, especially in the context of cerebral ischemic injuries, are necessary.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Jundishapour Medical Sciences University, Ahwaz, Iran
| | | | | | | | | |
Collapse
|
42
|
Cao K, Zheng A, Xu J, Li H, Liu J, Peng Y, Long J, Zou X, Li Y, Chen C, Liu J, Feng Z. AMPK activation prevents prenatal stress-induced cognitive impairment: modulation of mitochondrial content and oxidative stress. Free Radic Biol Med 2014; 75:156-66. [PMID: 25091899 DOI: 10.1016/j.freeradbiomed.2014.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
Abstract
Prenatal stress induces cognitive functional impairment in offspring, an eventuality in which mitochondrial dysfunction and oxidative stress are believed to be closely involved. In this study, the involvement of the AMP-activated protein kinase (AMPK) pathway was investigated. A well-known activator, resveratrol (Res), was used to induce AMPK activation in SH-SY-5Y cells. Significant mitochondrial biogenesis and phase II enzyme activation, accompanied by decreased protein oxidation and GSSG content, were observed after Res treatment, and inhibition of AMPK with Compound c abolished the induction effects of Res. Further study utilizing a prenatal restraint stress (PRS) animal model indicated that maternal supplementation of Res may activate AMPK in the hippocampi of both male and female offspring, and that PRS-induced mitochondrial loss in the offspring hippocampus was inhibited by Res maternal supplementation. In addition, Res activated Nrf2-mediated phase II enzymes and reduced PRS-induced oxidative damage in both male and female offspring. Moreover, PRS markedly decreased mRNA levels of various neuron markers, as well as resultant offspring cognitive function, based on spontaneous alternation performance and Morris water maze tests, the results of which were significantly improved by maternal Res supplementation. Our results provide evidence indicating that AMPK may modulate mitochondrial content and phase II enzymes in neuronal cells, a process which may play an essential role in preventing PRS-induced cognitive impairment. Through the coupling of mitochondrial biogenesis and the Nrf2 pathway, AMPK may modulate oxidative stress and be a promising target against neurological disorders.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Adi Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hao Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Zou
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, FIST, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Cong Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
43
|
Zhu XC, Jiang T, Zhang QQ, Cao L, Tan MS, Wang HF, Ding ZZ, Tan L, Yu JT. Chronic Metformin Preconditioning Provides Neuroprotection via Suppression of NF-κB-Mediated Inflammatory Pathway in Rats with Permanent Cerebral Ischemia. Mol Neurobiol 2014; 52:375-85. [DOI: 10.1007/s12035-014-8866-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
|
44
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
45
|
Foretz M, Viollet B. [New promises for metformin: advances in the understanding of its mechanisms of action]. Med Sci (Paris) 2014; 30:82-92. [PMID: 24472464 DOI: 10.1051/medsci/20143001018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metformin is currently the drug of first choice for the treatment of type 2 diabetes. However, although prescribed since the end of the 1950s, the mechanism of action of metformin remains as yet incompletely understood but recent work has unveiled novel and surprising properties. Epidemiological reports have suggested that metformin protects against heart failure and has antitumor properties independent of its anti-hyperglycemic effect. Here, we review the proposed mechanisms for metformin action in diabetes, cardiovacular diseases and cancer.
Collapse
Affiliation(s)
- Marc Foretz
- Inserm U1016, Institut Cochin, département d'endocrinologie, métabolisme et diabète, 24, rue du Faubourg Saint Jacques, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, France
| | - Benoit Viollet
- Inserm U1016, Institut Cochin, département d'endocrinologie, métabolisme et diabète, 24, rue du Faubourg Saint Jacques, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
46
|
Paintlia AS, Mohan S, Singh I. Combinatorial Effect of Metformin and Lovastatin Impedes T-cell Autoimmunity and Neurodegeneration in Experimental Autoimmune Encephalomyelitis. ACTA ACUST UNITED AC 2013; 4. [PMID: 24324917 DOI: 10.4172/2155-9899.1000149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple Sclerosis (MS) is an incurable central nervous system (CNS) demyelinating disease affecting several million people worldwide. Due to the multifactorial and complex pathology of MS, FDA approved drugs often show limited efficacy inpatients. We earlier documented that both lovastatin (cholesterol lowering drug) and metformin (anti-diabetic drug) attenuate experimental autoimmune encephalomyelitis (EAE), a widely used model of MS via different mechanisms of action. Since combination therapy of two or more agents has advantage over monotherapy, we here assessed the therapeutic efficacy of metformin and lovastatin combination in EAE. We found that suboptimal doses of these drugs in combination had additive effect to attenuate established EAE in treated animals than their individual treatments. Histological, immunohistochemistry and western blotting analyses revealed that the observed demyelination and axonal loss as evident from reduced levels of myelin and neurofilament proteins in the spinal cords of EAE animals were attenuated by treatment with these drugs in combination. Accordingly, the observed infiltration of myelin reactive T cells (CD4 and CD8) and macrophages (CD68) as well as the increased expression of their signatory cytokines in the spinal cords of EAE animals were attenuated by this regimen as revealed by enzyme-linked immune-sorbent assay and real-time PCR analyses. In the periphery, this regimen biased the class of elicited anti-myelin basic protein immunoglobulins from IgG2a to IgG1 and IgG2b, suggesting a Th1 to Th2 shift which was further supported by the increased expression of their signatory cytokines in EAE animals. Taken together, these data imply that metformin and lovastatin combination attenuates T-cell autoimmunity and neurodegeneration in treated EAE animals thereby suggesting that the oral administration of these FDA approved drugs in combination has potential to limit MS pathogenesis.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|