1
|
Galli R, Uckermann O. Toward cancer detection by label-free microscopic imaging in oncological surgery: Techniques, instrumentation and applications. Micron 2025; 191:103800. [PMID: 39923310 DOI: 10.1016/j.micron.2025.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
This review examines the clinical application of label-free microscopy and spectroscopy, which are based on optical signals emitted by tissue components. Over the past three decades, a variety of techniques have been investigated with the aim of developing an in situ histopathology method that can rapidly and accurately identify tumor margins during surgical procedures. These techniques can be divided into two groups. One group encompasses techniques exploiting linear optical signals, and includes infrared and Raman microspectroscopy, and autofluorescence microscopy. The second group includes techniques based on nonlinear optical signals, including harmonic generation, coherent Raman scattering, and multiphoton autofluorescence microscopy. Some of these methods provide comparable information, while others are complementary. However, all of them have distinct advantages and disadvantages due to their inherent nature. The first part of the review provides an explanation of the underlying physics of the excitation mechanisms and a description of the instrumentation. It also covers endomicroscopy and data analysis, which are important for understanding the current limitations in implementing label-free techniques in clinical settings. The second part of the review describes the application of label-free microscopy imaging to improve oncological surgery with focus on brain tumors and selected gastrointestinal cancers, and provides a critical assessment of the current state of translation of these methods into clinical practice. Finally, the potential of confocal laser endomicroscopy for the acquisition of autofluorescence is discussed in the context of immediate clinical applications.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, TU Dresden, Fetscherstr. 74, Dresden 01307, Germany.
| | - Ortrud Uckermann
- Department of Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, Dresden 01307, Germany
| |
Collapse
|
2
|
Mikhail AS, Negussie AH, Mauda-Havakuk M, Owen JW, Pritchard WF, Lewis AL, Wood BJ. Drug-eluting embolic microspheres: State-of-the-art and emerging clinical applications. Expert Opin Drug Deliv 2021; 18:383-398. [PMID: 33480306 PMCID: PMC11247414 DOI: 10.1080/17425247.2021.1835858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Drug-eluting embolic (DEE) microspheres, or drug-eluting beads (DEB), delivered by transarterial chemoembolization (TACE) serve as a therapeutic embolic to stop blood flow to tumors and a drug delivery vehicle. New combinations of drugs and DEE microspheres may exploit the potential synergy between mechanisms of drug activity and local tissue responses generated by TACE to enhance the efficacy of this mainstay therapy. AREAS COVERED This review provides an overview of key drug delivery concepts related to DEE microspheres with a focus on recent technological developments and promising emerging clinical applications as well as speculation into the future. EXPERT OPINION TACE has been performed for nearly four decades by injecting chemotherapy drugs into the arterial supply of tumors while simultaneously cutting off their blood supply, trying to starve and kill cancer cells, with varying degrees of success. The practice has evolved over the decades but has yet to fulfill the promise of truly personalized therapies envisioned through rational selection of drugs and real-time multi-parametric image guidance to target tumor clonality or heterogeneity. Recent technologic and pharmacologic developments have opened the door for potentially groundbreaking advances in how TACE with DEE microspheres is performed with the goal of achieving advancements that benefit patients.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Joshua W Owen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Lewis
- Interventional Medicine Innovation Group, Biocompatibles UK, Ltd. (Now Boston Scientific Corp.), Camberley, UK
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
de Lima FA, Gobinet C, Sockalingum G, Garcia SB, Manfait M, Untereiner V, Piot O, Bachmann L. Digital de-waxing on FTIR images. Analyst 2018; 142:1358-1370. [PMID: 28001153 DOI: 10.1039/c6an01975g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a procedure that digitally neutralizes the contribution of paraffin to FTIR hyperspectral images. A brief mathematical derivation of the procedure is demonstrated and applied on one normal human colon sample to exemplify the de-waxing procedure. The proposed method includes construction of a paraffin model based on PCA, EMSC normalization and application of two techniques for spectral quality control. We discuss every step in which the researcher needs to take a subjective decision during the de-waxing procedure, and we explain how to make an adequate choice of parameters involved. Application of this procedure to 71 hyperspectral images collected from 55 human colon biopsies (20 normal, 17 ulcerative colitis, and 18 adenocarcinoma) showed that paraffin was appropriately neutralized, which made the de-waxed images adequate for analysis by pattern-recognition techniques such as k-means clustering or PCA-LDA.
Collapse
|
4
|
Balbekova A, Lohninger H, van Tilborg GAF, Dijkhuizen RM, Bonta M, Limbeck A, Lendl B, Al-Saad KA, Ali M, Celikic M, Ofner J. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification. APPLIED SPECTROSCOPY 2018; 72:241-250. [PMID: 28905634 DOI: 10.1177/0003702817734618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.
Collapse
Affiliation(s)
- Anna Balbekova
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Hans Lohninger
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Geralda A F van Tilborg
- 2 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- 2 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maximilian Bonta
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Andreas Limbeck
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Bernhard Lendl
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Khalid A Al-Saad
- 3 Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohamed Ali
- 4 Neurological Disorders Research Centre, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Minja Celikic
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Johannes Ofner
- 1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| |
Collapse
|
5
|
Lumican delays melanoma growth in mice and drives tumor molecular assembly as well as response to matrix-targeted TAX2 therapeutic peptide. Sci Rep 2017; 7:7700. [PMID: 28794454 PMCID: PMC5550434 DOI: 10.1038/s41598-017-07043-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Lumican is a small leucine-rich proteoglycan (SLRP) being known as a key regulator of collagen fibrillogenesis. However, little attention has been given so far in studying its influence on tumor-associated matrix architecture. Here, we investigate the role of host lumican on tumor matrix organization as well as on disease progression considering an immunocompetent model of melanoma implanted in Lum -/- vs. wild type syngeneic mice. Conjointly, lumican impact on tumor response to matrix-targeted therapy was evaluated considering a previously validated peptide, namely TAX2, that targets matricellular thrombospondin-1. Analysis of available genomics and proteomics databases for melanoma first established a correlation between lumican expression and patient outcome. In the B16 melanoma allograft model, endogenous lumican inhibits tumor growth and modulates response to TAX2 peptide. Indeed, IHC analyses revealed that lumican deficiency impacts intratumoral distribution of matricellular proteins, growth factor and stromal cells. Besides, innovative imaging approaches helped demonstrating that lumican host expression drives biochemical heterogeneity of s.c. tumors, while modulating intratumoral collagen deposition as well as organization. Altogether, the results obtained present lumican as a strong endogenous inhibitor of tumor growth, while identifying for the first time this proteoglycan as a major driver of tumor matrix coherent assembly.
Collapse
|
6
|
Gaydou V, Polette M, Gobinet C, Kileztky C, Angiboust JF, Manfait M, Birembaut P, Piot O. Vibrational Analysis of Lung Tumor Cell Lines: Implementation of an Invasiveness Scale Based on the Cell Infrared Signatures. Anal Chem 2016; 88:8459-67. [DOI: 10.1021/acs.analchem.6b00590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vincent Gaydou
- Equipe MéDIAN—Biophotonique
et Technologies pour la Santé Université de Reims Champagne-Ardenne,
UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims, France
- CNRS UMR 7369 MEDyC,
SFR Cap-Santé, 51 rue Cognacq-Jay, 51096 Reims, France
| | - Myriam Polette
- INSERM
UMR-S 903, SFR CAP-Santé, University of Reims-Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims, France
- Biopathology
Laboratory, Centre Hospitalier et Universitaire de Reims, 45 Rue Cognacq-Jay, 51092 Reims, France
- Platform
of Cellular and Tissular Imaging (PICT), Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims, France
| | - Cyril Gobinet
- Equipe MéDIAN—Biophotonique
et Technologies pour la Santé Université de Reims Champagne-Ardenne,
UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims, France
- CNRS UMR 7369 MEDyC,
SFR Cap-Santé, 51 rue Cognacq-Jay, 51096 Reims, France
- Platform
of Cellular and Tissular Imaging (PICT), Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims, France
| | - Claire Kileztky
- INSERM
UMR-S 903, SFR CAP-Santé, University of Reims-Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims, France
- Biopathology
Laboratory, Centre Hospitalier et Universitaire de Reims, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Jean-François Angiboust
- Equipe MéDIAN—Biophotonique
et Technologies pour la Santé Université de Reims Champagne-Ardenne,
UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims, France
- CNRS UMR 7369 MEDyC,
SFR Cap-Santé, 51 rue Cognacq-Jay, 51096 Reims, France
| | - Michel Manfait
- Equipe MéDIAN—Biophotonique
et Technologies pour la Santé Université de Reims Champagne-Ardenne,
UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims, France
- CNRS UMR 7369 MEDyC,
SFR Cap-Santé, 51 rue Cognacq-Jay, 51096 Reims, France
| | - Philippe Birembaut
- INSERM
UMR-S 903, SFR CAP-Santé, University of Reims-Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims, France
- Biopathology
Laboratory, Centre Hospitalier et Universitaire de Reims, 45 Rue Cognacq-Jay, 51092 Reims, France
| | - Olivier Piot
- Equipe MéDIAN—Biophotonique
et Technologies pour la Santé Université de Reims Champagne-Ardenne,
UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims, France
- CNRS UMR 7369 MEDyC,
SFR Cap-Santé, 51 rue Cognacq-Jay, 51096 Reims, France
- Platform
of Cellular and Tissular Imaging (PICT), Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims, France
| |
Collapse
|