1
|
Fukuda Y, Mori K, Okada H, Tomita H, Suzuki K, Takada C, Kamidani R, Kawasaki Y, Fukuda H, Minamiyama T, Nishio A, Shimada T, Kuroda A, Uchida A, Kitagawa Y, Fukuta T, Miyake T, Yoshida T, Suzuki A, Tetsuka N, Yoshida S, Ogura S. Decreased neutrophil counts prolong inflammation in acute pancreatitis and cause inflammation spillover to distant organs. Pancreatology 2023; 23:911-918. [PMID: 37981522 DOI: 10.1016/j.pan.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND/OBJECTIVE Acute pancreatitis is an aseptic inflammation caused by pathologically activated pancreatic enzymes and inflammatory mediators produced secondarily by neutrophils and other inflammatory cells and is one of the most difficult diseases to treat. This study aimed to investigate the role of neutrophils in pancreatitis by examining tissue dynamics. METHODS We created a model of caerulein-induced pancreatitis in 12-week-old male granulocyte colony-stimulating factor knockout mice (G-CSF-KO) and wild-type littermate control mice (six intraperitoneal injections of caerulein [80 μg/kg body weight] at hourly intervals for 2 days). Mice were sacrificed 0, 3, 6, 12, 24, 36, 48, 72, and 168 h after caerulein administration and examined histologically. RESULTS The survival rate after one week of caerulein administration was 100 % in the control mice, whereas it was significantly lower (10 %) in the G-CSF-KO mice. Histological examination revealed significant hemorrhage and inflammatory cell migration in the G-CSF-KO mice, indicating prolonged inflammation. CONCLUSION Prolonged inflammation was observed in the G-CSF-KO mice. Tissue cleanup by neutrophils during the acute phase of inflammation may influence healing through the chronic phase.
Collapse
Affiliation(s)
- Yohei Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Japan.
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Japan.
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Yuki Kawasaki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Hirotsugu Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toru Minamiyama
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Ayane Nishio
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takuto Shimada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Ayumi Kuroda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Akihiro Uchida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Yuichiro Kitagawa
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takahito Miyake
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan; Abuse Prevention Emergency Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
2
|
Neutrophil Elastase Inhibition Ameliorates Endotoxin-induced Myocardial Injury Accompanying Degradation of Cardiac Capillary Glycocalyx. Shock 2021; 54:386-393. [PMID: 31764619 DOI: 10.1097/shk.0000000000001482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myocardial injury in sepsis may be caused by a burst of several inflammatory mediators, leading to vascular endothelial injuries. However, the contribution of neutrophil elastase (NE) to myocardial injury in sepsis is still unknown. We aimed to evaluate whether endotoxemia-induced myocardial injury is associated with NE. Lipopolysaccharide (LPS) was injected intraperitoneally at a dose of 20 mg/kg into granulocyte-colony-stimulating-factor knockout mice (G-CSF-KO), which have few neutrophils, and littermate control mice. The survival rate of G-CSF-KO mice 48 hours after LPS injection was significantly greater than that of control mice. The serum level of troponin I in G-CSF-KO mice was significantly lower than that in control mice. In addition, the concentration of inflammatory cytokine interleukin-6 (IL-6) was significantly decreased 6 and 12 hours after LPS administration compared with that in control mice. Ultrastructural analysis revealed that vascular endothelial structures and the endothelial glycocalyx in G-CSF-KO mice were clearly preserved. Next, mice were injected with 0.2 mg/kg sivelestat (an NE inhibitor) after LPS administration. The survival rate was significantly higher and the serum level of troponin I was lower in sivelestat-injected mice than in control mice, respectively. Furthermore, IL-6 levels were significantly decreased 6 and 12 hours after LPS administration compared with those in control mice. Vascular endothelial structures and the endothelial glycocalyx in sivelestat-treated mice were clearly preserved at the ultrastructural level. In conclusion, NE is significantly associated with myocardial injury in endotoxemia. Inhibition of NE may be a useful tool for the management of endotoxemia.
Collapse
|
3
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
4
|
Suzuki K, Okada H, Takemura G, Takada C, Kuroda A, Yano H, Zaikokuji R, Morishita K, Tomita H, Oda K, Matsuo S, Uchida A, Fukuta T, Sampei S, Miyazaki N, Kawaguchi T, Watanabe T, Yoshida T, Ushikoshi H, Yoshida S, Maekawa Y, Ogura S. Neutrophil Elastase Damages the Pulmonary Endothelial Glycocalyx in Lipopolysaccharide-Induced Experimental Endotoxemia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1526-1535. [PMID: 31108101 DOI: 10.1016/j.ajpath.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 05/01/2019] [Indexed: 11/25/2022]
Abstract
Neutrophil elastase (NE) is necessary for effective sterilization of phagocytosed bacterial and fungal pathogens; however, NE increases alveolocapillary permeability and induces proinflammatory cytokine production in sepsis-induced acute respiratory distress syndrome. Under septic conditions, the pulmonary endothelial glycocalyx covering on the healthy endothelium surface is injured, but the contribution of NE to this injury remains unknown. Our aim was to examine whether NE-induced pulmonary endothelial injury is associated with endotoxemia. Lipopolysaccharide (LPS; 20 mg/kg) was injected intraperitoneally into 9- to 12-week-old granulocyte colony-stimulating factor knockout (G-CSFKO) mice, which harbor few neutrophils, and littermate control mice; in a second assay, mice were injected with the NE-inhibitor sivelestat (0.2 mg/kg) at 3, 6, 9, and 12 hours after LPS administration. Subsequently, vascular endothelial injury was evaluated through ultrastructural analysis. At 48 hours after LPS injection, survival rate was more than threefold higher among G-CSFKO than control mice, and degradation of both thrombomodulin and syndecan-1 was markedly attenuated in G-CSFKO compared with control mice. Ultrastructural analysis revealed attenuated vascular endothelial injury and clear preservation of the endothelial glycocalyx in G-CSFKO mice. Moreover, after LPS exposure, survival rate was approximately ninefold higher among sivelestat-injected mice than control mice, and sivelestat treatment potently preserved vascular endothelial structures and the endothelial glycocalyx. In conclusion, NE is associated with pulmonary endothelial injury under LPS-induced endotoxemic conditions.
Collapse
Affiliation(s)
- Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Genzou Takemura
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuroda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohisa Yano
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryogen Zaikokuji
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Kentaro Morishita
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazumasa Oda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Saori Matsuo
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Uchida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - So Sampei
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Tomonori Kawaguchi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takatomo Watanabe
- Department of Clinical Laboratory, Gifu University Hospital, Gifu, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroaki Ushikoshi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan; Domain of Integrated Life Systems, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|