1
|
Liu CL, Ren T, Ruan PC, Huang YF, Ceccobelli S, Huang DJ, Zhang LP, E GX. Genome-Wide Association Integrating a Transcriptomic Meta-Analysis Suggests That Genes Related to Fat Deposition and Muscle Development Are Closely Associated with Growth in Huaxi Cattle. Vet Sci 2025; 12:109. [PMID: 40005876 PMCID: PMC11860805 DOI: 10.3390/vetsci12020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Growth traits are among the most important economic phenotypes targeted in the genetic improvement of beef cattle. To understand the genetic basis of growth traits in Huaxi cattle, we performed a genome-wide association study (GWAS) on body weight, eye muscle area, and back fat thickness across five developmental stages in a population of 202 Huaxi cattle. Additionally, publicly available RNA-seq data from the longissimus dorsi muscle of both young and adult cattle were analyzed to identify key genes and genetic markers associated with growth in Huaxi cattle. In total, 7.19 million high-quality variant loci (SNPs and INDELs) were identified across all samples. In the GWAS, the three multilocus models (FarmCPU, MLMM, and BLINK) outperformed the conventional single-locus models (CMLM, GLM, and MLM). Consequently, GWAS analysis was conducted using multilocus models, which identified 99 variant loci significantly associated with growth traits and annotated a total of 83 candidate genes (CDGs). Additionally, 23 of the 83 CDGs overlapped with significantly differentially expressed genes identified from public RNA-seq datasets of longissimus dorsi muscle between young and adult cattle. Furthermore, gene functional enrichment (KEGG and GO) analyses revealed that over 30% of the pathways and GO terms were associated with muscle development and fat deposition, crucial factors for beef production. Specifically, key genes identified included MGLL, SGMS1, SNX29 and AKAP6, which are implicated in lipid metabolism, adipogenesis, and muscle growth. In summary, this study provides new insights into the genetic mechanisms underlying growth traits in Huaxi cattle and presents promising markers for future breeding improvements.
Collapse
Affiliation(s)
- Cheng-Li Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Ren
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Peng-Cheng Ruan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - De-Jun Huang
- Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Lu-Pei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100006, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Shademan M, Mei H, van Engelen B, Ariyurek Y, Kloet S, Raz V. PABPN1 loss-of-function causes APA-shift in oculopharyngeal muscular dystrophy. HGG ADVANCES 2024; 5:100269. [PMID: 38213032 PMCID: PMC10840355 DOI: 10.1016/j.xhgg.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Alternative polyadenylation (APA) at the 3' UTR of transcripts contributes to the cell transcriptome. APA is suppressed by the nuclear RNA-binding protein PABPN1. Aging-associated reduced PABPN1 levels in skeletal muscles lead to muscle wasting. Muscle weakness in oculopharyngeal muscular dystrophy (OPMD) is caused by short alanine expansion in PABPN1 exon1. The expanded PABPN1 forms nuclear aggregates, an OPMD hallmark. Whether the expanded PABPN1 affects APA and how it contributes to muscle pathology is unresolved. To investigate these questions, we developed a procedure including RNA library preparation and a simple pipeline calculating the APA-shift ratio as a readout for PABPN1 activity. Comparing APA-shift results to previously published PAS utilization and APA-shift results, we validated this procedure. The procedure was then applied on the OPMD cell model and on RNA from OPMD muscles. APA-shift was genome-wide in the mouse OPMD model, primarily affecting muscle transcripts. In OPMD individuals, APA-shift was enriched with muscle transcripts. In an OPMD cell model APA-shift was not significant. APA-shift correlated with reduced expression levels of a subset of PABPN1 isoforms, whereas the expression of the expanded PABPN1 did not correlate with APA-shift. PABPN1 activity is not affected by the expression of expanded PABPN1, but rather by reduced PABPN1 expression levels. In muscles, PABPN1 activity initially affects muscle transcripts. We suggest that muscle weakness in OPMD is caused by PABPN1 loss-of-function leading to APA-shift that primarily affects in muscle transcripts.
Collapse
Affiliation(s)
- Milad Shademan
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Baziel van Engelen
- Department of Neurology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Susan Kloet
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Jiang X, Ji S, Yuan F, Li T, Cui S, Wang W, Ye X, Wang R, Chen Y, Zhu S. Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis. J Cachexia Sarcopenia Muscle 2023; 14:606-621. [PMID: 36564038 PMCID: PMC9891931 DOI: 10.1002/jcsm.13166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fenglai Yuan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Tang Y, Guo Y. A Ubiquitin-Proteasome Gene Signature for Predicting Prognosis in Patients With Lung Adenocarcinoma. Front Genet 2022; 13:893511. [PMID: 35711913 PMCID: PMC9194557 DOI: 10.3389/fgene.2022.893511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Dysregulation of the ubiquitin-proteasome system (UPS) can lead to instability in the cell cycle and may act as a crucial factor in both tumorigenesis and tumor progression. However, there is no established prognostic signature based on UPS genes (UPSGs) for lung adenocarcinoma (LUAD) despite their value in other cancers. Methods: We retrospectively evaluated a total of 703 LUAD patients through multivariate Cox and Lasso regression analyses from two datasets, the Cancer Genome Atlas (n = 477) and GSE31210 (n = 226). An independent dataset (GSE50081) containing 128 LUAD samples were used for validation. Results: An eight-UPSG signature, including ARIH2, FBXO9, KRT8, MYLIP, PSMD2, RNF180, TRIM28, and UBE2V2, was established. Kaplan-Meier survival analysis and time-receiver operating characteristic curves for the training and validation datasets revealed that this risk signature presented with good performance in predicting overall and relapsed-free survival. Based on the signature and its associated clinical features, a nomogram and corresponding web-based calculator for predicting survival were established. Calibration plot and decision curve analyses showed that this model was clinically useful for both the training and validation datasets. Finally, a web-based calculator (https://ostool.shinyapps.io/lungcancer) was built to facilitate convenient clinical application of the signature. Conclusion: An UPSG based model was developed and validated in this study, which may be useful as a novel prognostic predictor for LUAD.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yinhong Guo
- Department of Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| |
Collapse
|
5
|
Ribot C, Soler C, Chartier A, Al Hayek S, Naït-Saïdi R, Barbezier N, Coux O, Simonelig M. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet 2022; 18:e1010015. [PMID: 35025870 PMCID: PMC8791501 DOI: 10.1371/journal.pgen.1010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/01/2022] [Indexed: 12/05/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD. Oculopharyngeal muscular dystrophy (OPMD) is a genetic disease characterized by progressive weakness of specific muscles, leading to swallowing difficulties (dysphagia), eyelid drooping (ptosis) and walking difficulties at later stages. No drug treatments are currently available. OPMD is due to mutations in a nuclear protein called poly(A) binding protein nuclear 1 (PABPN1) that is involved in processing of different classes of RNAs in the nucleus. We have used an animal model of OPMD that we have developed in the fly Drosophila to investigate the role in OPMD of the ubiquitin-proteasome system, a pathway specialized in protein degradation. We report an increased activity of the ubiquitin-proteasome system that is associated with degradation of muscular proteins in the OPMD Drosophila model. We propose that higher activity of the ubiquitin-proteasome system leads to muscle atrophy in OPMD. Importantly, oral treatment of this OPMD animal model with an inhibitor of proteasome activity reduces muscle defects. A number of proteasome inhibitors are approved drugs used in clinic against cancers, therefore our results provide a proof-of-concept that inhibitors of proteasome might be of interest in future treatments of OPMD.
Collapse
Affiliation(s)
- Cécile Ribot
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Cédric Soler
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Sandy Al Hayek
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, Clermont-Ferrand, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Olivier Coux
- Ubiquitin-proteasome system and cell cycle control, Montpellier Cell Biology Research Center, UMR5237 CNRS-Univ Montpellier, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
6
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Raz V, Kroon RHMJM, Mei H, Riaz M, Buermans H, Lassche S, Horlings C, Swart BD, Kalf J, Harish P, Vissing J, Kielbasa S, van Engelen BGM. Age-Associated Salivary MicroRNA Biomarkers for Oculopharyngeal Muscular Dystrophy. Int J Mol Sci 2020; 21:ijms21176059. [PMID: 32842713 PMCID: PMC7503697 DOI: 10.3390/ijms21176059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Small non-coding microRNAs (miRNAs) are involved in the regulation of mRNA stability. Their features, including high stability and secretion to biofluids, make them attractive as potential biomarkers for diverse pathologies. This is the first study reporting miRNA as potential biomarkers for oculopharyngeal muscular dystrophy (OPMD), an adult-onset myopathy. We hypothesized that miRNA that is differentially expressed in affected muscles from OPMD patients is secreted to biofluids and those miRNAs could be used as biomarkers for OPMD. We first identified candidate miRNAs from OPMD-affected muscles and from muscles from an OPMD mouse model using RNA sequencing. We then compared the OPMD-deregulated miRNAs to the literature and, subsequently, we selected a few candidates for expression studies in serum and saliva biofluids using qRT-PCR. We identified 126 miRNAs OPMD-deregulated in human muscles, but 36 deregulated miRNAs in mice only (pFDR < 0.05). Only 15 OPMD-deregulated miRNAs overlapped between the in humans and mouse studies. The majority of the OPMD-deregulated miRNAs showed opposite deregulation direction compared with known muscular dystrophies miRNAs (myoMirs), which are associated. In contrast, similar dysregulation direction was found for 13 miRNAs that are common between OPMD and aging muscles. A significant age-association (p < 0.05) was found for 17 OPMD-deregulated miRNAs (13.4%), whereas in controls, only six miRNAs (1.4%) showed a significant age-association, suggesting that miRNA expression in OPMD is highly age-associated. miRNA expression in biofluids revealed that OPMD-associated deregulation in saliva was similar to that in muscles, but not in serum. The same as in muscle, miRNA expression levels in saliva were also found to be associated with age (p < 0.05). Moreover, the majority of OPMD-miRNAs were found to be associated with dysphagia as an initial symptom. We suggest that levels of specific miRNAs in saliva can mark muscle degeneration in general and dysphagia in OPMD.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (M.R.); (H.B.)
- Correspondence:
| | - Rosemarie H. M. J. M. Kroon
- Radboud University Medical Center, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, 6525AJ Nijmegen, The Netherlands; (R.H.M.J.M.K.); (B.D.S.); (J.K.)
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (H.M.); (S.K.)
| | - Muhammad Riaz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (M.R.); (H.B.)
| | - Henk Buermans
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (M.R.); (H.B.)
| | - Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525AJ Nijmegen, The Netherlands; (S.L.); (C.H.); (B.G.M.v.E.)
| | - Corinne Horlings
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525AJ Nijmegen, The Netherlands; (S.L.); (C.H.); (B.G.M.v.E.)
| | - Bert De Swart
- Radboud University Medical Center, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, 6525AJ Nijmegen, The Netherlands; (R.H.M.J.M.K.); (B.D.S.); (J.K.)
| | - Johanna Kalf
- Radboud University Medical Center, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, 6525AJ Nijmegen, The Netherlands; (R.H.M.J.M.K.); (B.D.S.); (J.K.)
| | - Pradeep Harish
- Centre of Gene and Cell Therapy, Royal Holloway, University of London, Egham TW2 0EX, UK;
| | - John Vissing
- The Copenhagen Neuromuscular Center, Righospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Szymon Kielbasa
- Sequence Analysis Support Core, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (H.M.); (S.K.)
| | - Baziel G. M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525AJ Nijmegen, The Netherlands; (S.L.); (C.H.); (B.G.M.v.E.)
| |
Collapse
|
8
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
9
|
Arih2 gene influences immune response and tissue development in chicken. Biosci Rep 2019; 39:BSR20190933. [PMID: 31551339 PMCID: PMC6822486 DOI: 10.1042/bsr20190933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Ariadne homolog 2 (ARIH2), as an E3 ubiquitin ligase, is one of the important factors involved in regulating biological functions, such as inflammation and skeletal muscle degeneration. In the present study, the full-length coding sequence of Arih2 gene was cloned from Hy-Line Brown chicken. The tissue transcriptional profiles of Arih2 gene at different developmental stages were detected using quantitative real-time PCR (qRT-PCR), and the Arih2 functional characteristics in immune response were analyzed. The results showed that the full-length coding sequence of Arih2 gene was 1473 bp, encoding 490 amino acids, and conservative between different species. The Arih2 gene was transcribed in various tissues at different developmental stages, and its transcriptional activities varied significantly between multiple tissues. With the development of chicken, Arih2 gene was basically up-regulated in heart, liver, kidney, skeletal muscle and glandular stomach, but fluctuated significantly in large intestine. In immune response, the transcriptional activities of Arih2 gene exhibited significant changes in the bursa, thymus and blood (P<0.05). The results showed that Arih2 might be a multifunctional gene involved in tissue development and immune response in chicken, and have a potential possible application as diagnostic marker for identifying immune response.
Collapse
|
10
|
Deacetylation Inhibition Reverses PABPN1-Dependent Muscle Wasting. iScience 2019; 12:318-332. [PMID: 30739015 PMCID: PMC6370712 DOI: 10.1016/j.isci.2019.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/04/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Reduced poly(A)-binding protein nuclear 1 (PABPN1) levels cause aging-associated muscle wasting. PABPN1 is a multifunctional regulator of mRNA processing. To elucidate the molecular mechanisms causing PABPN1-mediated muscle wasting, we compared the transcriptome with the proteome in mouse muscles expressing short hairpin RNA to PABPN1 (shPab). We found greater variations in the proteome than in mRNA expression profiles. Protein accumulation in the shPab proteome was concomitant with reduced proteasomal activity. Notably, protein acetylation appeared to be decreased in shPab versus control proteomes (63%). Acetylome profiling in shPab muscles revealed prominent peptide deacetylation associated with elevated sirtuin-1 (SIRT1) deacetylase. We show that SIRT1 mRNA levels are controlled by PABPN1 via alternative polyadenylation site utilization. Most importantly, SIRT1 deacetylase inhibition by sirtinol increased PABPN1 levels and reversed muscle wasting. We suggest that perturbation of a multifactorial regulatory loop involving PABPN1 and SIRT1 plays an imperative role in aging-associated muscle wasting. Video Abstract
The PABPN1 transcriptome has smaller changes than its corresponding proteome The PABPN1 proteome is marked by protein deacetylation and elevated SIRT1 deacetylase SIRT1 levels are controlled by PABPN1 via alternative polyadenylation utilization Deacetylation inhibition reversed hallmark of muscle wasting in shPab muscles
Collapse
|
11
|
Gong Q, Zhou Z. Regulation of Isoform Expression by Blocking Polyadenylation Signal Sequences with Morpholinos. Methods Mol Biol 2018; 1565:141-150. [PMID: 28364240 DOI: 10.1007/978-1-4939-6817-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alternative polyadenylation is increasingly being recognized as an important layer of gene regulation. Antisense-mediated modulation of alternative polyadenylation represents an attractive strategy for the regulation of gene expression as well as potential therapeutic applications. In this chapter, we describe methods to upregulate the functional Kv11.1 isoform expression by blocking intronic polyadenylation signal sequences with antisense morpholinos.
Collapse
Affiliation(s)
- Qiuming Gong
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Zhengfeng Zhou
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: A narrative review. Muscle Nerve 2017; 57:356-370. [PMID: 29105153 DOI: 10.1002/mus.26001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022]
Abstract
Synthetic nucleic acid sequences that bind to ribonucleic acid (RNA) through Watson-Crick base pairing are known as antisense oligonucleotides (ASOs) because they are complementary to "sense strand" nucleic acids. ASOs bind to selected sequences of RNA and regulate the expression of genes by several mechanisms depending on their chemical properties and targets. They can be used to restore deficient protein expression, reduce the expression of a toxic protein, modify functional effects of proteins, or reduce toxicity of mutant proteins. Two ASOs were approved by the U.S. Food and Drug Administration in 2016: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy. Clinical trials in amyotrophic lateral sclerosis and familial amyloid polyneuropathy are ongoing. We review the chemistry, pharmacology, and mechanisms of action of ASOs, preclinical data, and clinical trials in neuromuscular diseases and discuss some ethical, regulatory, and policy considerations in the clinical development and use of ASOs. Muscle Nerve 57: 356-370, 2018.
Collapse
Affiliation(s)
- Neelam Goyal
- Neurology/Neuromuscular Disease, Stanford University Hospital, 213 Quarry Road MC 5979, Palo Alto, Ca 94303
| | - Pushpa Narayanaswami
- Neurology/Neuromuscular Disease, Neurology TCC-8, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts, 02215
| |
Collapse
|
13
|
Hildebrandt A, Alanis-Lobato G, Voigt A, Zarnack K, Andrade-Navarro MA, Beli P, König J. Interaction profiling of RNA-binding ubiquitin ligases reveals a link between posttranscriptional regulation and the ubiquitin system. Sci Rep 2017; 7:16582. [PMID: 29185492 PMCID: PMC5707401 DOI: 10.1038/s41598-017-16695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
RNA-binding ubiquitin ligases (RBULs) have the potential to link RNA-mediated mechanisms to protein ubiquitylation. Despite this, the cellular functions, substrates and interaction partners of most RBULs remain poorly characterized. Affinity purification (AP) combined with quantitative mass spectrometry (MS)-based proteomics is a powerful approach for analyzing protein functions. Mapping the physiological interaction partners of RNA-binding proteins has been hampered by their intrinsic properties, in particular the existence of low-complexity regions, which are prone to engage in non-physiological interactions. Here, we used an adapted AP approach to identify the interaction partners of human RBULs harboring different RNA-binding domains. To increase the likelihood of recovering physiological interactions, we combined control and bait-expressing cells prior to lysis. In this setup, only stable interactions that were originally present in the cell will be identified. We exploit gene function similarity between the bait proteins and their interactors to benchmark our approach in its ability to recover physiological interactions. We reveal that RBULs engage in stable interactions with RNA-binding proteins involved in different steps of RNA metabolism as well as with components of the ubiquitin conjugation machinery and ubiquitin-binding proteins. Our results thus demonstrate their capacity to link posttranscriptional regulation with the ubiquitin system.
Collapse
Affiliation(s)
- Andrea Hildebrandt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Gregorio Alanis-Lobato
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Kawashima A, Karasawa T, Tago K, Kimura H, Kamata R, Usui-Kawanishi F, Watanabe S, Ohta S, Funakoshi-Tago M, Yanagisawa K, Kasahara T, Suzuki K, Takahashi M. ARIH2 Ubiquitinates NLRP3 and Negatively Regulates NLRP3 Inflammasome Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 199:3614-3622. [PMID: 29021376 DOI: 10.4049/jimmunol.1700184] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a molecular platform that induces caspase-1 activation and subsequent IL-1β maturation, and is implicated in inflammatory diseases; however, little is known about the negative regulation of NLRP3 inflammasome activation. In this article, we identified an E3 ligase, Ariadne homolog 2 (ARIH2), as a posttranslational negative regulator of NLRP3 inflammasome activity in macrophages. ARIH2 interacted with NLRP3 via its NACHT domain (aa 220-575) in the NLRP3 inflammasome complex. In particular, we found that while using mutants of ARIH2 and ubiquitin, the really interesting new gene 2 domain of ARIH2 was required for NLRP3 ubiquitination linked through K48 and K63. Deletion of endogenous ARIH2 using CRISPR/Cas9 genome editing inhibited NLRP3 ubiquitination and promoted NLRP3 inflammasome activation, resulting in apoptosis-associated speck-like protein containing a caspase recruitment domain oligomerization, pro-IL-1β processing, and IL-1β production. Conversely, ARIH2 overexpression promoted NLRP3 ubiquitination and inhibited NLRP3 inflammasome activation. Our findings reveal a novel mechanism of ubiquitination-dependent negative regulation of the NLRP3 inflammasome by ARIH2 and highlight ARIH2 as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Akira Kawashima
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Satoshi Ohta
- Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan
| | | | - Ken Yanagisawa
- Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| |
Collapse
|
15
|
Raz V, Raz Y, Paniagua-Soriano G, Roorda JC, Olie C, Riaz M, Florea BI. Proteasomal activity-based probes mark protein homeostasis in muscles. J Cachexia Sarcopenia Muscle 2017; 8:798-807. [PMID: 28675601 PMCID: PMC5659047 DOI: 10.1002/jcsm.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Protein homeostasis, primarily regulated by the ubiquitin-proteasome system is crucial for proper function of cells. In tissues of post-mitotic cells, the impaired ubiquitin-proteasome system is found in a wide range of neuromuscular disorders. Activity-based probes (ABPs) measure proteasomal proteolytic subunits and can be used to report protein homeostasis. Despite the crucial role of the proteasome in neuromuscular pathologies, ABPs were not employed in muscle cells and tissues, and measurement of proteasomal activity was carried out in vitro using low-throughput procedures. METHODS We screened six ABPs for specific application in muscle cell culture using high throughput call-based imaging procedures. We then determined an in situ proteasomal activity in myofibers of muscle cryosections. RESULTS We demonstrate that LWA300, a pan-reactive proteasomal probe, is most suitable to report proteasomal activity in muscle cells using cell-based bio-imaging. We found that proteasomal activity is two-fold and three-fold enhanced in fused muscle cell culture compared with non-fused cells. Moreover, we found that proteasomal activity can discriminate between muscles. Across muscles, a relative higher proteasomal activity was found in hybrid myofibers whereas fast-twitch myofibers displayed lower activity. CONCLUSIONS Our study demonstrates that proteasomal activity differ between muscles and between myofiber types. We suggest that ABPs can be used to report disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Yotam Raz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | | | | | - Cyriel Olie
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Muhammad Riaz
- Department of Human Genetics, LUMC, Leiden, The Netherlands
| | - Bogdan I Florea
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
16
|
Raz V, Dickson G, 't Hoen PAC. Dysfunctional transcripts are formed by alternative polyadenylation in OPMD. Oncotarget 2017; 8:73516-73528. [PMID: 29088723 PMCID: PMC5650278 DOI: 10.18632/oncotarget.20640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Post-transcription mRNA processing in the 3’-untranslated region (UTR) of transcripts alters mRNA landscape. Alternative polyadenylation (APA) utilization in the 3’-UTR often leads to shorter 3’-UTR affecting mRNA stability, a process that is regulated by PABPN1. In skeletal muscles PABPN1 levels reduce with age and a greater decrease in found in Oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant myopathy caused by expansion mutation in PABPN1. In OPMD models a shift from distal to proximal polyadenylation site utilization in the 3’-UTR, and PABPN1 was shown to play a prominent role in APA. Whether PABPN1-mediated APA transcripts are functional is not fully understood. We investigate nuclear export and translation efficiency of transcripts in OPMD models. We focused on autophagy-regulated genes (ATGs) with APA utilization in cell models with reduced functional PABPN1. We provide evidence that ATGs transcripts from distal PAS retain in the nucleus and thus have reduced translation efficiency in cells with reduced PABPN1. In contrast, transcripts from proximal PAS showed a higher cytoplasmic abundance but a reduced occupancy in the ribosome. We therefore suggest that in reduced PABPN1 levels ATG transcripts from APA may not effectively translate to proteins. In those conditions we found constitutive autophagosome fusion and reduced autophagy flux. Augmentation of PABPN1 restored autophagosome fusion, suggesting that PABPN1-mediated APA plays a role in autophagy in OPMD and in aging muscles.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - George Dickson
- School of Biological Science, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
17
|
Klein P, Oloko M, Roth F, Montel V, Malerba A, Jarmin S, Gidaro T, Popplewell L, Perie S, Lacau St Guily J, de la Grange P, Antoniou MN, Dickson G, Butler-Browne G, Bastide B, Mouly V, Trollet C. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res 2016; 44:10929-10945. [PMID: 27507886 PMCID: PMC5159528 DOI: 10.1093/nar/gkw703] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022] Open
Abstract
A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein.
Collapse
Affiliation(s)
- Pierre Klein
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Martine Oloko
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Fanny Roth
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Valérie Montel
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Teresa Gidaro
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Sophie Perie
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | - Jean Lacau St Guily
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, Paris, France
| | | | - Michael N Antoniou
- King's College London School of Medicine, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Bruno Bastide
- Univ. Lille - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, équipe APMS, F-59000 Lille, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, 47 bd de l'Hôpital, 75013 Paris, France
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Antisense-mediated modulation of transcripts is a dynamic therapeutic field, especially for neuromuscular disorders. RECENT FINDINGS For three diseases, this approach has advanced to the clinical trial phase, that is Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy. In parallel, numerous proof-of-concept studies in cell and animal models have been reported for additional neuromuscular disorders. SUMMARY This review discusses the most notable advances in preclinical and clinical studies in the past year. For Duchenne muscular dystrophy, spinal muscular atrophy and myotonic dystrophy trials are ongoing to assess safety and efficacy, while in parallel preclinical studies are being conducted to identify ways to improve efficiency and delivery. For other neuromuscular diseases, progress is made as well warranting future clinical trials. However, towards clinical trial readiness, it is important not only to optimize the therapy preclinically but to also develop the infrastructure that is needed to conduct trials.
Collapse
|
19
|
Marsollier AC, Ciszewski L, Mariot V, Popplewell L, Voit T, Dickson G, Dumonceaux J. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach. Hum Mol Genet 2016; 25:1468-78. [PMID: 26787513 DOI: 10.1093/hmg/ddw015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/14/2016] [Indexed: 01/16/2023] Open
Abstract
Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.
Collapse
Affiliation(s)
- Anne-Charlotte Marsollier
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 bld de l'hôpital, Paris 13, France and
| | - Lukasz Ciszewski
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | - Virginie Mariot
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 bld de l'hôpital, Paris 13, France and
| | - Linda Popplewell
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | - Thomas Voit
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 bld de l'hôpital, Paris 13, France and
| | - George Dickson
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | - Julie Dumonceaux
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 47 bld de l'hôpital, Paris 13, France and
| |
Collapse
|
20
|
Polling S, Ormsby AR, Wood RJ, Lee K, Shoubridge C, Hughes JN, Thomas PQ, Griffin MDW, Hill AF, Bowden Q, Böcking T, Hatters DM. Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nat Struct Mol Biol 2015; 22:1008-15. [DOI: 10.1038/nsmb.3127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
|
21
|
Chartier A, Klein P, Pierson S, Barbezier N, Gidaro T, Casas F, Carberry S, Dowling P, Maynadier L, Bellec M, Oloko M, Jardel C, Moritz B, Dickson G, Mouly V, Ohlendieck K, Butler-Browne G, Trollet C, Simonelig M. Mitochondrial dysfunction reveals the role of mRNA poly(A) tail regulation in oculopharyngeal muscular dystrophy pathogenesis. PLoS Genet 2015; 11:e1005092. [PMID: 25816335 PMCID: PMC4376527 DOI: 10.1371/journal.pgen.1005092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/23/2015] [Indexed: 01/25/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction. Oculopharyngeal muscular dystrophy is a genetic disease characterized by progressive degeneration of specific muscles, leading to ptosis (eyelid drooping), dysphagia (swallowing difficulties) and proximal limb weakness. The disease results from mutations in a nuclear protein called poly(A) binding protein nuclear 1 that is involved in polyadenylation of messenger RNAs (mRNAs) and poly(A) site selection. To address the molecular mechanisms involved in the disease, we have used two animal models (Drosophila and mouse) that recapitulate the features of this disorder. We show that oculopharyngeal muscular dystrophy pathogenesis depends on defects in poly(A) tail length regulation of specific mRNAs. Because poly(A) tails play an essential role in mRNA stability, these defects result in accelerated decay of these mRNAs. The affected mRNAs encode mitochondrial proteins, and mitochondrial activity is impaired in diseased muscles. These findings have important implications for the development of potential therapies for oculopharyngeal muscular dystrophy, and might be relevant to decipher the molecular mechanisms underlying other disorders that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Aymeric Chartier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Pierre Klein
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Teresa Gidaro
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - François Casas
- INRA, UMR 866 Différenciation cellulaire et croissance, Montpellier, France
| | - Steven Carberry
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Laurie Maynadier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Maëlle Bellec
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Martine Oloko
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Claude Jardel
- Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, INSERM U1016, Institut Cochin, CNRS UMR 8104, AP-HP, GHU Pitié-Salpêtrière, Paris, France
| | - Bodo Moritz
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey, United Kingdom
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Kay Ohlendieck
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
- * E-mail:
| |
Collapse
|
22
|
Raz Y, Raz V. Oculopharyngeal muscular dystrophy as a paradigm for muscle aging. Front Aging Neurosci 2014; 6:317. [PMID: 25426070 PMCID: PMC4226162 DOI: 10.3389/fnagi.2014.00317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/28/2014] [Indexed: 12/04/2022] Open
Abstract
Symptoms in late-onset neuromuscular disorders initiate only from midlife onward and progress with age. These disorders are primarily determined by identified hereditable mutations, but their late-onset symptom manifestation is not fully understood. Here, we review recent research developments on the late-onset autosomal dominant oculopharyngeal muscular dystrophy (OPMD). OPMD is caused by an expansion mutation in the gene encoding for poly-adenylate RNA binding protein1 (PABPN1). The molecular pathogenesis for the disease is still poorly understood. Despite a ubiquitous expression of PABPN1, symptoms in OPMD are limited to skeletal muscles. We discuss recent studies showing that PABPN1 levels in skeletal muscles are lower compared with other tissues, and specifically in skeletal muscles, PABPN1 expression declines from midlife onward. In OPMD, aggregation of expanded PABPN1 causes an additional decline in the level of the functional protein, which is associated with severe muscle weakness in OPMD. Reduced PABNPN1 expression in muscle cell culture causes myogenic defects, suggesting that PABPN1 loss-of-function causes muscle weakness in OPMD and in the elderly. Molecular signatures of OPMD muscles are similar to those of normal muscle aging, although expression trends progress faster in OPMD. We discuss a working hypothesis that aging-associated factors trigger late-onset symptoms in OPMD, and contribute to accelerated muscle weakness in OPMD. We focus on the pharyngeal and eyelid muscles, which are often affected in OPMD patients. We suggest that muscle weakness in OPMD is a paradigm for muscle aging.
Collapse
Affiliation(s)
- Yotam Raz
- Department of Human Genetics, Leiden University Medical Center , Leiden , Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
23
|
Randolph ME, Luo Q, Ho J, Vest KE, Sokoloff AJ, Pavlath GK. Ageing and muscular dystrophy differentially affect murine pharyngeal muscles in a region-dependent manner. J Physiol 2014; 592:5301-15. [PMID: 25326455 DOI: 10.1113/jphysiol.2014.280420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Qingwei Luo
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Justin Ho
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Alan J Sokoloff
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|