1
|
Liu Z, Ke S, Wan Y. miR-126: a bridge between cancer and exercise. Cancer Cell Int 2025; 25:145. [PMID: 40234897 PMCID: PMC11998190 DOI: 10.1186/s12935-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025] Open
Abstract
The microRNA miR-126 supports endothelial cells and blood vessel integrity. Recent research has shown that it also serves as a key link between exercise and cancer. This article delves into how exercise affects the expression of miR-126, impacting cardiovascular well-being and metabolic control. The article also examines the various contributions of miR-126 in cancer, acting as both a suppressor and an enhancer depending on the particular context. Regular aerobic exercises, including HIIT, consistently increase levels of miR-126, leading to enhanced angiogenesis, endothelial repair, and improved vascular function through mechanisms involving VEGF, HIF-1α, and EPC mobilization. Resistance training affects similar pathways, but does not cause a significant change in miR-126 levels.MiR-126 involves in cancer by suppressing tumor growth and controlling key pathways such as PI3K/Akt, ERK/MAPK, and EMT. Lower levels are associated with negative outcomes, later stages of the disease, and increased spread of different types of cancer like glioblastoma, CRC, ovarian, esophageal, gastric, and prostate cancer.The relationship between exercise and cancer suggests a possible therapeutic approach, where the regulation of miR-126 through exercise could help improve vascular function and slow tumor growth. Further studies should focus on understanding the specific molecular pathways through which miR-126 connects these areas, leading to potential interventions that utilize its regulatory network to promote cardiovascular well-being and enhance cancer treatment.
Collapse
Affiliation(s)
- Zhengqiong Liu
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China
| | - Shanbin Ke
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China
| | - Yuwen Wan
- College of Education, Jiangxi Institute of Applied Science and Technology, Nanchang, 330100, China.
| |
Collapse
|
2
|
Jia G, Lv D, Ni S. Circ_0061140 Potentiates Clear Cell Renal Cell Carcinoma Progression Via the MicroRNA-126-5p/ADAM9 Axis. Mol Biotechnol 2024; 66:3688-3699. [PMID: 38062234 DOI: 10.1007/s12033-023-00977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2024]
Abstract
Circular RNAs (circRNAs) function as new cancer biomarkers, but the role of circ_0061140 remains unknown in clear cell renal cell carcinoma (ccRCC). Therefore, we aimed to validate the functions of circ_0061140 in ccRCC and its potential as a prognostic biomarker. At first, circ_0061140 expression in ccRCC tissues and cells was detected, and circ_0061140 was upregulated in ccRCC tissues (p < 0.0001) and cells (p < 0.0001). Patients with high expression of circ_0061140 had a worse prognosis (p < 0.05). Then, siRNA against circ_0061140 was transfected into Caki-1 and UT14 cells to explore its roles in the biological functions of ccRCC cells, and suppressing roles of downregulated circ_0061140 were observed in the cell growth of Caki-1 and UT14 cells (p < 0.01). Next, circ_0061140 was found to be a sponge of miR-126-5p, and ADAM9 was determined to be a target of miR-126-5p. Finally, functional rescue experiments were conducted to observe their roles in ccRCC cell growth. It was suggested that suppressed miR-126-5p or overexpressed ADAM9 induced cell proliferation and restricted cell apoptosis in ccRCC cells based on si-circ_0061140 (p < 0.01). Altogether, this study highlights that circ_0061140 plays an oncogenic role in ccRCC through modulation of the miR-126-5p/ADAM9 axis.
Collapse
Affiliation(s)
- Guang Jia
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youyou Street, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Dan Lv
- Department of Anesthesia, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Shaobin Ni
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youyou Street, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China
| |
Collapse
|
3
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Abbas HA, Merza MS, Zabibah RS, Fadhil AA. The emerging role of microRNA-126 as a potential therapeutic target in cancer: a comprehensive review. Pathol Res Pract 2023; 248:154631. [PMID: 37393667 DOI: 10.1016/j.prp.2023.154631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MicroRNA-126 (miR-126) has become a key player in the biology of cancer, playing a variety of functions in carcinogenesis and cancer development. The diagnostic and prognostic potential of miR-126 in diverse cancer types is summarized in this thorough analysis, with an emphasis on its role in tumor angiogenesis, invasion, metastasis, cell proliferation, apoptosis, and treatment resistance. MiR-126 dysregulation is linked to a higher risk of developing cancer and a worse prognosis. Notably, miR-126 affects tumor vascularization and development by targeting vascular endothelial growth factor-A (VEGF-A). Through its impact on genes involved in cell adhesion and migration, it also plays a vital part in cancer cell invasion and metastasis. Additionally, miR-126 controls drug resistance, apoptosis, and cell proliferation, which affects cancer cell survival and treatment response. It may be possible to develop innovative therapeutic approaches to stop tumor angiogenesis, invasion, and metastasis, as well as combat drug resistance by focusing on miR-126 or its downstream effectors. The versatility of miR-126's functions highlights the role that it plays in cancer biology. To understand the processes behind miR-126 dysregulation, pinpoint precise targets, and create efficient therapies, more investigation is required. Utilizing miR-126's therapeutic potential might have a significant influence on cancer treatment plans and patient outcomes.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-maarif University College, Al Anbar, Iraq
| | | | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon 51001, Iraq
| | | | - Ali A Fadhil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
5
|
Liu Y, Zhang H, Fang Y, Tang D, Luo Z. Non-coding RNAs in renal cell carcinoma: Implications for drug resistance. Biomed Pharmacother 2023; 164:115001. [PMID: 37315433 DOI: 10.1016/j.biopha.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a malignant tumor of the urinary system. Individuals with early-stage RCC could be cured by surgical treatment, but a considerable number of cases of advanced RCC progress to drug resistance. Recently, numerous reports have demonstrated that a variety of non-coding RNAs (ncRNAs) contribute to tumor occurrence and development. ncRNAs can act as oncogenic or tumor suppressor genes to regulate proliferation, migration, drug resistance and other processes in RCC cells through a variety of signaling pathways. Considering the lack of treatment options for advanced RCC after drug resistance, ncRNAs may be a good choice as biomarkers of drug resistance in RCC and targets to overcome drug resistance. In this review, we discussed the effects of ncRNAs on drug resistance in RCC and the great potential of ncRNAs as a biomarker of or a new therapeutic method in RCC.
Collapse
Affiliation(s)
- Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Dongshan Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhigang Luo
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
6
|
Exosomal MicroRNA Levels Associated with Immune Checkpoint Inhibitor Therapy in Clear Cell Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11030801. [PMID: 36979782 PMCID: PMC10045368 DOI: 10.3390/biomedicines11030801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) has shown high efficiency in clear cell renal cell carcinoma (ccRCC) treatment. However, the response to therapy among patients varies greatly. Modern studies demonstrate the high potential of exosomal miRNAs as diagnostic and prognostic markers in oncopathology. This study aimed to evaluate exosomal miRNA expression profiles of miRNAs-144, -146a, -149, -126, and -155 in patients with clear cell renal cell carcinoma treated with immune checkpoint inhibitors. The study included 35 patients whose venous blood samples were taken before and after ICI therapy. Expression analysis was performed using real-time quantitative PCR. It was demonstrated that the level of microRNA-146a increased after therapy (median(IQR) 12.92(4.06–18.90)) compared with the level before it (median(IQR) 7.15(1.90–10.50); p-value = 0.006). On the contrary, microRNA-126 was reduced after therapy with immune checkpoint inhibitors (median(IQR) 0.85(0.55–1.03) vs. 0.48(0.15–0.68) before and after therapy, respectively; p-value = 0.0001). In addition, miRNA-146a expression was shown to be reduced in patients with a higher grade of immune-related adverse events (p-value = 0.020). The AUC value for the miRNA-146a and miRNA-126 combination was 0.752 (95% CI 0.585–0.918), with the sensitivity at 64.3% and the specificity at 78.9%. Thus, while it can be assumed that miRNA-146a and miRNA-126 can be used as predictors for ICI therapy effectiveness, additional in-depth studies are required.
Collapse
|
7
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Cheng G, Li M, Ma X, Nan F, Zhang L, Yan Z, Li H, Zhang G, Han Y, Xie L, Guo X. Systematic Analysis of microRNA Biomarkers for Diagnosis, Prognosis, and Therapy in Patients With Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:543817. [PMID: 33344224 PMCID: PMC7746831 DOI: 10.3389/fonc.2020.543817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The ever-increasing morbidity and mortality of clear cell renal cell carcinoma (ccRCC) urgently demands updated biomarkers. MicroRNAs (miRNAs) are involved in diverse biological processes such as cell proliferation, differentiation, apoptosis by regulating their target genes' expression. In kidney cancers, miRNAs have been reported to be involved in tumorigenesis and to be the diagnostic, prognostic, and therapeutic response biomarkers. Here, we performed a systematic analysis for ccRCC-related miRNAs as biomarkers by searching keywords in the NCBI PubMed database and found 118 miRNAs as diagnostic biomarkers, 28 miRNAs as prognostic biomarkers, and 80 miRNAs as therapeutic biomarkers in ccRCC. miRNA-21, miRNA-155, miRNA-141, miRNA-126, and miRNA-221, as significantly differentially expressed miRNAs between cancer and normal tissues, play extensive roles in the cell proliferation, differentiation, apoptosis of ccRCC. GO and KEGG enrichment analysis of these miRNAs' target genes through Metascape showed these target genes are enriched in Protein Domain Specific Binding (GO:0019904). In this paper, we identified highly specific miRNAs in the pathogenesis of ccRCC and explored their potential applications for diagnosis, prognosis, and treatment of ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Longxiang Xie
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
9
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Abstract
The ADAMs family belongs to the transmembrane protein superfamily of zinc-dependent metalloproteases, which consists of multiple domains. These domains have independent but complementary functions that enable them to participate in multiple biological processes. Among them, ADAM9 can not only participate in the degradation of extracellular matrix as a metalloprotease, but also mediate tumor cell adhesion through its deintegrin domain, which is closely related to tumor invasion and metastasis. It is widely expressed in a variety of tumor cells and can affect the proliferation, invasion and metastasis of related cancer cells. We provide our views on current progress, its increasing importance as a strategic treatment goal, and our vision for the future of ADAM9.
Collapse
Affiliation(s)
- M A Haoyuan
- Department of Clinical Medicine, China Medical University , Liaoning, Shenyang, China
| | - L I Yanshu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Liaoning, Shenyang, China
| |
Collapse
|
11
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
12
|
Bai C, Nie N, Li Y, Zhang C, Xu M, Li Z. Long noncoding RNA Mirt2 prohibits lipopolysaccharide-evoked HK-2 cell injury via modulation of microRNA-126. Biofactors 2020; 46:465-474. [PMID: 31889348 DOI: 10.1002/biof.1602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Long noncoding RNA myocardial infarction-associated transcript 2 (lncRNA Mirt2) is a burgeoning lncRNA, its anti-inflammatory capacity has been testified. Nonetheless, the functions of Mirt2 in immunoglobulin A nephropathy are unexplored. We tried to impart the influences of Mirt2 in lipopolysaccharide (LPS)-evoked HK-2 cells damage. HK-2 cells were manipulated with 10 ng/ml LPS, next cell viability, apoptosis, reactive oxygen species (ROS) generation, pro-inflammatory factors and Mirt2 expression were evaluated. After pc-Mirt2 vector transfection, the aforementioned trials were performed. Meanwhile, real-time quantitative polymerase chain reaction (PCR) experiment was used to detect miR-126 expression. Subsequently, functions of miR-126 in LPS-treated HK-2 cells were further delved after transfection with miR-126 mimic. Western blot was used to evaluate NF-κB pathway. The data showed that LPS invoked HK-2 cells inflammatory damage via the suppression of cell viability and the acceleration of apoptosis, ROS level, and IL-1β and IL-6 secretion. LPS inhibited Mirt2 expression and overexpression of Mirt2 mitigated LPS-caused inflammatory damage in HK-2 cells. Additionally, overexpression of Mirt2 repressed miR-126 expression in LPS-stimulated cells. Meanwhile the anti-inflammatory effect of Mirt2 was inverted by upregulating miR-126 expression. Besides, overexpressed Mirt2 retarded LPS-activated NF-κB pathway via repressing miR-126. The research certified the anti-inflammatory impacts of Mirt2 on LPS-impaired HK-2 cells.
Collapse
Affiliation(s)
- Cui Bai
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nana Nie
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yushan Li
- Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chong Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Min Xu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zipu Li
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| |
Collapse
|
13
|
Trilla-Fuertes L, Miranda N, Castellano D, López-Vacas R, Farfán Tello CA, de Velasco G, Villacampa F, López-Camacho E, Prado-Vázquez G, Zapater-Moros A, Espinosa E, Fresno Vara JÁ, Pinto Á, Gámez-Pozo A. miRNA profiling in renal carcinoma suggest the existence of a group of pro-angionenic tumors in localized clear cell renal carcinoma. PLoS One 2020; 15:e0229075. [PMID: 32109249 PMCID: PMC7048408 DOI: 10.1371/journal.pone.0229075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma comprises a variety of entities, the most common being the clear-cell, papillary and chromophobe subtypes. These subtypes are related to different clinical evolution; however, most therapies have been developed for clear-cell carcinoma and there is not a specific treatment based on different subtypes. In this study, one hundred and sixty-four paraffin samples from primary nephrectomies for localized tumors were analyzed. MiRNAs were isolated and measured by microRNA arrays. Significance Analysis of Microarrays and Consensus Cluster algorithm were used to characterize different renal subtypes. The analyses showed that chromophobe renal tumors are a homogeneous group characterized by an overexpression of miR 1229, miR 10a, miR 182, miR 1208, miR 222, miR 221, miR 891b, miR 629-5p and miR 221-5p. On the other hand, clear cell renal carcinomas presented two different groups inside this histological subtype, with differences in miRNAs that regulate focal adhesion, transcription, apoptosis and angiogenesis processes. Specifically, one of the defined groups had an overexpression of proangiogenic microRNAs miR185, miR126 and miR130a. In conclusion, differences in miRNA expression profiles between histological renal subtypes were established. In addition, clear cell renal carcinomas had different expression of proangiogenic miRNAs. With the emergence of antiangiogenic drugs, these differences could be used as therapeutic targets in the future or as a selection method for tailoring personalized treatments.
Collapse
Affiliation(s)
| | - Natalia Miranda
- Urology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Daniel Castellano
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology and Pathology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Carlos A Farfán Tello
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Clínica Internacional S.A., Lima, Perú
| | | | | | | | - Guillermo Prado-Vázquez
- Biomedica Molecular Medicine SL, Madrid, Spain.,Molecular Oncology and Pathology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Andrea Zapater-Moros
- Biomedica Molecular Medicine SL, Madrid, Spain.,Molecular Oncology and Pathology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Enrique Espinosa
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Biomedica Molecular Medicine SL, Madrid, Spain.,Molecular Oncology and Pathology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Álvaro Pinto
- Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angelo Gámez-Pozo
- Biomedica Molecular Medicine SL, Madrid, Spain.,Molecular Oncology and Pathology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
14
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
15
|
Pan X, He T, Peng X, Li H, Zhang F, Lai Y. miR-638 acts as an oncogene and predicts poor prognosis in renal cell carcinoma. Am J Transl Res 2020; 12:3645-3659. [PMID: 32774724 PMCID: PMC7407746 DOI: pmid/32774724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the function and prognostic value of miR-638 in renal cell carcinoma (RCC). METHODS Expression of miR-638 in RCC tissues and corresponding noncancerous tissues were examined by reverse transcription quantitative polymerase chain reaction (RT-qPCR). To explore the effects of miR-638 on cell migration, invasion, viability, and apoptosis of RCC cells, wound scratch, transwell, MTT, CCK-8, and flow cytometry assays were performed. Kaplan-Meier and Cox regression analyses were used to evaluate the relationship between miR-638 expression and prognosis of RCC patients. Potential target genes of miR-638 were predicted and validated via multiple bioinformatics analyses. RESULTS miR-638 was upregulated in RCC tissues when compared with corresponding noncancerous tissues (P < 0.05). Upregulation of miR-638 expression by transfection with a synthetic miR-638 mimic promoted cell migration, invasion, and viability and suppressed cell apoptosis. Moreover, Kaplan-Meier analysis revealed that upregulation of miR-638 associated with shorter overall survival (OS; P = 0.001). Cox univariate and multivariate regression analysis suggested that miR-638 expression is an independent predictive factor for the prognosis of RCC patients (P = 0.004). KCNQ1, DNAJC6, and PNP were identified as potential target genes of miR-638. CONCLUSIONS The results of this study demonstrated that miR-638 functions as an oncogene in RCC and has the potential to be a prognostic biomarker for RCC.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, Jiangsu, P. R. China
| | - Tao He
- Department of Urology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, P. R. China
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Fangting Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| |
Collapse
|
16
|
D'Aniello C, Berretta M, Cavaliere C, Rossetti S, Facchini BA, Iovane G, Mollo G, Capasso M, Pepa CD, Pesce L, D'Errico D, Buonerba C, Di Lorenzo G, Pisconti S, De Vita F, Facchini G. Biomarkers of Prognosis and Efficacy of Anti-angiogenic Therapy in Metastatic Clear Cell Renal Cancer. Front Oncol 2019; 9:1400. [PMID: 31921657 PMCID: PMC6917607 DOI: 10.3389/fonc.2019.01400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the prognosis of metastatic renal cell carcinoma (mRCC) has remarkably improved following the advent of the "targeted therapy" era. The expanding knowledge on the prominent role played by angiogenesis in RCC pathogenesis has led to approval of multiple anti-angiogenic agents such as sunitinib, pazopanib, axitinib, cabozantinib, sorafenib, and bevacizumab. These agents can induce radiological responses and delay cancer progression for months or years before onset of resistance, with a clinically meaningful activity. The need for markers of prognosis and efficacy of anti-angiogenic agents has become more compelling as novel systemic immunotherapy agents have also been approved in RCC and can be administered as an alternative to angiogenesis inhibitors. Anti PD-1 monoclonal antibody nivolumab has been approved in the second-line setting after tyrosine kinase inhibitors failure, while combination of nivolumab plus anti CTLA-4 monoclonal antibody ipilimumab has been approved as first-line therapy of RCC patients at intermediate or poor prognosis. In this review article, biomarkers of prognosis and efficacy of antiangiogenic therapies are summarized with a focus on those that have the potential to affect treatment decision-making in RCC. Biomarkers predictive of toxicity of anti-angiogenic agents have also been discussed.
Collapse
Affiliation(s)
- Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI “Ospedali Monaldi-Cotugno-CTO,”Naples, Italy
| | - Massimiliano Berretta
- Division of Medical Oncology, Istituto Nazionale Tumori, IRCCS CRO Aviano (PN), Milan, Italy
| | - Carla Cavaliere
- UOC of Medical Oncology, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Sabrina Rossetti
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Bianca Arianna Facchini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Gelsomina Iovane
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Giovanna Mollo
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Mariagrazia Capasso
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | | | - Laura Pesce
- Oncology Unit, San Luca Hospital, Vallo Della Lucania, Italy
| | - Davide D'Errico
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| | - Carlo Buonerba
- CRTR Rare Tumors Reference Center, AOU Federico II, Naples, Italy
- Environment & Health Operational Unit, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Giuseppe Di Lorenzo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
- Department of Medicine, University of Molise, Campobasso, Italy
| | - Salvatore Pisconti
- Department of Onco-Hematology, Medical Oncology, S.G. Moscati Hospital, Taranto, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Gaetano Facchini
- Departmental Unit of Experimental Uro-Andrologic Clinical Oncology, Istituto Nazionale Tumori Fondazione G. Pascale—IRCCS, Naples, Italy
| |
Collapse
|
17
|
Saleeb RM, Farag M, Ding Q, Downes M, Bjarnason G, Brimo F, Plant P, Rotondo F, Lichner Z, Finelli A, Yousef GM. Integrated Molecular Analysis of Papillary Renal Cell Carcinoma and Precursor Lesions Unfolds Evolutionary Process from Kidney Progenitor-Like Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2046-2060. [DOI: 10.1016/j.ajpath.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/09/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
|
18
|
The Prognostic Significance of Protein Expression of CASZ1 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2019; 2019:1342161. [PMID: 31481981 PMCID: PMC6701416 DOI: 10.1155/2019/1342161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Backgrounds Clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype of renal cell carcinoma (RCC) and shows a relatively poor prognosis among RCCs. Castor zinc finger 1 (CASZ1) is a transcription factor, prominently known for its tumor suppression role in neuroblastoma and other cancers. However, there has been no research about the prognostic significance of CASZ1 in ccRCC. In this study, we investigated CASZ1 expression in ccRCC and analyzed its prognostic implications. Methods A total of 896 ccRCC patients, who underwent surgical resection from 1995 to 2008, were included. We prepared tissue microarray blocks, evaluated CASZ1 nuclear expression by immunohistochemistry, and classified the cases into low or high expression categories. Results A low expression of CASZ1 was observed in 320 cases (35.7%) and was significantly associated with large tumor size, high World Health Organization/International Society of Urological Pathology (WHO/ISUP) grade, and high T category and M category. In survival analysis, a low expression of CASZ1 was significantly correlated with unfavorable progression-free survival (PFS) (p < 0.001), overall survival (OS) (p < 0.001), and cancer-specific survival (CSS) (p < 0.001) and was an independent prognostic factor for PFS and CSS in multivariate analysis adjusted for tumor size, WHO/ISUP grade, T category, N category, and M category. Conclusions Our study is the first to show the prognostic significance of CASZ1 expression in ccRCC. Our results revealed that low expression of CASZ1 is associated with poor prognosis and may serve as a new prognostic indicator.
Collapse
|
19
|
Peng X, Pan X, Liu K, Zhang C, Zhao L, Li H, Guan X, Xu W, Xu J, Zhang F, Lai Y. miR-142-3p as a novel biomarker for predicting poor prognosis in renal cell carcinoma patients after surgery. Int J Biol Markers 2019; 34:302-308. [PMID: 31378131 DOI: 10.1177/1724600819866456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND miR-142-3p has proved to be involved in tumorigenesis and the development of renal cell carcinoma. The present study aimed to explore the prognostic value of miR-142-3p. METHODS Total RNA was extracted from renal cell carcinoma specimens and the expression level of miR-142-3p was measured. Pearson Chi-square test, Kaplan-Meier analysis, as well as univariate and multivariate regression analysis were performed to determine the correlation between miR-142-3p and the prognosis of renal cell carcinoma patients. Receiver operating characteristic curves were constructed to evaluate the predictive efficiency of miR-142-3p for the prognosis of renal cell carcinoma patients. Data from The Cancer Genome Atlas (TCGA) were utilized to validate our findings. RESULTS Our results demonstrated that upregulation of miR-142-3p was correlated with shorter overall survival (P=0.002) and was, in the meantime, an independent prognostic factor for renal cell carcinoma patients (P=0.002). The receiver operating characteristic curve combining miR-142-3p expression with tumor stage showed an area under the curve of 0.633 (95% confidence interval 0.563, 0.702). The result of TCGA data was consistent with our findings. CONCLUSIONS Our results suggest miR-142-3p expression is correlated with poor prognosis of renal cell carcinoma patients and may serve as a prognostic biomarker in the future.
Collapse
Affiliation(s)
- Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
- Shantou University Medical College, Guangdong Shantou, P.R. China
| | - Xiang Pan
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Xin Guan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Weijie Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Jinling Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Fangting Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
20
|
Heinzelmann J, Arndt M, Pleyers R, Fehlmann T, Hoelters S, Zeuschner P, Vogt A, Pryalukhin A, Schaeffeler E, Bohle RM, Gajda M, Janssen M, Stoeckle M, Junker K. 4-miRNA Score Predicts the Individual Metastatic Risk of Renal Cell Carcinoma Patients. Ann Surg Oncol 2019; 26:3765-3773. [DOI: 10.1245/s10434-019-07578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 12/24/2022]
|
21
|
Abstract
Clear cell renal cell carcinoma (ccRCC) represents a prevalent urological malignancy among men worldwide. MicroRNAs (miRNAs) are involved in the progression of diverse human cancers. The aim of this study was to explore the expression profile and prognostic value of microRNA-3133 (miR-3133) in ccRCC.The expression of miR-3133 in ccRCC tissues and non-cancerous tissues was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Chi-square test was applied to evaluate the relationship between miR-3133 expression and clinical characteristics. Overall survival curve was constructed by Kaplan-Meier with log-rank test. The prognostic value of miR-3133 in ccRCC was estimated by Cox regression analysis.MiR-3133 was downregulated in ccRCC samples compared to the matched noncancerous samples (P <.01). Moreover, its expression level was correlated with T stage, vascular invasion and lymph node metastasis (all P <.05). Survival curves demonstrated that patients with low level of miR-3133 underwent lower overall survival than those with high level (log rank test, P = .002). MiR-3133 might be an independent prognostic biomarker in ccRCC patients (HR = 2.802, 95% CI = 1.391-5.646, P = .004).MiR-3133 is downregulated, and plays inhibitory roles in aggressive progression of ccRCC. MiR-3133 may be an independent prognostic biomarker for ccRCC.
Collapse
|
22
|
Miao LJ, Yan S, Zhuang QF, Mao QY, Xue D, He XZ, Chen JP. miR-106b promotes proliferation and invasion by targeting Capicua through MAPK signaling in renal carcinoma cancer. Onco Targets Ther 2019; 12:3595-3607. [PMID: 31190862 PMCID: PMC6525582 DOI: 10.2147/ott.s184674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background: miR-106b has been reported to play a vital role in pathogenesis of some types of cancer, whilst the role of miR-106b in renal carcinoma cancer (RCC) remains unknown. Purpose: The objective of this study was to identify the mechanism of miR-106b regulating the progression of renal carcinoma. Method: The expression of miR-106b was analyzed in RCC cell lines, RCC and adjacent normal renal tissues through qRT-PCR assays. Target mRNA of miR-106b was predicted with databases and verified by luciferase reporter assays. And the effects of miR-106b or targeted mRNA on cell proliferation, invasion, the process of epithelial-mesenchymal transitions (EMTs) were assessed in vitrothrough CCK-8, transwell cell invasion assays, qRT-PCR and Western blotting assays respectively. In addition, the effects of miR-106b on the growth of xenografts mice were analyzedin vivo. Results: The results demonstrated that miR-106b was significantly increased both in RCC tissues and cell lines. Luciferase reporter assays revealed that miR-106b inhibited Capicua expression by targeting its 3'-UTR sequence. And miR-106b promoted cell proliferation, invasion, EMT progression in RCC cellin vitro, as well as promoted the tumor growth of 786-O cells derived xenografts mice. Additionally, loss of Capicua promoted the activation of MAPK signaling pathway. Conclusion: The study suggested that miR-106b regulated RCC progression through MAPK signaling pathway partly by targeting Capicua, which might provide valuable evidence for therapeutic target development of RCC.
Collapse
Affiliation(s)
- Lu-Jie Miao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Shu Yan
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Qing-Yan Mao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Jian-Ping Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| |
Collapse
|
23
|
Dudvarski Stanković N, Bicker F, Keller S, Jones DT, Harter PN, Kienzle A, Gillmann C, Arnold P, Golebiewska A, Keunen O, Giese A, von Deimling A, Bäuerle T, Niclou SP, Mittelbronn M, Ye W, Pfister SM, Schmidt MH. EGFL7 enhances surface expression of integrin α 5β 1 to promote angiogenesis in malignant brain tumors. EMBO Mol Med 2019; 10:emmm.201708420. [PMID: 30065025 PMCID: PMC6127886 DOI: 10.15252/emmm.201708420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a typically lethal type of brain tumor with a median survival of 15 months postdiagnosis. This negative prognosis prompted the exploration of alternative treatment options. In particular, the reliance of GBM on angiogenesis triggered the development of anti-VEGF (vascular endothelial growth factor) blocking antibodies such as bevacizumab. Although its application in human GBM only increased progression-free periods but did not improve overall survival, physicians and researchers still utilize this treatment option due to the lack of adequate alternatives. In an attempt to improve the efficacy of anti-VEGF treatment, we explored the role of the egfl7 gene in malignant glioma. We found that the encoded extracellular matrix protein epidermal growth factor-like protein 7 (EGFL7) was secreted by glioma blood vessels but not glioma cells themselves, while no major role could be assigned to the parasitic miRNAs miR-126/126*. EGFL7 expression promoted glioma growth in experimental glioma models in vivo and stimulated tumor vascularization. Mechanistically, this was mediated by an upregulation of integrin α5β1 on the cellular surface of endothelial cells, which enhanced fibronectin-induced angiogenic sprouting. Glioma blood vessels that formed in vivo were more mature as determined by pericyte and smooth muscle cell coverage. Furthermore, these vessels were less leaky as measured by magnetic resonance imaging of extravasating contrast agent. EGFL7-inhibition using a specific blocking antibody reduced the vascularization of experimental gliomas and increased the life span of treated animals, in particular in combination with anti-VEGF and the chemotherapeutic agent temozolomide. Data allow for the conclusion that this combinatorial regimen may serve as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Nevenka Dudvarski Stanković
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bicker
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Keller
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Arne Kienzle
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarissa Gillmann
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | | | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Alf Giese
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas von Deimling
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Department of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Michel Mittelbronn
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Laboratoire National de Santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Weilan Ye
- Vascular Biology Program, Molecular Oncology Division, Genentech, San Francisco, CA, USA
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mirko H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
25
|
Carlsson J, Christiansen J, Davidsson S, Giunchi F, Fiorentino M, Sundqvist P. The potential role of miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell carcinoma. Oncol Lett 2019; 17:4566-4574. [PMID: 30988818 PMCID: PMC6447904 DOI: 10.3892/ol.2019.10142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most commonly diagnosed renal tumor, consisting of ~3% of all malignancies worldwide. The prognosis of RCC can vary widely, and detecting patients at risk of recurrence at an early stage of disease may improve patient outcome. The factors presently used in a clinical setting cannot reliably predict the natural history of the disease. Therefore, there is a requirement to identify novel biomarkers that can aid in predicting patient outcome. Previous studies have indicated that microRNAs (miRNAs/miRs) are potential candidates as prognostic biomarkers for patients suffering from RCC. Consequently, the aims of the present study were to validate the potential of 3 of these miRNAs to predict the prognosis of patients with RCC, and to investigate the stability of endogenous control genes for miRNA studies in RCC tissues. The expression of 7 endogenous controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in formalin-fixed paraffin-embedded tumor and benign tissues from patients suffering from clear cell RCC (ccRCC). The analyses identified RNU48 and U47 as the most stable endogenous controls. The expression of miR-126, miR-21 and miR-10b was analyzed using RT-qPCR in renal tissues from 116 patients diagnosed with ccRCC. All three investigated miRNAs were differentially expressed between malignant and benign tissues. miR-126 and miR-10b were also differentially expressed between grades and stages of ccRCC. In a univariate, but not in a multivariate model, low expression of miR-126 was associated with shorter time to recurrence of the disease. The results of the present study indicate that of the 3 miRNAs investigated, the expression of miR-126 has the strongest potential as a prognostic biomarker for patients suffering from ccRCC.
Collapse
Affiliation(s)
- Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Jesper Christiansen
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Francesca Giunchi
- Department of Pathology, F. Addari Institute of Oncology, S. Orsola Hospital, I-401 38 Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Pathology, F. Addari Institute of Oncology, S. Orsola Hospital, I-401 38 Bologna, Italy
| | - Pernilla Sundqvist
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| |
Collapse
|
26
|
Zhao H, Kuang L, Feng X, Zou Q, Wang L. A Novel Approach Based on a Weighted Interactive Network to Predict Associations of MiRNAs and Diseases. Int J Mol Sci 2018; 20:E110. [PMID: 30597923 PMCID: PMC6337518 DOI: 10.3390/ijms20010110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence progressively indicated that microRNAs (miRNAs) play a significant role in the pathogenesis of diseases through many experimental studies; therefore, developing powerful computational models to identify potential human miRNA⁻disease associations is vital for an understanding of the disease etiology and pathogenesis. In this paper, a weighted interactive network was firstly constructed by combining known miRNA⁻disease associations, as well as the integrated similarity between diseases and the integrated similarity between miRNAs. Then, a new computational method implementing the newly weighted interactive network was developed for discovering potential miRNA⁻disease associations (WINMDA) by integrating the T most similar neighbors and the shortest path algorithm. Simulation results show that WINMDA can achieve reliable area under the receiver operating characteristics (ROC) curve (AUC) results of 0.9183 ± 0.0007 in 5-fold cross-validation, 0.9200 ± 0.0004 in 10-fold cross-validation, 0.9243 in global leave-one-out cross-validation (LOOCV), and 0.8856 in local LOOCV. Furthermore, case studies of colon neoplasms, gastric neoplasms, and prostate neoplasms based on the Human microRNA Disease Database (HMDD) database were implemented, for which 94% (colon neoplasms), 96% (gastric neoplasms), and 96% (prostate neoplasms) of the top 50 predicting miRNAs were confirmed by recent experimental reports, which also demonstrates that WINMDA can effectively uncover potential miRNA⁻disease associations.
Collapse
Affiliation(s)
- Haochen Zhao
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China.
| | - Linai Kuang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410001, China.
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China.
| | - Xiang Feng
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410001, China.
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610000, China.
- School of Computer Science and Technology, Tianjin University, Tianjin 300000, China.
| | - Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410001, China.
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
27
|
Tsiakanikas P, Giaginis C, Kontos CK, Scorilas A. Clinical utility of microRNAs in renal cell carcinoma: current evidence and future perspectives. Expert Rev Mol Diagn 2018; 18:981-991. [DOI: 10.1080/14737159.2018.1539668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nustrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Rouigari M, Dehbashi M, Tabatabaeian H, Ghaedi K, Mohammadynejad P, Azadeh M. Evaluation of the Expression Level and Hormone Receptor Association of miR-126 in Breast Cancer. Indian J Clin Biochem 2018; 34:451-457. [PMID: 31686732 DOI: 10.1007/s12291-018-0766-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/09/2018] [Indexed: 01/22/2023]
Abstract
Breast cancer is a major cause of cancer-related death in women worldwide. miRNAs are new players of breast tumorigenesis, used as diagnostic and prognostic biomarkers. Among various miRNAs, miR-126 has been proposed to have a tumor suppressive role in HER2 positive cancer. However, to have a better understanding of its role, further validation is required. The aim of this study was evaluating miR-126 expression level in breast cancer tissues and investigating its potential association with HER2, estrogen and progesterone receptors. miR-126 expression level was measured in 108 specimens including 78 malignant and 30 normal samples using RT-qPCR. The outcome was statistically analyzed. In silico studies were performed to find the potential mechanism of action, through which miR-126 imposes its function. Down-regulation of miR-126 was observed in tumor samples, as compared to the matched normal tissues. Down-regulation of miR-126 was also associated significantly with the absence of estrogen receptor in malignant samples. No association between miR-126 expression and HER2 status was observed. Our in silico analyses showed the possible role of Crk, PI3K and Ras proto-oncogenes in breast cancer tumorigenesis. miR-126 is significantly down-regulated in breast cancer tissues. Statistically, it showed no correlation with HER2 positivity. However, the association between lower miR-126 and estrogen receptor negativity was observed.
Collapse
Affiliation(s)
- Maedeh Rouigari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Moein Dehbashi
- 2Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Hossein Tabatabaeian
- 2Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.,3Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| | - Kamran Ghaedi
- 4Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Hezar Jerib Ave., Azadi Sq., Isfahan, 81746-73441 Iran.,5Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Parisa Mohammadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | |
Collapse
|
29
|
|
30
|
Yu CD, Miao WH, Zhang YY, Zou MJ, Yan XF. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018; 7:414-421. [PMID: 30034795 PMCID: PMC6035362 DOI: 10.1302/2046-3758.76.bjr-2017-0138.r1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. METHODS Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation. RESULTS After IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK. CONCLUSION IL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway.Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414-421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1.
Collapse
Affiliation(s)
- C. D. Yu
- Department of Orthopaedics, Qianfoshan Hospital of Shandong University, Jinan, China and Heze Municipal Hospital, Heze, China
| | - W. H. Miao
- Department of Orthopaedics, Heze Municipal Hospital, Heze, China
| | - Y. Y. Zhang
- Department of Orthopaedics, Qianfoshan Hospital of Shandong University, Jinan, China
| | - M. J. Zou
- Central Laboratory, Heze Medical College, Heze, China
| | - X. F. Yan
- Department of Orthopaedics, Qianfoshan Hospital of Shandong University, Jinan, China
| |
Collapse
|
31
|
Qu Y, Wu J, Deng JX, Zhang YP, Liang WY, Jiang ZL, Yu QH, Li J. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway. Oncotarget 2018; 7:74217-74226. [PMID: 27729613 PMCID: PMC5342047 DOI: 10.18632/oncotarget.12487] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and destruction of the joints as well as an increased risk of cardiovascular disease. RA synovial fibroblasts (RASFs) are involved in the progression of RA and release pro-inflammatory cytokines. On the other hand, microRNAs (miRs) may help control the inflammatory response of immune and non-immune cells. Therefore, our study used lentiviral expression vectors to test the effects of miR-126 overexpression on RASF proliferation and apoptosis. Luciferase experiments verified the targeting relationship between miR-126 and PIK3R2 gene. The co-transfection of anti-miR-126 and PIK3R2 siRNA to RASFs were used to identify whether PIK3R2 was directly involved in proliferation and apoptosis of miR-126-induced RASFs. Real-time polymerase chain reaction (PCR) was used to detect miR-126 and PIK3R2 expressions. MTT assay was used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis and cell cycle. Western blotting was used to detect PIK3R2, PI3K, AKT and p-AKT proteins. After Lv-miR-126 infected RASFs, the relative expression of miR-126 was significantly enhanced. MiR-126 promoted RASF proliferation and inhibited apoptosis. Levels of PIK3R2 decreased while total PI3K and p-AKT levels increased in RASFs overexpressing miR-126. Co-transfection of anti-miR-126 and PIK3R2 siRNA also increased PI3K and p-AKT levels as well as RASF proliferation and reduced apoptosis, as compared to anti-miR-126 treatment alone. Finally, luciferase reporter assays showed that miR-126 targeted PIK3R2. Our data indicate that miR-126 overexpression in RASFs inhibits PIK3R2 expression and promotes proliferation while inhibiting apoptosis. This suggests inhibiting miR-126 may yield therapeutic benefits in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China.,Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China.,Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China
| | - Jia-Xin Deng
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Yu-Ping Zhang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Wan-Yi Liang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Zhen-Lan Jiang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Qing-Hong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Juan Li
- Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China.,Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China
| |
Collapse
|
32
|
Ran L, Liang J, Deng X, Wu J. miRNAs in Prediction of Prognosis in Clear Cell Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4832931. [PMID: 29392135 PMCID: PMC5748131 DOI: 10.1155/2017/4832931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/17/2017] [Indexed: 01/24/2023]
Abstract
Renal cell carcinoma (RCC) is the most common type of urinary malignancy. Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, accounting for 70-80% of RCC. In recent years, miRNAs have been found to be closely associated with the outcome of the patients with ccRCC. In this review, we summarize recent advances in research exploring the role of miRNAs in predicting prognosis in patients with ccRCC.
Collapse
Affiliation(s)
- LongJiao Ran
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Liang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xin Deng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - JinYu Wu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
33
|
Di Meo A, Saleeb R, Wala SJ, Khella HW, Ding Q, Zhai H, Krishan K, Krizova A, Gabril M, Evans A, Brimo F, Pasic MD, Finelli A, Diamandis EP, Yousef GM. A miRNA-based classification of renal cell carcinoma subtypes by PCR and in situ hybridization. Oncotarget 2017; 9:2092-2104. [PMID: 29416756 PMCID: PMC5788624 DOI: 10.18632/oncotarget.23162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) constitutes an array of morphologically and genetically distinct tumors the most prevalent of which are clear cell, papillary, and chromophobe RCC. Accurate distinction between the typically benign-behaving renal oncocytoma and RCC subtypes is a frequent challenge for pathologists. This is critical for clinical decision making. Subtypes also have different survival outcomes and responses to therapy. We extracted RNA from ninety formalin-fixed paraffin-embedded (FFPE) tissues (27 clear cell, 29 papillary, 19 chromophobe, 4 unclassified RCC and 11 oncocytomas). We quantified the expression of six miRNAs (miR-221, miR-222, miR-126, miR-182, miR-200b and miR-200c) by qRT-PCR, and by in situ hybridization in an independent set of tumors. We developed a two-step classifier. In the first step, it uses expression of either miR-221 or miR-222 to distinguish the clear cell and papillary subtypes from chromophobe RCC and oncocytoma (miR-221 AUC: 0.96, 95% CI: 0.9132-1.014, p < 0.0001 and miR-222 AUC: 0.91, 95% CI: 0.8478-0.9772, p < 0.0001). In the second step, it uses miR-126 to discriminate clear cell from papillary RCC (AUC: 1, p < 0.0001) and miR-200b to discriminate chromophobe RCC from oncocytoma (AUC: 0.95, 95% CI: 0.8933-1.021, p < 0.0001). In situ hybridization showed a nuclear staining pattern. miR-126, miR-222 and miR-200b were significantly differentially expressed between the subtypes by in situ hybridization. miRNA expression could distinguish RCC subtypes and oncocytoma. miRNA expression assessed by either PCR or in situ hybridization can be a clinically useful diagnostic tool to complement morphologic renal tumor classification, improving diagnosis and patient management.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rola Saleeb
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samantha J Wala
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Heba W Khella
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Qiang Ding
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Haiyan Zhai
- BioGenex Laboratories, Fremont, CA, United States of America
| | - Kalra Krishan
- BioGenex Laboratories, Fremont, CA, United States of America
| | - Adriana Krizova
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Manal Gabril
- Department of Pathology, London Health Sciences Center and Western University, London, ON, Canada
| | - Andrew Evans
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Maria D Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, ON, Canada
| | - Antonio Finelli
- Division of Urologic Oncology, Princess Margaret Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Toward Biological Subtyping of Papillary Renal Cell Carcinoma With Clinical Implications Through Histologic, Immunohistochemical, and Molecular Analysis. Am J Surg Pathol 2017; 41:1618-1629. [DOI: 10.1097/pas.0000000000000962] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
MiR-126 reverses drug resistance to TRAIL through inhibiting the expression of c-FLIP in cervical cancer. Gene 2017; 627:420-427. [DOI: 10.1016/j.gene.2017.06.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 01/20/2023]
|
36
|
Khella HWZ, Daniel N, Youssef L, Scorilas A, Nofech-Mozes R, Mirham L, Krylov SN, Liandeau E, Krizova A, Finelli A, Cheng Y, Yousef GM. miR-10b is a prognostic marker in clear cell renal cell carcinoma. J Clin Pathol 2017; 70:854-859. [PMID: 28360191 DOI: 10.1136/jclinpath-2017-204341] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
AIMS Clear cell renal cell carcinoma (ccRCC) is the most common adult kidney cancer. It is an aggressive tumour with unpredictable outcome. The currently used clinical parameters are not always accurate for predicting disease behaviour. miR-10b is dysregulated in different malignancies including RCC. METHODS We assessed the clinical utility of miR-10b as a prognostic marker in 250 patients with primary ccRCC. We examined the correlation between miR-10b and clinicopathological parameters. We compared miR-10b expression among different RCC subtypes and normal kidney tissue. RESULTS We observed a stepwise decrease of miR-10b expression from normal kidney to primary ccRCC and a further decrease from primary to metastatic RCC. miR-10b expression was significantly lower in stages III/IV compared with stages I/II (p=0.038). Using a binary cut-off, miR-10b-positive patients had significantly longer disease-free survival (HR=0.47, CI 0.28 to 0.79, p=0.004). In the subgroup of patients with tumour size >4 cm, higher miR-10b expression was associated with significant longer disease-free and overall survival (p=0.001 and p=0.036, respectively). miR-10b was significantly downregulated in ccRCC compared with normal kidney (p<0.0001), and oncocytoma (p=0.031). It was also downregulated in chromophobe RCC. In addition, we identified a number of miR-10b-predicted targets and pathways that are involved in tumourigenesis. CONCLUSIONS Our data point to miR-10b as a promising prognostic marker in ccRCC with potential therapeutic applications.
Collapse
Affiliation(s)
- Heba W Z Khella
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Daniel
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Leza Youssef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | - Roy Nofech-Mozes
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Lorna Mirham
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey N Krylov
- Department of Chemistry, Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Evi Liandeau
- Department of Chemistry, University of Athens, Athens, Greece
| | - Adriana Krizova
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urologic Oncology, Department of Surgery, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Liu W, Chen H, Wong N, Haynes W, Baker CM, Wang X. Pseudohypoxia induced by miR-126 deactivation promotes migration and therapeutic resistance in renal cell carcinoma. Cancer Lett 2017; 394:65-75. [PMID: 28257806 DOI: 10.1016/j.canlet.2017.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Pseudohypoxia plays a central role in the progression and therapeutic resistance of clear cell renal cell carcinoma (ccRCC); however, the underlying mechanisms are poorly understood. MicroRNA miR-126 has decreased expression in metastatic or relapsed ccRCC as compared to primary tumors, but the mechanisms by which miR-126 is implicated in RCC remain unknown. Through RNA-seq profiling to evaluate the impact of overexpression or CRISPR knockout of miR-126, we have identified SERPINE1 as a miR-126-5p target regulating cell motility, and SLC7A5 as a miR-126-3p target regulating the mTOR/HIF pathway. Specifically, miR-126 inhibits HIFα protein expression independent of von Hippel-Lindau tumor suppressor (VHL). On the other hand, deactivation of miR-126 induces a pseudohypoxia state due to increased HIFα expression, which further enhances therapeutic resistance and cell motility mediated by SLC7A5 and SERPINE1, respectively. Finally, the clinical relevance of miR-126 modulated gene regulation in ccRCC has been confirmed with profiling data from The Cancer Genome Atlas.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CRISPR-Cas Systems
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Cell Movement/drug effects
- Cell Movement/radiation effects
- Cisplatin/pharmacology
- Computational Biology
- Databases, Genetic
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HEK293 Cells
- HeLa Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Large Neutral Amino Acid-Transporter 1/genetics
- Large Neutral Amino Acid-Transporter 1/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/metabolism
- RNA Interference
- Radiation Tolerance
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Transfection
- Tumor Hypoxia
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Weijun Liu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hanxiang Chen
- Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan Wong
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wesley Haynes
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Callie M Baker
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
38
|
Zhang J, Sun XJ, Chen J, Hu ZW, Wang L, Gu DM, Wang AP. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. J Diabetes Complications 2017; 31:241-244. [PMID: 27623390 DOI: 10.1016/j.jdiacomp.2016.07.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND miR-126 may increase angiogenesis in patients with diabetic foot ulcers (DFUs) treated with maggot debridement therapy (MDT). METHODS Real-time quantitative PCR was used to detect expression of miR-126 mRNA in the peripheral blood among the non-diabetic population, type 2 diabetes mellitus patients without DFU, and patients with DFUs of type 2 diabetes mellitus. The expression of miR-126 mRNA in the peripheral blood of patients with DFUs was observed before and after MDT. Finally, human umbilical vein endothelial cells (HUVEC) were utilized to explore miR-126 mRNA expression with maggot excretions/secretions (ES). RESULTS In the patients with DFUs, the miR-126 mRNA expression level in the peripheral blood was less than that type 2 diabetes mellitus patients without DFU, and much lower than that in the non-diabetic population (P<0.001). The miR-126 expression level was significantly increased in those DFU patients treated with MDT (P<0.05). Finally, using HUVEC co-cultured with ES, we showed the ES increased miR-126 expression in vitro (P<0.001). CONCLUSION MDT upregulates the miR-126 expression in the peripheral blood of patients with DFUs.
Collapse
Affiliation(s)
- Jie Zhang
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China.
| | - Xin-Juan Sun
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China.
| | - Jin'an Chen
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China.
| | - Zhi Wei Hu
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China.
| | - Lei Wang
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China.
| | - Dong Mei Gu
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China
| | - Ai-Ping Wang
- The 454th Hospital of Chinese PLA, Nanjing Road Street Baixia District No.1, Nanjing 210002, China.
| |
Collapse
|
39
|
Gu L, Li H, Chen L, Ma X, Gao Y, Li X, Zhang Y, Fan Y, Zhang X. MicroRNAs as prognostic molecular signatures in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget 2016; 6:32545-60. [PMID: 26416448 PMCID: PMC4741711 DOI: 10.18632/oncotarget.5324] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/11/2015] [Indexed: 01/12/2023] Open
Abstract
This is a systematic review of studies investigating the prognostic value of different microRNAs (miRs) in renal cell carcinoma (RCC). Twenty-seven relevant studies were identified, with a total of 2578 subjects. We found that elevated expression of miR-21, miR-1260b, miR-210, miR-100, miR-125b, miR-221, miR-630, and miR-497 was associated with a poor prognosis in RCC patients. Conversely, decreased expression of miR-106b, miR-99a, miR-1826, miR-215, miR-217, miR-187, miR-129–3p, miR-23b, miR-27b, and miR-126 was associated with a worse prognosis. We performed meta-analyses on studies to address the prognostic value of miR-21, miR-126, miR-210, and miR-221. This revealed that elevated miR-21 expression was associated with shorter overall survival (OS; hazard ratio [HR], 2.29; 95% confidence interval [CI], 1.28–4.08), cancer specific survival (CSS; HR, 4.16; 95% CI, 2.49–6.95), and disease free survival (DFS; HR, 2.15; 95% CI, 1.16–3.98). The decreased expression of miR-126 was associated with shorter CSS (HR, 0.35; 95% CI, 0.15–0.85), OS (HR, 0.45; 95% CI, 0.30–0.69), and DFS (HR 0.30; 95% CI, 0.18–0.50). Our comprehensive systematic review reveals that miRs, especially miR-21 and miR-126, could be promising prognostic markers and useful therapeutic targets in RCC.
Collapse
Affiliation(s)
- Liangyou Gu
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Hongzhao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Luyao Chen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Yu Gao
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Xintao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Yu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Yang Fan
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/PLA Medical School, Beijing 100853, P.R. China
| |
Collapse
|
40
|
Schubert M, Junker K, Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: Where do we stand in biomarker development? J Cancer Res Clin Oncol 2016; 142:1673-95. [PMID: 26660324 DOI: 10.1007/s00432-015-2089-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Defining reliable biomarkers is still a challenge in patients with urological tumors. Because miRNAs regulate diverse important cellular processes, these noncoding RNAs are putative molecular candidates. This review intends to give a critical overview about the current state of miRNAs as biomarkers in urological cancers with respect to prognostic stratification as well as for individual treatment selection. METHODS A comprehensive review of the published literature was conducted focusing at the clinical relevance of miRNAs in tissues and body fluids of prostate, bladder and kidney cancer. Using electronic database, 91 articles, published between 2009 and 2015, were selected and discussed regarding the robustness of miRNAs as valid biomarkers. RESULTS A number of miRNAs have been identified with prognostic and predictive relevance in different urologic tumor types. However, the inconsistency of the published results and the lack of multivariate testing in independent cohorts do not allow an introduction into clinical decision making at present. CONCLUSION miRNA-based biomarkers are a promising tool for future personalized risk stratification and response prediction in urological cancers.
Collapse
Affiliation(s)
- Maria Schubert
- Department of Clinical Andrology, Center of Reproductive Medicine and Andrology, University Hospital Muenster, Domagkstr. 11, 48149, Muenster, Germany
- Department of Urology and Pediatric Urology, Comprehensive Cancer Center (CCC) Mainfranken, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Würzburg, Germany
| | - Kerstin Junker
- Clinic of Urology and Pediatric Urology, Saarland University Medical Center, Kirrberger Strasse 1, 66424, Homburg/Saar, Germany.
| | - Joana Heinzelmann
- Clinic of Urology and Pediatric Urology, Saarland University Medical Center, Kirrberger Strasse 1, 66424, Homburg/Saar, Germany
| |
Collapse
|
41
|
Xing T, He H. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology. Chin J Cancer Res 2016; 28:80-91. [PMID: 27041930 DOI: 10.3978/j.issn.1000-9604.2016.02.09] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy with numerous genetic and epigenetic alterations. This review summarizes the recent major findings of epigenetic alterations including DNA methylation, histone modifications, microRNAs and recently identified long noncoding RNAs in the development and progression of ccRCC. These epigenetic profilings can provide a promising means of prognostication and early diagnosis for patients with ccRCCs. With the developed high-throughput technologies nowadays, the epigenetic analyses will have possible clinical applications in the molecular pathology of ccRCC.
Collapse
Affiliation(s)
- Tianying Xing
- 1 Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 2 Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Huiying He
- 1 Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 2 Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
42
|
MicroRNAs in the Pathogenesis of Renal Cell Carcinoma and Their Diagnostic and Prognostic Utility as Cancer Biomarkers. Int J Biol Markers 2016; 31:e26-37. [DOI: 10.5301/jbm.5000174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Purpose To provide information about the role of microRNAs in the pathogenesis of renal cell carcinoma (RCC) and their diagnostic and prognostic utility as cancer biomarkers. Methods A literature search was performed in the PubMed and Web of Science databases using the keywords “renal cancer/renal cell carcinoma/kidney cancer” and “miR*/miRNA*/microRNA*”. Articles dealing with the role of miRNAs in the pathogenesis of RCC, diagnostic miRNAs and prognostic miRNAs were separated. Results MiRNAs act both as oncogenes and tumor suppressors. They regulate apoptosis, cell growth, migration, invasion, proliferation, colony formation and angiogenesis through target proteins involved in several signaling pathways, and they are involved in key pathogenetic mechanisms such as hypoxia (HIF/VHL dependent) and epithelial-to-mesenchymal transition. Differentially expressed miRNAs can discriminate either tumor tissue from healthy renal tissue or different RCC subtypes. Circulating miRNAs are promissing as diagnostic biomarkers of RCC. Information about urinary miRNAs associated with RCC is sparse. Detection of a relapse is another implication of diagnostic miRNAs. The expression profiles of several miRNAs correlate with the prognosis of RCC patients. Comparison between primary tumor tissue and metastasis may help identify high-risk primary tumors. Finally, response to target therapy can be estimated thanks to differences in miRNA expression in tissue and serum of therapy-resistant versus therapy-sensitive patients. Conclusions Our understanding of the role of microRNAs in RCC pathogenesis has been increasing dramatically. Identification and validation of their gene targets may have direct impact on developing microRNA-based anticancer therapy. Several microRNAs can serve as diagnostic and prognostic biomarkers.
Collapse
|
43
|
Nofech-Mozes R, Khella HWZ, Scorilas A, Youssef L, Krylov SN, Lianidou E, Sidiropoulos KG, Gabril M, Evans A, Yousef GM. MicroRNA-194 is a Marker for Good Prognosis in Clear Cell Renal Cell Carcinoma. Cancer Med 2016; 5:656-64. [PMID: 26860079 PMCID: PMC4831284 DOI: 10.1002/cam4.631] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent adult kidney cancer. Prognostic markers are needed to guide patient management toward aggressive versus more conservative approaches, especially for small tumors ≤4 cm. miR‐194 was reported to be downregulated in several cancers and is involved in epithelial to mesenchymal transition. We evaluated miR‐194 as a prognostic marker in ccRCC. In a cohort of 234 patients with primary ccRCC, we correlated miR‐194 expression level with multiple clinicopathological features including disease‐free and overall survival, tumor size, clinical stage, and histological grade. Our results shows a stepwise decrease in miR‐194 expression from normal kidney to primary ccRCC (P = 0.0032) and a subsequent decrease from primary to metastatic lesions. Additionally, patients with higher miR‐194 expression has significantly longer disease‐free survival (P = 0.041) and overall survival (P = 0.031) compared to those with lower expression. In multivariate analysis, miR‐194‐positive tumors retain significance in disease‐free survival and overall survival, suggesting miR‐194 is an independent marker for good prognosis in ccRCC. Moreover, miR‐194 is a marker for good prognosis for patients with small renal masses (P = 0.014). These findings were validated on an independent data set from The Cancer Genome Atlas. We also compared miR‐194 expression between RCC subtypes. ccRCC had the highest levels, whereas chromophobe RCC and oncocytoma had comparable lower levels. Target prediction coupled with pathway analysis show that miR‐194 is predicted to target key molecules and pathways involved in RCC progression. miR‐194 represents a prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Roy Nofech-Mozes
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Heba W Z Khella
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andreas Scorilas
- Departments of Biochemistry and Molecular Biology, University of Athens, 15701, Athens, Greece
| | - Leza Youssef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | - Sergey N Krylov
- Departments of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Evi Lianidou
- Department of Chemistry, University of Athens, 15771, Athens, Greece
| | - Konstantinos G Sidiropoulos
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Manal Gabril
- Department of Pathology, London Health Sciences Center and Western University, London, N6A 5W9, Canada
| | - Andrew Evans
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - George M Yousef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
44
|
Li Y, Li Y, Ge P, Ma C. MiR-126 Regulates the ERK Pathway via Targeting KRAS to Inhibit the Glioma Cell Proliferation and Invasion. Mol Neurobiol 2016; 54:137-145. [PMID: 26732596 DOI: 10.1007/s12035-015-9654-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/17/2015] [Indexed: 11/30/2022]
Abstract
The activity of some constitutive contained in the extracellular signal-regulated kinase (ERK) pathway plays crucial roles in glioma cell growth and proliferation. Emerging studies have reported that microRNA (miRNA) could regulate the ERK signal pathway by directly targeting various oncogenes. This study enabled us to discover that the average miR-126 expression was significantly decreased in glioblastoma tissues, and this significant decrease was related to high histopathological grades. Our experiment also demonstrated that the over-expression of miR-126 suppressed glioma cell proliferation and invasion in vitro. Kirsten rat sarcoma viral oncogene (KRAS) which is involved in ERK pathway was directly targeted by miR-126 in glioma through binding to two sites in the 3' untranslated region (3'-UTR) of KRAS mRNA. Notably, the expression level of KRAS was positively correlated to the activity of ERK pathway and its downstream regulators (phosphorylation level of ERK (pERK) and c-Fos). Furthermore, the over-expression of KRAS expression vector without the 3'-UTR partially reverses the tumor-suppressive effects of miR-126. Moreover, the up-regulation of miR-126 contributes to the aberrant activation of the ERK signaling and inhibits cell proliferation and invasion through targeting KRAS. Therefore, it was suspected that miR-126 may be a potential therapeutic target for high-grade glioma.
Collapse
Affiliation(s)
- Yang Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, Jilin Province, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, Jilin Province, China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
45
|
Rasti A, Mehrazma M, Madjd Z, Keshtkar AA, Roudi R, Babashah S. Diagnostic and prognostic accuracy of miR-21 in renal cell carcinoma: a systematic review protocol. BMJ Open 2016; 6:e009667. [PMID: 26729387 PMCID: PMC4716203 DOI: 10.1136/bmjopen-2015-009667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most common neoplasm in adult kidneys. One of the most important unmet medical needs in RCC is a prognostic biomarker to enable identification of patients at high risk of relapse after nephrectomy. New biomarkers can help improve diagnosis and hence the management of patients with renal cancer. Thus, this systematic review aims to clarify the prognostic and diagnostic accuracy of miR-21 in patients with RCC. METHODS AND ANALYSIS We will include observational studies evaluating the diagnostic and prognostic roles of miR-21 in patients with renal cancer. The index test and reference standards should ideally be performed on all patients. We will search PubMed, SCOPUS and ISI Web of Science with no restriction of language. The outcome will be survival measures in adult patients with RCC. Study selection and data extraction will be performed by two independent reviewers. QUADAS-1 will be used to assess study quality. Publication bias and data synthesis will be assessed by funnel plots and Begg's and Egger's tests using Stata software V.11.1. ETHICS AND DISSEMINATION No ethical issues are predicted. These findings will be published in a peer-reviewed journal and presented at national and international conferences. TRAIL REGISTRATION NUMBER This systematic review protocol is registered in the PROSPERO International Prospective Register of Systematic Reviews, registration number CRD42015025001.
Collapse
Affiliation(s)
- Arezoo Rasti
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran Department of Pathology, Iran University of Medical Sciences, Tehran, Iran Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Dong Y, Fu C, Guan H, Zhang Z, Zhou T, Li B. Prognostic significance of miR-126 in various cancers: a meta-analysis. Onco Targets Ther 2016; 9:2547-55. [PMID: 27217773 PMCID: PMC4853159 DOI: 10.2147/ott.s103481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Recent studies have demonstrated that microRNA-126 (miR-126) might be a promising prognostic factor for cancer patients. This meta-analysis was conducted to assess the effectiveness of miR-126 as a prognostic biomarker for various cancers. METHODS The search of studies was performed by using PubMed and Embase until January 22, 2016. Pooled hazard ratio (HR) with 95% confidence interval (CI) for patients' survival was calculated. A fixed-effect or random-effects model was applied according to heterogeneity. The trim and fill method was used to adjust pooled HR. RESULTS In all 17 articles comprising of 2,437 participants were included in this meta-analysis. The results indicated that a high level of miR-126 played a favorable role in the overall survival (HR 0.70, 95% CI: 0.62-0.79, random-effects model), with a heterogeneity measure index of I (2)=63.2% (P<0.01). Subgroup analyses showed that pooled HR was more significant in patients with digestive system cancers (HR 0.70, 95% CI: 0.59-0.83, fixed-effects model) and respiratory system cancers (HR 0.71, 95% CI: 0.59-0.85, random-effects model). Owing to publication bias, HR was adjusted to 0.59 (0.463-0.752, P<0.01) by the trim and fill method. CONCLUSION miR-126 could be a promising biomarker for cancer prognosis prediction, especially in patients with digestive or respiratory system cancers.
Collapse
Affiliation(s)
- Yuanli Dong
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Chengrui Fu
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Hui Guan
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Zicheng Zhang
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Tao Zhou
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Baosheng Li
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Baosheng Li, Sixth Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan 250117, Shandong Province, People’s Republic of China, Tel +86 139 5416 8847, Fax +86 531 6762 6161, Email
| |
Collapse
|
47
|
Zhang Q, Zeng S, Quan C, Lin X. Induction Function of miR-126 in Survival and Proliferation in Neural Stem Cells. Med Sci Monit 2015; 21:3023-7. [PMID: 26445299 PMCID: PMC4601356 DOI: 10.12659/msm.894672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this study was to investigate the potential function of miR-126 in neural stem cells (NSCs). Material/Methods Expression level of miR-126 was detected by quantitative real-time PCR (qRT-PCR). MiR-126 overexpression was established by transfecting miR-126 mimics into human NSC lines (HB1.F3 and HB1.A4 cells). Its effects on cell proliferation were studied using cell-counting kit-8 (CCK8) assay, colony formation assays. Flow cytometry was performed to evaluate the effect of miR-126 on cell survival. Results CCK8 assay and colony formation assay showed that overexpression of miR-126 promoted cell proliferation and increased colony numbers in HB1.F3 and HB1.A4 cells. The flow cytometry confirmed the results that miR-126 inhibited cell apoptosis. Conclusions MiR-126 promoted the proliferation and survival of NSCs.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Sheng Zeng
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Chengyuan Quan
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Xiaopo Lin
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
48
|
MicroRNAs in clear cell renal cell carcinoma: biological functions and applications. J Kidney Cancer VHL 2015; 2:140-152. [PMID: 28326269 PMCID: PMC5345517 DOI: 10.15586/jkcvhl.2015.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are small noncoding RNAs that govern many biological processes. They frequently acquire a gain or a loss of function in cancer and hence play a causative role in the development and progression of neoplasms. They could be used as biomarkers to improve our knowledge on diagnosis, prognosis and drug resistance, and to attempt therapeutic approaches in several types of cancer including clear cell renal cell carcinoma (ccRCC). ccRCC is the most predominant subtype of RCC that accounts for about 90% of all renal cancers. Since ccRCC is generally asymptomatic until very late, it is difficult to diagnose early. Moreover, in the absence of preventive treatments for metastatic ccRCC after surgical resection of the primary cancer, predictive prognostic biomarkers are needed in order to achieve appropriate therapies. Herein the role of miRs in the biology of ccRCC and the potential applications of these molecules are discussed. Moreover, future applications in the diagnostic and prognostic field, as well as their impact on drug response and therapeutic targets are also explored. Their use in clinical practice as molecular biomarkers alone, or in combination with other biological markers could accelerate progress, help design personalized therapies, limit side effects, and improve quality of life of ccRCC patients.
Collapse
|
49
|
Prognostic Role of MicroRNA-126 for Survival in Malignant Tumors: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2015; 2015:739469. [PMID: 26351404 PMCID: PMC4553299 DOI: 10.1155/2015/739469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Background. Increasing studies found that miR-126 expression may be associated with the prognosis of cancers. Here, we performed a meta-analysis to assess the prognostic role of miR-126 in different cancers. Methods. Eligible studies were identified by searching in PubMed, Embase, the Cochrane Library, CNKI, and Wan Fang databases up to March 2015. Pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated to investigate the correlation between miR-126 and survival of cancers. Results. Thirty studies including a total of 4497 participants were enrolled in this meta-analysis. The pooled results showed that high level of miR-126 was a predictor for favorable survival of carcinomas, with pooled HR of 0.77 (95% CI 0.64–0.93) for OS, 0.64 (95%CI 0.48–0.85) for DFS, and 0.70 (95% CI 0.50–0.98) for PFS/RFS/DSS. However, high level of circulating miR-126 predicted a significantly worse OS in patients with cancer (HR = 1.65, 95% CI 1.09–2.51). Conclusions. Our results indicated that miR-126 could act as a significant biomarker in the prognosis of various cancers.
Collapse
|
50
|
MicroRNA-126 inhibits cell proliferation in gastric cancer by targeting LAT-1. Biomed Pharmacother 2015; 72:66-73. [PMID: 26054677 DOI: 10.1016/j.biopha.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/03/2015] [Indexed: 01/26/2023] Open
Abstract
MicroRNA-126 (miR-126) is a pivotal post-transcriptional regulator, which has been validated as a suppressor in gastric cancer (GC). However, the downstream of its tumor inhibiting function has not been totally clear. L-type amino-acid transporter 1 (LAT-1) is a novel member of system L-type transporters involving in cell proliferation, and we have previously validated that LAT-1 played a role of promotor in GC. In this study, we further detected and confirmed that LAT-1 was exactly targeted by miR-126 in GC. We found LAT-1 was significantly downregulated in GC MKN-45 cell lines by using miR-126 mimics, along with an impairment on cell proliferation and cell cycle. Additionally, by overexpressing LAT-1 in MKN-45 cells which was firstly treated with miR-126 mimics, the ability of cell proliferation in MKN-45 cells was definitely rescued. Thus, our results suggests and consolidates the standpoint that miR-126 plays a pivotal role in GC suppressing the process of GC cell, and this function is at least partly taken to implement by miR-126s's post-transcriptional effect on LAT-1. This might provide us likely potential biomarkers and targets for GC prevention, diagnosis and therapeutic treatment.
Collapse
|