1
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Differential homing of monocytes and neutrophils in the epithelial layer of HSV-1 infected cornea regulates viral dissemination and wound healing. Ocul Surf 2025; 36:69-82. [PMID: 39793926 PMCID: PMC11911097 DOI: 10.1016/j.jtos.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
PURPOSE To ascertain the homing of monocytes and neutrophils in the epithelium versus stroma of HSV-1 infected corneas at different stages of infection and functional significance of their anatomical location in virus-infected corneas. METHODS The corneas of C57BL/6J mice were infected with HSV-1 McKrae. Mice were euthanized on different days post-infection. The epithelium and stroma were separated from the infected corneas, and flow cytometry was performed to characterize the myeloid cell subsets in the epithelium versus the stromal layers of an infected cornea. MACS columns were used to purify neutrophils or deplete myeloid cells from infected corneas. Corneal epithelial scratch assay was performed to ascertain the impact of neutrophils on epithelium wound healing. RESULTS Our results showed a biphasic influx of monocytes in the epithelial but not the stromal layer of HSV-1-infected corneas. Furthermore, we noted the predominance of monocytes over neutrophils in the epithelium and the stromal layer of the cornea during the pre-clinical stage of corneal HSV-1 infection. However, neutrophils were the major myeloid cell subset in the epithelium and stroma during the clinical disease period of infection. Removal of monocytes from the infected epithelial layer during the pre-clinical stage promotes the dissemination of the virus. Interestingly, neutrophils localized in the corneal epithelium inhibit corneal epithelial wound healing. CONCLUSIONS Together, our data suggest that differential kinetics of monocytes and neutrophils homing in the epithelial layer regulate viral dissemination and epithelial wound healing in HSV-1-infected corneas.
Collapse
MESH Headings
- Animals
- Neutrophils/physiology
- Neutrophils/pathology
- Herpesvirus 1, Human/physiology
- Mice, Inbred C57BL
- Wound Healing/physiology
- Mice
- Monocytes/pathology
- Monocytes/physiology
- Epithelium, Corneal/virology
- Epithelium, Corneal/pathology
- Epithelium, Corneal/immunology
- Keratitis, Herpetic/virology
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/immunology
- Disease Models, Animal
- Flow Cytometry
- Eye Infections, Viral/virology
- Eye Infections, Viral/pathology
- Eye Infections, Viral/immunology
- Corneal Stroma/virology
- Corneal Stroma/pathology
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Wu X, Ma Y, Zhang Z, Hou T, He Y. New targets of nascent lymphatic vessels in ocular diseases. Front Physiol 2024; 15:1374627. [PMID: 38529484 PMCID: PMC10961382 DOI: 10.3389/fphys.2024.1374627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Recent advancements in the field of endothelial markers of lymphatic vessels and lymphangiogenic factors have shed light on the association between several ocular diseases and ocular nascent lymphatic vessels. The immune privilege of corneal tissue typically limits the formation of lymphatic vessels in a healthy eye. However, vessels in the eyes can potentially undergo lymphangiogenesis and be conditionally activated. It is evident that nascent lymphatic vessels in the eyes contribute to various ocular pathologies. Conversely, lymphatic vessels are present in the corneal limbus, ciliary body, lacrimal glands, optic nerve sheaths, and extraocular muscles, while a lymphatic vasculature-like system exists in the choroid, that can potentially cause several ocular pathologies. Moreover, numerous studies indicate that many ocular diseases can influence or activate nascent lymphatic vessels, ultimately affecting patient prognosis. By understanding the mechanisms underlying the onset, development, and regression of ocular nascent lymphatic vessels, as well as exploring related research on ocular diseases, this article aims to offer novel perspectives for the treatment of such conditions.
Collapse
Affiliation(s)
- Xuhui Wu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkun Ma
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaochen Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Hou
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Gmyrek GB, Berube AN, Sjoelund VH, Carr DJJ. HSV-1 0∆NLS vaccine elicits a robust B lymphocyte response and preserves vision without HSV-1 glycoprotein M or thymidine kinase recognition. Sci Rep 2022; 12:15920. [PMID: 36151255 PMCID: PMC9508094 DOI: 10.1038/s41598-022-20180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Effective experimental prophylactic vaccines against viral pathogens such as herpes simplex virus type 1 (HSV-1) have been shown to protect the host through T and/or B lymphocyte-driven responses. Previously, we found a live-attenuated HSV-1 mutant, 0ΔNLS used as a prophylactic vaccine, provided significant protection against subsequent ocular HSV-1 challenge aligned with a robust neutralizing antibody response. Yet, how the virus mutant elicited the humoral immune response relative to parental virus was unknown. Herein, we present the characterization of B cell subsets in vaccinated mice at times after primary vaccination and following boost compared to the parental virus, termed GFP105. We found that 0∆NLS-vaccinated mice possessed more CD4+ follicular helper T (TFH) cells, germinal B cells and class-switched B cells within the first 7 days post-vaccination. Moreover, 0∆NLS vaccination resulted in an increase in plasmablasts and plasma cells expressing amino-acid transporter CD98 along with an elevated titer of HSV-1-specific antibody compared to GFP105-vaccinated animals. Furthermore, O∆NLS-vaccine-induced CD4+ (TFH) cells produced significantly more IL-21 compared to mice immunized with the parental HSV-1 strain. In contrast, there were no differences in the number of regulatory B cells comparing the two groups of immunized mice. In comparing sera recognition of HSV-1-encoded proteins, it was noted antiserum from GFP105-vaccinated mice immunoprecipitated HSV-1 thymidine kinase (TK) and glycoprotein M (gM) whereas sera from 0∆NLS-immunized mice did not even though both groups of vaccinated mice displayed similar neutralizing antibody titers to HSV-1 and were highly resistant to ocular HSV-1 challenge. Collectively, the results suggest (1) the live-attenuated HSV-1 mutant 0∆NLS elicits a robust B cell response that drives select B cell responses greater than the parental HSV-1 and (2) HSV-1 TK and gM are likely expendable components in efficacy of a humoral response to ocular HSV-1 infection.
Collapse
Affiliation(s)
- Grzegorz B. Gmyrek
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA
| | - Amanda N. Berube
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA
| | - Virginie H. Sjoelund
- grid.266902.90000 0001 2179 3618Laboratory for Molecular Biology and Cytometry Research, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Daniel J. J. Carr
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA ,grid.266902.90000 0001 2179 3618Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
5
|
Lee HK, Lee SM, Lee DI. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Int J Mol Sci 2021; 22:ijms222111628. [PMID: 34769057 PMCID: PMC8583961 DOI: 10.3390/ijms222111628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
The cornea is a transparent and avascular tissue that plays a central role in light refraction and provides a physical barrier to the external environment. Corneal avascularity is a unique histological feature that distinguishes it from the other parts of the body. Functionally, corneal immune privilege critically relies on corneal avascularity. Corneal lymphangiogenesis is now recognized as a general pathological feature in many pathologies, including dry eye disease (DED), corneal allograft rejection, ocular allergy, bacterial and viral keratitis, and transient corneal edema. Currently, sizable data from clinical and basic research have accumulated on the pathogenesis and functional role of ocular lymphangiogenesis. However, because of the invisibility of lymphatic vessels, ocular lymphangiogenesis has not been studied as much as hemangiogenesis. We reviewed the basic mechanisms of lymphangiogenesis and summarized recent advances in the pathogenesis of ocular lymphangiogenesis, focusing on corneal allograft rejection and DED. In addition, we discuss future directions for lymphangiogenesis research.
Collapse
Affiliation(s)
- Hyung-Keun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3444
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Catholic Kwandong University College of Medicine, Incheon 21388, Korea;
| | - Dong-Ihll Lee
- Medical School, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
6
|
Abstract
The influx and efflux of cells and antigens to and from the draining lymph nodes largely take place through the subcapsular, cortical and medullary sinus systems. Recent analyses in mice and humans have revealed unexpected diversity in the lymphatic endothelial cells, which form the distinct regions of the sinuses. As a semipermeable barrier, the lymphatic endothelial cells regulate the sorting of lymph-borne antigens to the lymph node parenchyma and can themselves serve as antigen-presenting cells. The leukocytes entering the lymph node via the sinus system and the lymphocytes egressing from the parenchyma migrate through the lymphatic endothelial cell layer. The sinus lymphatic endothelial cells also orchestrate the organogenesis of lymph nodes, and they undergo bidirectional signalling with other sinus-resident cells, such as subcapsular sinus macrophages, to generate a unique lymphatic niche. In this Review, we consider the structural and functional basis of how the lymph node sinus system coordinates immune responses under physiological conditions, and in inflammation and cancer.
Collapse
|
7
|
Canivet C, Rhéaume C, Lebel M, Piret J, Gosselin J, Boivin G. Both IRF3 and especially IRF7 play a key role to orchestrate an effective cerebral inflammatory response in a mouse model of herpes simplex virus encephalitis. J Neurovirol 2018; 24:761-768. [PMID: 30094631 DOI: 10.1007/s13365-018-0666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
The impact of a deficiency in interferon regulatory factor (IRF)3 and IRF7 was evaluated in an herpes simplex virus encephalitis (HSE) model. Compared to wild type (WT), the mortality rates of infected IRF3-/- and IRF7-/- mice were higher and associated with increased brain viral titers. At a critical time post-infection, IRF7-/- mice exhibited a deficit in IFN-β production. At a later time point, levels of type I IFNs and cytokines were increased in brains of both deficient mice compared to WT. Our results suggest that IRF3, and especially IRF7, are important for an effective control of inflammatory responses during HSE.
Collapse
Affiliation(s)
- Coraline Canivet
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Manon Lebel
- Laboratory of Innate Immunology of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
8
|
Loo CP, Nelson NA, Lane RS, Booth JL, Loprinzi Hardin SC, Thomas A, Slifka MK, Nolz JC, Lund AW. Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection. Cell Rep 2018; 20:3176-3187. [PMID: 28954233 DOI: 10.1016/j.celrep.2017.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense.
Collapse
Affiliation(s)
- Christopher P Loo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicholas A Nelson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jamie L Booth
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sofia C Loprinzi Hardin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
9
|
Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice. J Virol 2017; 91:JVI.02342-16. [PMID: 28122977 DOI: 10.1128/jvi.02342-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential.
Collapse
|
10
|
Royer DJ, Conrady CD, Carr DJJ. Herpesvirus-Associated Lymphadenitis Distorts Fibroblastic Reticular Cell Microarchitecture and Attenuates CD8 T Cell Responses to Neurotropic Infection in Mice Lacking the STING-IFNα/β Defense Pathways. THE JOURNAL OF IMMUNOLOGY 2016; 197:2338-52. [PMID: 27511736 DOI: 10.4049/jimmunol.1600574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Type I IFN (IFN-α/β)-driven immune responses to acute viral infection are critical to counter replication and prevent dissemination. However, the mechanisms underlying host resistance to HSV type 1 (HSV-1) are incompletely understood. In this study, we show that mice with deficiencies in IFN-α/β signaling or stimulator of IFN genes (STING) exhibit exacerbated neurovirulence and atypical lymphotropic dissemination of HSV-1 following ocular infection. Synergy between IFN-α/β signaling and efficacy of early adaptive immune responses to HSV-1 were dissected using bone marrow chimeras and adoptive cell transfer approaches to profile clonal expansion, effector function, and recruitment of HSV-specific CD8(+) T cells. Lymphotropic viral dissemination was commensurate with abrogated CD8(+) T cell responses and pathological alterations of fibroblastic reticular cell networks in the draining lymph nodes. Our results show that resistance to HSV-1 in the trigeminal ganglia during acute infection is conferred in part by STING and IFN-α/β signaling in both bone marrow-derived and -resident cells, which coalesce to support a robust HSV-1-specific CD8(+) T cell response.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Christopher D Conrady
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
11
|
IL-6 Contributes to Corneal Nerve Degeneration after Herpes Simplex Virus Type I Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2665-78. [PMID: 27497323 DOI: 10.1016/j.ajpath.2016.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a leading cause of neurotrophic keratitis characterized by decreased corneal sensation because of damage to the corneal sensory fibers. We and others have reported regression of corneal nerves during acute HSV-1 infection. To determine whether denervation is caused directly by the virus or indirectly by the elicited immune response, mice were infected with HSV-1 and topically treated with dexamethasone (DEX) or control eye drops. Corneal sensitivity was measured using a Cochet-Bonnet esthesiometer and nerve network structure via immunohistochemistry. Corneas were assessed for viral content by plaque assay, leukocyte influx by flow cytometry, and content of chemokines and inflammatory cytokines by suspension array. DEX significantly preserved corneal nerve structure and sensitivity on infection. DEX reduced myeloid and T-cell populations in the cornea and did not affect viral contents at 4 and 8 days post infection. The elevated protein contents of chemokines and inflammatory cytokines on infection were greatly suppressed by DEX. Subconjunctival delivery of neutralizing antibody against IL-6 to infected mice resulted in partial preservation of corneal nerve structure and sensitivity. Our study supports a role for the immune response, but not local virus replication in the development of HSV-1-induced neurotrophic keratitis. IL-6 is one of the factors produced by the elicited inflammatory response to HSV-1 infection contributing to nerve regression.
Collapse
|
12
|
Royer D, Carr D. A STING-dependent innate-sensing pathway mediates resistance to corneal HSV-1 infection via upregulation of the antiviral effector tetherin. Mucosal Immunol 2016; 9:1065-75. [PMID: 26627457 PMCID: PMC4889566 DOI: 10.1038/mi.2015.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Type 1 interferons (IFNs; IFNα/β) mediate immunological host resistance to numerous viral infections, including herpes simplex virus type 1 (HSV-1). The pathways responsible for IFNα/β signaling during the innate immune response to acute HSV-1 infection in the cornea are incompletely understood. Using a murine ocular infection model, we hypothesized that the stimulator of IFN genes (STING) mediates resistance to HSV-1 infection at the ocular surface and preserves the structural integrity of this mucosal site. Viral pathogenesis, tissue pathology, and host immune responses during ocular HSV-1 infection were characterized by plaque assay, esthesiometry, pachymetry, immunohistochemistry, flow cytometry, and small interfering RNA transfection in wild-type C57BL/6 (WT), STING-deficient (STING(-/-)), and IFNα/β receptor-deficient (CD118(-/-)) mice at days 3-5 postinfection. The presence of STING was critical for sustained control of HSV-1 replication in the corneal epithelium and resistance to viral neuroinvasion, but loss of STING had a negligible impact with respect to gross tissue pathology. Auxiliary STING-independent IFNα/β signaling pathways were responsible for maintenance of corneal integrity. Lymphatic vessels, mast cells, and sensory innervation were compromised in CD118(-/-) mice concurrent with increased tissue edema. STING-dependent signaling led to the upregulation of tetherin, a viral restriction factor we identify is important in containing the spread of HSV-1 in vivo.
Collapse
Affiliation(s)
| | - D.J.J. Carr
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA.,Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
13
|
A Highly Efficacious Herpes Simplex Virus 1 Vaccine Blocks Viral Pathogenesis and Prevents Corneal Immunopathology via Humoral Immunity. J Virol 2016; 90:5514-5529. [PMID: 27030264 DOI: 10.1128/jvi.00517-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Correlates of immunologic protection requisite for an efficacious herpes simplex virus 1 (HSV-1) vaccine remain unclear with respect to viral pathogenesis and clinical disease. In the present study, mice were vaccinated with a novel avirulent, live attenuated virus (0ΔNLS) or an adjuvanted glycoprotein D subunit (gD-2) similar to that used in several human clinical trials. Mice vaccinated with 0ΔNLS showed superior protection against early viral replication, neuroinvasion, latency, and mortality compared to that of gD-2-vaccinated or naive mice following ocular challenge with a neurovirulent clinical isolate of HSV-1. Moreover, 0ΔNLS-vaccinated mice exhibited protection against ocular immunopathology and maintained corneal mechanosensory function. Vaccinated mice also showed suppressed T cell activation in the draining lymph nodes following challenge. Vaccine efficacy correlated with serum neutralizing antibody titers. Humoral immunity was identified as the correlate of protection against corneal neovascularization, HSV-1 shedding, and latency through passive immunization. Overall, 0ΔNLS affords remarkable protection against HSV-1-associated ocular sequelae by impeding viral replication, dissemination, and establishment of latency. IMPORTANCE HSV-1 manifests in a variety of clinical presentations ranging from a rather benign "cold sore" to more severe forms of infection, including necrotizing stromal keratitis and herpes simplex encephalitis. The present study was undertaken to evaluate a novel vaccine to ocular HSV-1 infection not only for resistance to viral replication and spread but also for maintenance of the visual axis. The results underscore the necessity to reconsider strategies that utilize attenuated live virus as opposed to subunit vaccines against ocular HSV-1 infection.
Collapse
|
14
|
Lund AW, Medler TR, Leachman SA, Coussens LM. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer. Cancer Discov 2015; 6:22-35. [PMID: 26552413 DOI: 10.1158/2159-8290.cd-15-0023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, and are important contributors to malignancy and potential biomarkers and targets for immunotherapy. SIGNIFICANCE The tumor microenvironment and tumor-associated inflammation are now appreciated not only for their role in cancer progression but also for their response to therapy. The lymphatic vasculature is a less-appreciated component of this microenvironment that coordinates local inflammation and immunity and thereby critically shapes local responses. A mechanistic understanding of the complexities of lymphatic vessel function in the unique context of skin provides a model to understand how regional immune dysfunction drives cutaneous malignancies, and as such lymphatic vessels represent a biomarker of cutaneous immunity that may provide insight into cancer prognosis and effective therapy.
Collapse
Affiliation(s)
- Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon. Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon. Department of Dermatology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| | - Terry R Medler
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
15
|
Drevets P, Chucair-Elliott A, Shrestha P, Jinkins J, Karamichos D, Carr DJJ. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation. Graefes Arch Clin Exp Ophthalmol 2015; 253:1721-8. [PMID: 26047535 DOI: 10.1007/s00417-015-3073-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization. METHODS Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (10(4) plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures. RESULTS Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1. CONCLUSION Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.
Collapse
Affiliation(s)
- Peter Drevets
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Ana Chucair-Elliott
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Priyadarsini Shrestha
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Jeremy Jinkins
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA. .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Park PJ, Chang M, Garg N, Zhu J, Chang JH, Shukla D. Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol 2014; 60:60-71. [PMID: 25444520 DOI: 10.1016/j.survophthal.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/23/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022]
Abstract
Corneal lymphangiogenesis is the extension of lymphatic vessels into the normally alymphatic cornea, a process that compromises the cornea's immune-privileged state and facilitates herpetic stromal keratitis (HSK). HSK results most commonly from infection by herpes simplex virus-1 (HSV-1) and is characterized by immune- and inflammation-mediated damage to the deep layers of the cornea. Current research demonstrates the potential of anti-lymphangiogenic therapy to decrease and prevent herpes-induced lymphangiogenesis.
Collapse
Affiliation(s)
- Paul J Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nitin Garg
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jimmy Zhu
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
17
|
Bryant-Hudson K, Conrady CD, Carr DJJ. Type I interferon and lymphangiogenesis in the HSV-1 infected cornea - are they beneficial to the host? Prog Retin Eye Res 2013; 36:281-91. [PMID: 23876483 DOI: 10.1016/j.preteyeres.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that can result in significant human morbidity. Within the cornea, it was thought the initial recognition of the pathogen was through Toll-like receptors expressed on/in resident cells that then elicit pro-inflammatory cytokine production, activation of anti-viral pathways, and recruitment of leukocytes. However, our lab has uncovered a novel, TLR-independent innate sensor that supersedes TLR induction of anti-viral pathways following HSV-1 infection. In addition, we have also found HSV-1 induces the genesis of lymphatic vessels into the cornea proper by a mechanism independent of TLRs and unique in the field of neovascularization. This review will focus on these two innate immune events during acute HSV-1 infection of the cornea.
Collapse
Affiliation(s)
- Katie Bryant-Hudson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|