1
|
Chen Y, Jiang M, Li L, Yang S, Liu Z, Lin S, Wang W, Li J, Chen F, Hou Q, Ma X, Hou L. Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy. Cell Death Dis 2025; 16:49. [PMID: 39870644 PMCID: PMC11772762 DOI: 10.1038/s41419-025-07367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear. The present study demonstrated that AIM2 functions as a potent suppressor of RPE cell proliferation and EMT to maintain retinal homeostasis. Transcriptome analysis using RNA-sequencing (RNA-Seq) revealed that AIM2 was significantly downregulated in primary human RPE (phRPE) cells undergoing EMT and proliferation. Consequently, Aim2-deficient mice showed morphological changes and increased FN expression in RPE cells under physiological conditions, whereas AIM2 overexpression in phRPE cells inhibited EMT. In a retinal detachment-induced PVR mouse model, AIM2 deficiency promotes RPE-EMT, resulting in severe experimental PVR. Clinical samples further confirmed the downregulation of AIM2 in the PVR membranes from patients. Kyoto Encyclopedia of Genes and Genome analysis revealed that the PI3K-AKT signaling pathway was significantly related to RPE-EMT and that AIM2 inhibited AKT activation in RPE cells by reducing its phosphorylation. Moreover, treatment with eye drops containing an AKT inhibitor alleviated RPE-EMT and the severity of experimental PVR. These findings provide new insights into the complex mechanisms underlying RPE-EMT and PVR pathogenesis, with implications for rational strategies for potential therapeutic applications in PVR by targeting RPE-EMT.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyuan Jiang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liping Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhengzhou Aier Eye Hospital, Zhengzhou, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiwen Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiang Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
O'Hare M, Miller WP, Arevalo-Alquichire S, Amarnani D, Apryani E, Perez-Corredor P, Marino C, Shu DY, Vanderleest TE, Muriel-Torres A, Gordon HB, Gunawan AL, Kaplan BA, Barake KW, Bejjani RP, Doan TH, Lin R, Delgado-Tirado S, Gonzalez-Buendia L, Rossin EJ, Zhao G, Eliott D, Weinl-Tenbruck C, Chevessier-Tünnesen F, Rejman J, Montrasio F, Kim LA, Arboleda-Velasquez JF. An mRNA-encoded dominant-negative inhibitor of transcription factor RUNX1 suppresses vitreoretinal disease in experimental models. Sci Transl Med 2024; 16:eadh0994. [PMID: 39602510 DOI: 10.1126/scitranslmed.adh0994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Messenger RNA (mRNA)-based therapies are a promising approach to medical treatment. Except for infectious diseases, no other disease has mRNA-based therapies available. The eye is an ideal model for mRNA therapeutic development because it requires limited dosing. Proliferative vitreoretinopathy (PVR) is a blinding condition caused by retinal detachment that now lacks available medical treatment, with surgery as the only treatment option. We previously implicated runt-related transcription factor-1 (RUNX1) as a driver of epithelial-to-mesenchymal transition (EMT) in PVR and as a critical mediator of aberrant ocular angiogenesis when up-regulated. On the basis of these findings, an mRNA was designed to express a dominant-negative inhibitor of RUNX1 (RUNX1-Trap). We show that RUNX1-Trap delivered in polymer-lipidoid complexes or lipid nanoparticles sequestered RUNX1 in the cytosol and strongly reduced proliferation in primary cell cultures established from fibrotic membranes derived from patients with PVR. We assessed the preclinical efficacy of intraocular delivery of mRNA-encoded RUNX1-Trap in a rabbit model of PVR and in a laser-induced mouse model of aberrant angiogenesis often used to study wet age-related macular degeneration. mRNA-encoded RUNX1-Trap suppressed ocular pathology, measured as pathological scores in the rabbit PVR model and leakage and lesion size in the laser-induced choroidal neovascularization mouse model. mRNA-encoded RUNX1-Trap also strongly reduced proliferation in a human ex vivo explant model of PVR. These data demonstrate the therapeutic potential of mRNA-encoded therapeutic molecules with dominant-negative properties, highlighting the potential of mRNA-based therapies beyond standard gene supplementation approaches.
Collapse
Affiliation(s)
- Michael O'Hare
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - William P Miller
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Said Arevalo-Alquichire
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Evhy Apryani
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Paula Perez-Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Y Shu
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Timothy E Vanderleest
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Andres Muriel-Torres
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Harper B Gordon
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Audrey L Gunawan
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Bryan A Kaplan
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Karim W Barake
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Romy P Bejjani
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Tri H Doan
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Rose Lin
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Santiago Delgado-Tirado
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Lucia Gonzalez-Buendia
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth J Rossin
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Guannan Zhao
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Dean Eliott
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | - Leo A Kim
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Zong T, Mu T, Tan C, Xie T, Zhuang M, Wang Y, Li Z, Yang Q, Wu M, Cai J, Wang X, Yao Y. Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy. Exp Eye Res 2024; 248:110097. [PMID: 39284505 DOI: 10.1016/j.exer.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-β2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and β-catenin in the PVR membranes. ICG-001, a β-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and β-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.
Collapse
Affiliation(s)
- Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Ziwen Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China.
| |
Collapse
|
4
|
Liu D, Du J, Xie H, Tian H, Lu L, Zhang C, Xu GT, Zhang J. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration. J Neuroinflammation 2024; 21:75. [PMID: 38532410 DOI: 10.1186/s12974-024-03068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a β-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFβ1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of β-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active β-catenin labeling. In vitro, Wnt5a/ROR1, active β-catenin, and some other Wnt signaling molecules were upregulated in the TGFβ1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active β-catenin, as well as the EMT in TGFβ1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS Our study reveals a reciprocal activation between Wnt5a and β-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
5
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
6
|
Orozco LD, Owen LA, Hofmann J, Stockwell AD, Tao J, Haller S, Mukundan VT, Clarke C, Lund J, Sridhar A, Mayba O, Barr JL, Zavala RA, Graves EC, Zhang C, Husami N, Finley R, Au E, Lillvis JH, Farkas MH, Shakoor A, Sherva R, Kim IK, Kaminker JS, Townsend MJ, Farrer LA, Yaspan BL, Chen HH, DeAngelis MM. A systems biology approach uncovers novel disease mechanisms in age-related macular degeneration. CELL GENOMICS 2023; 3:100302. [PMID: 37388919 PMCID: PMC10300496 DOI: 10.1016/j.xgen.2023.100302] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 07/01/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Müller state distinct from normal or gliosis. Chromatin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.
Collapse
Affiliation(s)
- Luz D. Orozco
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Jeffrey Hofmann
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Amy D. Stockwell
- Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Jianhua Tao
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Susan Haller
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Vineeth T. Mukundan
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christine Clarke
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Jessica Lund
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Akshayalakshmi Sridhar
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Oleg Mayba
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Julie L. Barr
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Rylee A. Zavala
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Elijah C. Graves
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Nadine Husami
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Robert Finley
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Elizabeth Au
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Michael H. Farkas
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - Richard Sherva
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S. Kaminker
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Michael J. Townsend
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Lindsay A. Farrer
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Brian L. Yaspan
- Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Hsu-Hsin Chen
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
7
|
Sloan LJ, Funk KM, Tamiya S, Song ZH. Effect of N-oleoyl dopamine on myofibroblast trans-differentiation of retinal pigment epithelial cells. Biochem Biophys Res Commun 2023; 667:127-131. [PMID: 37216828 DOI: 10.1016/j.bbrc.2023.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Retinal pigment epithelial (RPE) cells contribute to several clinical conditions resulting in retinal fibrotic scars. Myofibroblast trans-differentiation of RPE cells is a critical step in the process of retinal fibrosis. In this study, we investigated the effects of N-oleoyl dopamine (OLDA), a newer endocannabinoid with a structure distinct from classic endocannabinoids, on TGF-β2-induced myofibroblast trans-differentiation of porcine RPE cells. Using an in vitro collagen matrix contraction assay, OLDA was found to inhibit TGF-β2 induced contraction of collagen matrices by porcine RPE cells. This effect was concentration-dependent, with significant inhibition of contraction observed at 3 μM and 10 μM. OLDA did not affect the proliferation of porcine RPE cells. Immunocytochemistry showed that at 3 μM, OLDA decreased incorporation of α-SMA in the stress fibers of TGF-β2-treated RPE cells. In addition, western blot analysis showed that 3 μM OLDA significantly downregulated TGF-β2-induced α-SMA protein expression. Taken together these results demonstrate that OLDA inhibits TGF-β induced myofibroblast trans-differentiation of RPE cells. It has been established that classic endocannabinoid such as anandamide, by activating the CB1 cannabinoid receptor, promote fibrosis in multiple organ systems. In contrast, this study demonstrates that OLDA, an endocannabinoid with a chemical structure distinct from classic endocannabinoids, inhibits myofibroblast trans-differentiation, an important step in fibrosis. Unlike classic endocannabinoids, OLDA has weak affinity for the CB1 receptor. Instead, OLDA acts on non-classic cannabinoid receptors such as GPR119, GPR6, and TRPV1. Therefore, our study indicates that the newer endocannabinoid OLDA and its non-classic cannabinoid receptors could potentially be novel therapeutic targets for treating ocular diseases involving retinal fibrosis and fibrotic pathologies in other organ systems.
Collapse
Affiliation(s)
- Lucy J Sloan
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Kyle M Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, Ohio State University College of Medicine, Columbus, OH, 43210, United States.
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States.
| |
Collapse
|
8
|
Qi H, Dong L, Fang D, Chen L, Wang Y, Fan N, Mao X, Wu W, Yan X, Zhang G, Zhang S, Lei H. A Novel Role of IL13Rα2 in the Pathogenesis of Proliferative Vitreoretinopathy. Front Med (Lausanne) 2022; 9:831436. [PMID: 35770008 PMCID: PMC9234175 DOI: 10.3389/fmed.2022.831436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR), an inflammatory and fibrotic blinding disease, is still a therapeutic challenge. Retinal pigment epithelial (RPE) cells dislodged in the vitreous play a central role in the PVR pathogenesis. To identify potential novel contributors to the pathogenesis of PVR, we investigated a profile of vitreous-induced changes in ARPE-19 cells by RNA sequencing. Bioinformatics analysis of the sequencing data showed that there were 258 genes up-regulated and 835 genes down-regulated in the ARPE-19 cells treated with human vitreous. Among these genes, there were three genes related to eye disease with more than threefold changes. In particular, quantitative PCR and western blot results showed that interleukin 13 receptor (IL13R)α2 that is over-expressed in a variety of cancers was up-regulated more than three times in the vitreous-treated ARPE-19 cells. Immunofluorescence analysis indicated that interleukin-13 receptor subunit α2 (IL13Rα2) was highly expressed in ARPE-19 cells within epiretinal membranes from patients with PVR. Importantly, blocking IL13Rα2 with its neutralizing antibody significantly inhibited vitreous-induced contraction of ARPE-19 cells, suggesting a novel role of IL13Rα2 in the PVR pathogenesis. These findings will improve our understanding of the molecular mechanisms by which PVR develops and provides potential targets for PVR therapeutics.
Collapse
Affiliation(s)
- Hui Qi
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Xingxing Mao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
- *Correspondence: Shaochong Zhang,
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
- Hetian Lei,
| |
Collapse
|
9
|
Cell transdifferentiation in ocular disease: Potential role for connexin channels. Exp Cell Res 2021; 407:112823. [PMID: 34506760 DOI: 10.1016/j.yexcr.2021.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
Cell transdifferentiation is the conversion of a cell type to another without requiring passage through a pluripotent cell state, and encompasses epithelial- and endothelial-mesenchymal transition (EMT and EndMT). EMT and EndMT are well defined processes characterized by a loss of epithelial/endothelial phenotype and gain in mesenchymal spindle shaped morphology, which results in increased cell migration and decreased apoptosis and cellular senescence. Such cells often develop invasive properties. Physiologically, these processes may occur during embryonic development and can resurface, for example, to promote wound healing in later life. However, they can also be a pathological process. In the eye, EMT, EndMT and cell transdifferentiation have all been implicated in development, homeostasis, and multiple diseases affecting different parts of the eye. Connexins, constituents of connexin hemichannels and intercellular gap junctions, have been implicated in many of these processes. In this review, we firstly provide an overview of the molecular mechanisms induced by transdifferentiation (including EMT and EndMT) and its involvement in eye diseases. We then review the literature for the role of connexins in transdifferentiation in the eye and eye diseases. The evidence presented in this review supports the need for more studies into the therapeutic potential for connexin modulators in prevention and treatment of transdifferentiation related eye diseases, but does indicate that connexin channel modulation may be an upstream and unifying approach for regulating these otherwise complex processes.
Collapse
|
10
|
Dong H, Wang M, Li Q. Exosomal miR-4488 and miR-1273g-5p inhibit the epithelial-mesenchymal transition of transforming growth factor β2-mediated retinal pigment epithelial cells by targeting ATP-binding cassette A4. Bioengineered 2021; 12:9693-9706. [PMID: 34592902 PMCID: PMC8810054 DOI: 10.1080/21655979.2021.1987068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Exosomal microRNAs (miRNAs) have been shown to be involved in the regulation of many disease progression, including proliferative vitreoretinopathy (PVR). However, the roles of exosomal miR-4488 and miR-1273g-5p in PVR progression have not been demonstrated. Transforming growth factor β2 (TGF-β2)-induced ARPE-19 cells were used to stimulate the epithelial-mesenchymal transition (EMT) of cells. Exosomes derived from TGF-β2-induced ARPE-19 cells were identified by transmission electron microscopy and nanoparticle tracking analysis. The expression levels of miR-4488, miR-1273g-5p and ATP-binding cassette A4 (ABCA4) were measured by quantitative real-time PCR. The promotion levels of exosomes markers, EMT markers, apoptosis markers and ABCA4 were determined by western blot analysis. The migration, invasion and apoptosis of cells were determined by transwell assay, wound healing assay and flow cytometry. Our data showed that miR-4488 and miR-1273g-5p were lowly expressed in TGF-β2-induced ARPE-19 cells. Overexpressed exosomal miR-4488 and miR-1273g-5p could inhibit the EMT, migration, invasion, and promote apoptosis in TGF-β2-induced ARPE-19 cells. In addition, ABCA4 was a target of miR-4488 and miR-1273g-5p. Overexpressed ABCA4 also could reverse the negatively regulation of exosomal miR-4488 and miR-1273g-5p on the EMT, migration, and invasion of TGF-β2-induced ARPE-19 cells. In conclusion, our data showed that exosomal miR-4488 and miR-1273g-5p could inhibit TGF-β2-stimulated EMT in ARPE-19 cells through targeting ABCA4.
Collapse
Affiliation(s)
- Hongtao Dong
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan, China
| | - Menghua Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan, China
| | - Qiuming Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan, China
| |
Collapse
|
11
|
EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21124271. [PMID: 32560057 PMCID: PMC7349630 DOI: 10.3390/ijms21124271] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.
Collapse
|
12
|
Lu Q, Scott PA, Vukmanic EV, Kaplan HJ, Dean DC, Li Q. Yap1 is required for maintenance of adult RPE differentiation. FASEB J 2020; 34:6757-6768. [PMID: 32223016 DOI: 10.1096/fj.201903234r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
Abstract
Nuclear YAP1 plays a critical role in regulation of stem cell proliferation, tissue regeneration, and organ size in many types of epithelia. Due to rapid turnover of most epithelial cell types, the cytoplasmic function of YAP1 in epithelial cells has not been well studied. The retinal pigment epithelium (RPE) is a highly polarized epithelial cell type maintained at a senescence state, and offers an ideal cell model to study the active role of YAP1 in maintenance of the adult epithelial phenotype. Here, we show that the cytoplasmic function of YAP1 is essential to maintain adult RPE differentiation. Knockout of Yap1 in the adult mouse RPE caused cell depolarization and tight junction breakdown, and led to inhibition of RPE65 expression, diminishment of RPE pigments, and retraction of microvilli and basal infoldings. These changes in RPE further prompted the loss of adjacent photoreceptor outer segments and photoreceptor death, which eventually led to decline of visual function in older mice between 6 and 12 months of age. Furthermore, nuclear β-catenin and its activity were significantly increased in mutant RPE. These results suggest that YAP1 plays an important role in active inhibition of Wnt/β-catenin signaling, and is essential for downregulation of β-catenin nuclear activity and prevention of dedifferentiation of adult RPE.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick A Scott
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric V Vukmanic
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
13
|
Zhang Y, Li M, Han X. Icariin affects cell cycle progression and proliferation of human retinal pigment epithelial cells via enhancing expression of H19. PeerJ 2020; 8:e8830. [PMID: 32219038 PMCID: PMC7087489 DOI: 10.7717/peerj.8830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
Background Aberrant proliferation of retinal pigment epithelial (RPE) cells under pathologic condition results in the occurrence of proliferative vitreoretinopathy (PVR). Icariin (ICA)-a flavonol glucoside-has been shown to inhibit proliferation of many cell types, but the effect on RPE cells is unknown. This study aimed to clarify the inhibitory effects of ICA on RPE cells against platelet-derived growth factor (PDGF)-BB-induced cell proliferation, and discuss the regulatory function of H19 in RPE cells. Methods MTS assay was conducted to determine the effects of ICA on cell proliferation. Flow cytometry analysis was performed to detect cell cycle progression. Quantitative real-time PCR and western blot assay were used to measure the expression patterns of genes in RPE cells. Results ICA significantly suppressed PDGF-BB-stimulated RPE cell proliferation in a concentration-dependent manner. Moreover, since administration of ICA induced cell cycle G0/G1 phase arrest, the anti-proliferative activity of ICA may be due to G0/G1 phase arrest in RPE cells. At molecular levels, cell cycle regulators cyclin D1, CDK4, CDK6, p21 and p53 were modulated in response to treatment with ICA. Most importantly, H19 was positively regulated by ICA and H19 depletion could reverse the inhibitory effects of ICA on cell cycle progression and proliferation in PDGF-BB-stimulated RPE cells. Further mechanical explorations showed that H19 knockdown resulted in alternative expressions levels of cyclin D1, CDK4, CDK6, p21 and p53 under ICA treatment. Conclusions Our findings revealed that ICA was an effective inhibitor of PDGF-BB-induced RPE cell proliferation through affecting the expression levels of cell cycle-associated factors, and highlighted the potential application of ICA in PVR therapy. H19 was described as a target regulatory gene of ICA whose disruption may contribute to excessive proliferation of RPE cells, suggesting that modulation of H19 expression may be a novel therapeutic approach to treat PVR.
Collapse
Affiliation(s)
- Yibing Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Pharmacology and Toxicology, Jilin University School of Pharmaceutical Sciences, Changchun, China
| | - Xue Han
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Chauhan R, Balgemann R, Greb C, Nunn BM, Ueda S, Noma H, McDonald K, Kaplan HJ, Tamiya S, O'Toole MG. Production of dasatinib encapsulated spray-dried poly (lactic-co-glycolic acid) particles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Tao YJ, Chen Q, Wang L, Yang X, Cun Q, Yang WY, Zhong H. Pirfenidone suppresses the abnormal activation of human Müller cells after platelet-derived growth factor-BB stimulation. Int J Ophthalmol 2019; 12:1075-1082. [PMID: 31341795 DOI: 10.18240/ijo.2019.07.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
AIM To determine the effect of pirfenidone on the activated human Müller cells by platelet-derived growth factor-BB (PDGF-BB). METHODS The primary human Müller cells were separated from retinal tissues and established the pathogenic model by stimulated with PDGF-BB. The Müller cells behaviour of normal group and the model group was measured by MTT assay, Trypan blue assay, cell migration assay, and collagen contraction assay. The expression of transforming growth factor (TGF)-β1, -β2, and pigment epithelium-derived factor (PEDF) was estimated with real-time polymerase chain reaction (PCR), Western blot and immunofluorescence analyses. RESULTS A pathogenic/proliferative model of Müller cells was established by stimulating normal cultured Müller cells with 10 ng/mL PDGF-BB for 48h. After treated with 0.2 and 0.3 mg/mL pirfenidone, the proliferation, migration and collagen contraction was statistically significantly depressed in the model group compared with the normal groups. The expression levels of TGF-β1 and TGF-β2 were significantly down-regulated, while the PEDF expression was significantly up-regulated after treated with 0.2 and 0.3 mg/mL pirfenidone in the model group. CONCLUSION Pirfenidone effectively suppress the proliferation, migration and collagen contraction of the human Müller cells stimulated with PDGF-BB through down-regulation of TGF-β1/TGF-β2 and up-regulation of PEDF.
Collapse
Affiliation(s)
- Yi-Jin Tao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Qin Chen
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Li Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao Yang
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Qing Cun
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Wen-Yan Yang
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| | - Hua Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan Province, China
| |
Collapse
|
16
|
Fostok SF, El-Sibai M, El-Sabban M, Talhouk RS. Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk? J Mammary Gland Biol Neoplasia 2019; 24:17-38. [PMID: 30194659 DOI: 10.1007/s10911-018-9411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/β-catenin pathway and the noncanonical β-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/β-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.
Collapse
Affiliation(s)
- Sabreen F Fostok
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Rabih S Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
17
|
Utility of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for an In Vitro Model of Proliferative Vitreoretinopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:33-53. [PMID: 31654385 DOI: 10.1007/978-3-030-28471-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of stem cell technology, including the technology to induce pluripotency in somatic cells, and direct differentiation of stem cells into specific somatic cell types, has created an exciting new field of scientific research. Much of the work with pluripotent stem (PS) cells has been focused on the exploration and exploitation of their potential as cells/tissue replacement therapies for personalized medicine. However, PS and stem cell-derived somatic cells are also proving to be valuable tools to study disease pathology and tissue-specific responses to injury. High-throughput drug screening assays using tissue-specific injury models have the potential to identify specific and effective treatments that will promote wound healing. Retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE) are well characterized cells that exhibit the phenotype and functions of in vivo RPE. In addition to their role as a source of cells to replace damaged or diseased RPE, iPS-RPE provide a robust platform for in vitro drug screening to identify novel therapeutics to promote healing and repair of ocular tissues after injury. Proliferative vitreoretinopathy (PVR) is an abnormal wound healing process that occurs after retinal tears or detachments. In this chapter, the role of iPS-RPE in the development of an in vitro model of PVR is described. Comprehensive analyses of the iPS-RPE response to injury suggests that these cells provide a physiologically relevant tool to investigate the cellular mechanisms of the three phases of PVR pathology: migration, proliferation, and contraction. This in vitro model will provide valuable information regarding cellular wound healing responses specific to RPE and enable the identification of effective therapeutics.
Collapse
|
18
|
London NJS, Kaiser RS, Khan MA, Alshareef RA, Khuthaila M, Shahlaee A, Obeid A, London VA, DeCroos FC, Gupta OP, Hsu J, Vander JF, Spirn MJ, Regillo CD. Determining the effect of low-dose isotretinoin on proliferative vitreoretinopathy: the DELIVER trial. Br J Ophthalmol 2018; 103:1306-1313. [PMID: 30381390 DOI: 10.1136/bjophthalmol-2018-312839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/04/2022]
Abstract
PURPOSE To examine the effect of low-dose, oral isotretinoin in lowering the risk of proliferative vitreoretinopathy (PVR) following rhegmatogenous retinal detachment (RRD) repair. METHODS Prospective, open label, dual-cohort study with pathology-matched historical controls. The prospective experimental arms included two cohorts, composed of 51 eyes with recurrent PVR-related RRD and 58 eyes with primary RRD associated with high-risk features for developing PVR. Eyes in the experimental arms received 20 mg of isotretinoin by mouth once daily for 12 weeks starting the day after surgical repair. The primary outcome measure was single surgery anatomical success rate at 3 months following the study surgery. RESULTS The single surgery anatomic success rate was 78.4% versus 70.0% (p=0.358) in eyes with recurrent PVR-related retinal detachment exposed to isotretinoin versus historical controls, respectively. In eyes with RRD at high risk for developing PVR, the single surgery success rate was 84.5% versus 61.1% (p=0.005) for eyes exposed to isotretinoin versus historical controls, respectively. For eyes enrolled in the experimental arms, the most common isotretinoin-related side effects were dry skin/mucus membranes in 106 patients (97.2%), abnormal sleep/dreams in 4 patients (3.7%) and fatigue in 3 patients (2.8%). CONCLUSION The management and prevention of PVR is challenging and complex. At the dose and duration given in this study, oral istotretinoin may reduce the risk of PVR-associated recurrent retinal detachment in eyes with primary RRD at high risk of developing PVR.
Collapse
Affiliation(s)
- Nikolas J S London
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA .,Retina Consultants San Diego, San Diego, California, USA
| | - Richard S Kaiser
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Mohammed Ali Khan
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Rayan A Alshareef
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Khuthaila
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Abtin Shahlaee
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, University of California San Francisco, San Francisco, USA
| | - Anthony Obeid
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | | | - Francis Char DeCroos
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Omesh P Gupta
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Jason Hsu
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - James F Vander
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Marc J Spirn
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Carl D Regillo
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Chen H, Wang H, An J, Shang Q, Ma J. Inhibitory Effects of Plumbagin on Retinal Pigment Epithelial Cell Epithelial-Mesenchymal Transition In Vitro and In Vivo. Med Sci Monit 2018. [PMID: 29532788 PMCID: PMC5861765 DOI: 10.12659/msm.906265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the effects of plumbagin (PLB) on epithelial-to-mesenchymal transition in retinal pigment epithelial (RPE) cells and in proliferative vitreoretinopathy (PVR) rabbit models. Material/Methods Rabbit RPE cells were exposed to various concentrations (0, 5, 15, and 25 μM) of PLB. Motility, migration, and invasion of PLB-treated cells were determined in vitro using Transwell chamber assays and scratch wound assays. The contractile ability was evaluated by cell contraction assay. Expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT) markers were assessed by western blotting. Furthermore, PLB was injected in rabbit eyes along with RPE cells after gas compression of the vitreous. The presence of PVR was determined by indirect ophthalmoscopy on days 1, 7, 14, and 21 after injection. Also, optical coherence tomography (OCT), ultrasound images, electroretinograms (ERG), and histopathology were used to assess efficacy and toxicity. Results PLB significantly inhibited the migration and invasion of RPE cells. The agent also markedly reduced cell contractive ability. Furthermore, PLB treatment resulted in the decreased expression of MMP-1, MMP2, α-SMA, and the protection of ZO-1. In addition, the PLB-treated eyes showed lower PVR grades than the untreated eyes in rabbit models. PLB exhibited a wide safety margin, indicating no evidence of causing retinal toxicity. Conclusions PLB effectively inhibited the EMT of rabbit RPE cells in vitro and in the experimental PVR models. The results open new avenues for the use of PLB in prevention and treatment of PVR.
Collapse
Affiliation(s)
- Haiting Chen
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Huifang Wang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jianbin An
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Qingli Shang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jingxue Ma
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
20
|
Chen H, Wang H, An J, Shang Q, Ma J. Plumbagin induces RPE cell cycle arrest and apoptosis via p38 MARK and PI3K/AKT/mTOR signaling pathways in PVR. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018. [PMID: 29534723 PMCID: PMC5851073 DOI: 10.1186/s12906-018-2155-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background This study aimed to explore the effects of plumbagin (PLB) on ARPE-19 cells and underlying mechanism. Methods Cultured ARPE-19 cells were treated with various concentrations (0, 5, 15, and 25 μM) of PLB for 24 h or with 15 μM PLB for 12, 24 and 48 h. Then cell viability was evaluated by MTT assay and DAPI staining, while apoptosis and cell cycle progression of ARPE cells were assessed by flow cytometric analysis. Furthermore, the level of main regulatory proteins was examinated by Western boltting and the expression of relative mRNA was tested by Real-Time PCR. Results PLB exhibited potent inducing effects on cell cycle arrest at G2/M phase and apoptosis of ARPE cells via the modulation of Bcl-2 family regulators in a concentration- and time-dependent manner. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways contributing to the anti-proliferative activities in ARPE cells. Conclusions This is the first report to show that PLB could inhibit the proliferation of RPE cells through down-regulation of modulatory signaling pathways. The results open new avenues for the use of PLB in prevention and treatment of proliferative vitreoretinopathy.
Collapse
|
21
|
Wei Q, Liu Q, Ren C, Liu J, Cai W, Zhu M, Jin H, He M, Yu J. Effects of bradykinin on TGF‑β1‑induced epithelial‑mesenchymal transition in ARPE‑19 cells. Mol Med Rep 2018; 17:5878-5886. [PMID: 29436636 PMCID: PMC5866033 DOI: 10.3892/mmr.2018.8556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the effects of bradykinin (BK) on an epithelial-mesenchymal transition (EMT) model in retinal pigment epithelium (RPE) cells through exposure to transforming growth factor‑β1 (TGF‑β1). The aim was to improve the effect of BK on proliferative vitreoretinopathy (PVR) progression, and to find a novel method of clinical prevention and treatment for PVR. The morphology of ARPE‑19 cells was observed using an inverted phase‑contrast microscope. A Cell Counting Kit‑8 was used to assess the effects of TGF‑β1 on the proliferation of ARPE‑19 cells. Western blotting and immunofluorescence were used to detect the expression levels of the epithelial marker E‑cadherin, mesenchymal markers α‑smooth muscle actin (SMA) and vimentin, and phosphorylated (p) mothers against decapentaplegic homolog (Smad)3 and Smad7 of the TGF/Smad signaling pathway. Wound healing tests and Transwell assays were performed to detect cell migration ability. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis was performed to detect the expression levels of pSmad3 and Smad7 in the TGF/Smad signaling pathway. The results revealed that the addition of 10 ng/ml TGF‑β1 resulted in the expression of factors associated with EMT in ARPE‑19 cells. BK decreased the expression levels of the mesenchymal markers α‑SMA and vimentin, and increased the expression of the epithelial marker E‑cadherin. BK decreased cell migration in TGF‑β1‑induced EMT. These effects were reversed by HOE‑140, a specific BK 2 receptor antagonist. BK significantly downregulated the expression of pSmad3 and upregulated the expression of Smad7 in TGF‑β1‑treated ARPE‑19 cells, and the protective alterations produced by BK were inhibited by HOE‑140. In conclusion, 10 ng/ml TGF‑β1 resulted in EMT in ARPE‑19 cells and BK served a negative role in TGF‑β1‑induced EMT. BK had effects in TGF‑β1‑induced EMT by upregulating the expression of Smad7 and downregulating the expression of pSmad3 in TGF‑β/Smad signaling pathway, indicating that BK may be a novel and effective therapy for PVR.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Qingyu Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Junling Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Mengmei He
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
22
|
Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology. J Mol Med (Berl) 2017; 95:535-552. [PMID: 28132078 DOI: 10.1007/s00109-017-1506-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1, was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser photocoagulation triggering choroidal neovascularization (CNV) or bright light exposure leading to morphological damage. αCT1 was delivered via eye drops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light damage significantly disrupted RPE cell morphology as determined by ZO-1 and occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology. KEY MESSAGE The connexin43 mimetic αCT1 accumulates in the mouse retinal pigment epithelium following topical delivery via eye drops. αCT1 eye drops prevented RPE-cell barrier dysfunction in two mouse models. αCT1 stabilizes intercellular tight junctions. Stabilization of cellular junctions via αCT1 may serve as a novel therapeutic approach for both wet and dry age-related macular degeneration.
Collapse
|
23
|
Farnoodian M, Halbach C, Slinger C, Pattnaik BR, Sorenson CM, Sheibani N. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression. Am J Physiol Cell Physiol 2016; 311:C418-36. [PMID: 27440660 DOI: 10.1152/ajpcell.00001.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022]
Abstract
Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of β-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Caroline Halbach
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Cassidy Slinger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bikash R Pattnaik
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
24
|
Small Interfering RNA Targeted to ASPP2 Promotes Progression of Experimental Proliferative Vitreoretinopathy. Mediators Inflamm 2016; 2016:7920631. [PMID: 27378826 PMCID: PMC4917715 DOI: 10.1155/2016/7920631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) is vital in proliferative vitreoretinopathy (PVR) development. Apoptosis-stimulating proteins of p53 (ASPP2) have recently been reported to participate in EMT. However, the role of ASPP2 in PVR pathogenesis has not been identified. Methods. Immunohistochemistry was used to investigate the expression of ASPP2 in epiretinal membranes of PVR patients. ARPE-19 cells were transfected with ASPP2-siRNA, followed with measurement of cell cytotoxicity, proliferation, and migration ability. EMT markers and related inflammatory and fibrosis cytokines were measured by western blot or flow cytometry. Additionally, PVR rat models were induced by intravitreal injection of ARPE-19 cells transfected with ASPP2-siRNA and evaluated accordingly. Results. Immunofluorescence analysis revealed less intense expression of ASPP2 in PVR membranes. ASPP2 knockdown facilitated the proliferation and migration of RPE cells and enhanced the expression of mesenchymal markers such as alpha smooth muscle actin, fibronectin, and ZEB1. Meanwhile, ASPP2-siRNA increased EMT-related and inflammatory cytokines, including TGF-β, CTGF, VEGF, TNF-α, and interleukins. PVR severities were more pronounced in the rat models with ASPP2-siRNA treatment. Conclusions. ASPP2 knockdown promoted EMT of ARPE-19 cells in vitro and exacerbated the progression of experimental PVR in vivo, possibly via inflammatory and fibrosis cytokines.
Collapse
|
25
|
Al-Hussaini H, Kilarkaje N, Shahabi G, Al-Mulla F. Proliferation and Migration of Peripheral Retinal Pigment Epithelial Cells Are Associated with the Upregulation of Wingless-Related Integration and Bone Morphogenetic Protein Signaling in Dark Agouti Rats. Med Princ Pract 2016; 25:408-16. [PMID: 27165129 PMCID: PMC5588433 DOI: 10.1159/000446480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the possible migration of proliferating peripheral retinal pigment epithelial (RPE) cells and their association with differential gene expressions. MATERIALS AND METHODS The RPE layer was obtained from the inner aspect of the eyeball of dark agouti rats (12-13 weeks old) and was mounted on glass slides. The peripheral RPE cell proliferation was evaluated using bromodeoxyuridine immunohistochemistry (n = 10). The cell migration was examined using the Dil tracer technique (n = 40) at the end of weeks 6, 10, 14 and 18. Affymetrix microarray analysis was used to investigate differential gene expressions in peripheral and central RPE cells, which was authenticated by RT-PCR using 4 RPE-specific genes (n = 10). RESULTS In this study, peripheral RPE cells divided and appeared in clusters, but equatorial and central RPE cells rarely divided. The peripheral RPE cells migrated to the central RPE region in a time-dependent manner up to the end of week 14, but not later. The microarray analysis showed the expression of 9,645 out of a total of 35,220 genes studied. Among the 9,645 genes, 573 were differentially expressed (438 were upregulated and 135 were downregulated) in peripheral RPE cells as compared to central RPE cells. Of these 573 genes, 56 were associated with signaling pathways related to the regulation of cell proliferation, including Pax6, TGFβ, BMP and Wnt, and 404 were associated with pathways of cell migration. CONCLUSIONS In this study, peripheral RPE cells divided and migrated to the central region. This process was associated with differential gene expressions in these cells.
Collapse
Affiliation(s)
| | | | - Golnaz Shahabi
- Department of Institute of Ophthalmology, University College London, London, UK
| | - Fahad Al-Mulla
- Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
26
|
Zhou J, Jiang J, Wang S, Xia X. DKK1 inhibits proliferation and migration in human retinal pigment epithelial cells via the Wnt/β-catenin signaling pathway. Exp Ther Med 2016; 12:859-863. [PMID: 27446288 DOI: 10.3892/etm.2016.3422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/29/2016] [Indexed: 02/01/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells play important roles in diabetic retinopathy (DR). Dickkopf 1 (DKK1) has been reported to be important in the regulation of cell proliferation and migration. However, there are few previous studies regarding DKK1 in RPE cells. Therefore, in the present study, we investigated the effect of DKK1 on the proliferation and migration of human RPE cells, and the signaling mechanisms underlying these effects. The results showed that the overexpression of DKK1 significantly inhibited the proliferation and migration of ARPE-19 cells. In addition, overexpression of DKK1 markedly inhibited the expression of β-catenin and cyclin D1 in ARPE-19 cells. Collectively, the present findings suggest that the overexpression of DKK1 inhibited the proliferation and migration of RPE cells by suppressing the Wnt/β-catenin signaling pathway. Therefore, DKK1 are able to augment the growth of human RPE, and further studies are warranted to investigate the effects of DKK1 effects on DR.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuhong Wang
- Department of Ophthalmology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, Eriksson U, Kania G. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J 2016; 38:1413-1425. [DOI: 10.1093/eurheartj/ehw116] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
|
28
|
Tamiya S, Kaplan HJ. Role of epithelial–mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res 2016; 142:26-31. [DOI: 10.1016/j.exer.2015.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
|
29
|
Jusufbegovic D, Tamiya S, Kaplan HJ. Risk factors and prevention of proliferative vitreoretinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1090875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Tsukahara R, Umazume K, Yamakawa N, McDonald K, Kaplan HJ, Tamiya S. Dasatinib affects focal adhesion and myosin regulation to inhibit matrix contraction by Müller cells. Exp Eye Res 2015; 139:90-6. [PMID: 26240967 DOI: 10.1016/j.exer.2015.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/09/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
Epiretinal membrane (ERM) contraction is associated with a variety of ocular diseases that cause macular dysfunction. Trans-differentiated Müller cells have been identified in ERMs, and have been implicated to be involved in the contractile process. In this study, we tested the effect of dasatinib, an FDA-approved tyrosine kinase inhibitor, on matrix contraction caused by Müller cells, and examined molecular mechanism of action. Type I collagen matrix contraction assays were used to examine the effect of drugs on matrix contraction by trans-differentiated Müller cells. Fluophore-conjugated phalloidin was used for the detection of actin cytoskeleton, and Western-blot analyses were carried out to examine protein expression and phosphorylation status. Dasatinib inhibited collagen matrix contraction by trans-differentiated Müller cells that was associated with decreased cell spreading and reduction of actomyosin stress fibers. Concomitantly, dasatinib-treated Müller cells had reduced phosphorylation of Src family kinase, paxillin, as well as myosin II light chain. Specific inhibitors of Rho/ROCK and myosin II confirmed the critical role played by this pathway in Müller cell contraction. Our data demonstrate that dasatinib significantly reduced matrix contraction by Müller cells via inhibition of focal adhesion, as well as actomyosin contraction.
Collapse
Affiliation(s)
- Rintaro Tsukahara
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E. Muhammad Ali Blvd., Louisville, KY 40202, USA; Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Naoyuki Yamakawa
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Kevin McDonald
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E. Muhammad Ali Blvd., Louisville, KY 40202, USA
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, University of Louisville, 301 E. Muhammad Ali Blvd., Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA.
| |
Collapse
|