1
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
2
|
El Mammeri N, Duan P, Dregni AJ, Hong M. Amyloid fibril structures of tau: Conformational plasticity of the second microtubule-binding repeat. SCIENCE ADVANCES 2023; 9:eadh4731. [PMID: 37450599 PMCID: PMC10348678 DOI: 10.1126/sciadv.adh4731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The intrinsically disordered protein tau associates with microtubules in neurons but aggregates into cross-β amyloid fibrils that propagate in neurodegenerative brains. Different tauopathies have different structures for the rigid fibril core. To understand the molecular basis of tau assembly into different polymorphs, here we use solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the structure of a tau protein that includes all microtubule-binding repeats and a proline-rich domain. This P2R tau assembles into well-ordered filaments when induced by heparin. Two- and three-dimensional NMR spectra indicate that R2 and R3 repeats constitute the rigid β-sheet core of the fibril. Unexpectedly, the amino-terminal half of R2 forms a β-arch at ambient temperature (24°C) but a continuous β-strand at 12°C, which dimerizes with the R2 of another protofilament. This temperature-dependent structure indicates that R2 is conformationally more plastic than the R3 domain. The distinct conformational stabilities of different microtubule-binding repeats give insight into the energy landscape of tau fibril formation.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Denechaud M, Geurs S, Comptdaer T, Bégard S, Garcia-Núñez A, Pechereau LA, Bouillet T, Vermeiren Y, De Deyn PP, Perbet R, Deramecourt V, Maurage CA, Vanderhaegen M, Vanuytven S, Lefebvre B, Bogaert E, Déglon N, Voet T, Colin M, Buée L, Dermaut B, Galas MC. Tau promotes oxidative stress-associated cycling neurons in S phase as a pro-survival mechanism: Possible implication for Alzheimer's disease. Prog Neurobiol 2023; 223:102386. [PMID: 36481386 DOI: 10.1016/j.pneurobio.2022.102386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.
Collapse
Affiliation(s)
- Marine Denechaud
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Sarah Geurs
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Séverine Bégard
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Alejandro Garcia-Núñez
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Louis-Adrien Pechereau
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Thomas Bouillet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium.
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, eindendreef 1, 2020 Antwerpen, Belgium.
| | - Romain Perbet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Vincent Deramecourt
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Claude-Alain Maurage
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Michiel Vanderhaegen
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Bruno Lefebvre
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Elke Bogaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium; KU Leuven, Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium.
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
4
|
Tau isoform-specific enhancement of L-type calcium current and augmentation of afterhyperpolarization in rat hippocampal neurons. Sci Rep 2022; 12:15231. [PMID: 36075936 PMCID: PMC9458744 DOI: 10.1038/s41598-022-18648-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Accumulation of tau is observed in dementia, with human tau displaying 6 isoforms grouped by whether they display either 3 or 4 C-terminal repeat domains (3R or 4R) and exhibit no (0N), one (1N) or two (2N) N terminal repeats. Overexpression of 4R0N-tau in rat hippocampal slices enhanced the L-type calcium (Ca2+) current-dependent components of the medium and slow afterhyperpolarizations (AHPs). Overexpression of both 4R0N-tau and 4R2N-tau augmented CaV1.2-mediated L-type currents when expressed in tsA-201 cells, an effect not observed with the third 4R isoform, 4R1N-tau. Current enhancement was only observed when the pore-forming subunit was co-expressed with CaVβ3 and not CaVβ2a subunits. Non-stationary noise analysis indicated that enhanced Ca2+ channel current arose from a larger number of functional channels. 4R0N-tau and CaVβ3 were found to be physically associated by co-immunoprecipitation. In contrast, the 4R1N-tau isoform that did not augment expressed macroscopic L-type Ca2+ current exhibited greatly reduced binding to CaVβ3. These data suggest that physical association between tau and the CaVβ3 subunit stabilises functional L-type channels in the membrane, increasing channel number and Ca2+ influx. Enhancing the Ca2+-dependent component of AHPs would produce cognitive impairment that underlie those seen in the early phases of tauopathies.
Collapse
|
5
|
Roy R, Bhattacharya P, Borah A. Targeting the Pathological Hallmarks of Alzheimer's Disease Through Nanovesicleaided Drug Delivery Approach. Curr Drug Metab 2022; 23:693-707. [PMID: 35619248 DOI: 10.2174/1389200223666220526094802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Nanovesicle technology is making a huge contribution to the progress of treatment studies for various diseases, including Alzheimer's disease (AD). AD is the leading neurodegenerative disorder characterized by severe cognitive impairment. Despite the prevalence of several forms of anti-AD drugs, the accelerating pace of AD incidence cannot becurbed, and for rescue, nanovesicle technology has grabbed much attention. METHODOLOGY Comprehensive literature search was carried out using relevant keywords and online database platforms. The main concepts that have been covered included a complex pathomechanism underlying increased acetylcholinesterase (AchE) activity, β-amyloid aggregation, and tau-hyperphosphorylation forming neurofibrillary tangles (NFTs) in the brain, which are amongst the major hallmarks of AD pathology. Therapeutic recommendations exist in the form of AchE inhibitors, along with anti-amyloid and anti-tau therapeutics, which are being explored at a high pace. The degree of the therapeutic outcome, however, gets restricted by the pharmacological limitations. Susceptibility to peripheral metabolism and rapid elimination, inefficiency to cross the blood-brain barrier (BBB) and reach the target brain site are the factors that lower the biostability and bioavailability of anti-AD drugs. The nanovesicle technology has emerged as a route to preserve the therapeutic efficiency of the anti-AD drugs and promote AD treatment. The review hereby aims to summarize the developments made by the nanovesicle technology in aiding the delivery of synthetic and plant-based therapeutics targeting the molecular mechanism of AD pathology. CONCLUSION Nanovesicles appear to efficiently aid in target-specific delivery of anti-AD therapeutics and nullify the drawbacks posed by free drugs, besides reducing the dosage requirement and the adversities associated. In addition, the nanovesicle technology also appears to uplift the therapeutic potential of several phyto-compounds with immense anti-AD properties. Furthermore, the review also sheds light on future perspectives to mend the gaps that prevail in the nanovesicle-mediated drug delivery in AD treatment strategies.
Collapse
Affiliation(s)
- Rubina Roy
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar- 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad - 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar- 788011, Assam, India
| |
Collapse
|
6
|
In vivo analysis of the phosphorylation of tau and the tau protein kinases Cdk5-p35 and GSK3β by using Phos-tag SDS–PAGE. J Proteomics 2022; 262:104591. [DOI: 10.1016/j.jprot.2022.104591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
|
7
|
Komaki K, Takano T, Sato Y, Asada A, Ikeda S, Yamada K, Wei R, Huo A, Fukuchi A, Saito T, Ando K, Murayama S, Araki W, Kametani F, Hasegawa M, Iwatsubo T, Tomomura M, Fukuda M, Hisanaga SI. Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of β-secretase BACE1. J Biochem 2021; 170:729-738. [PMID: 34523681 DOI: 10.1093/jb/mvab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Lemur tail kinase 1 (LMTK1), previously called apoptosis-associated tyrosine kinase (AATYK), is an endosomal Ser/Thr kinase. We recently reported that LMTK1 regulates axon outgrowth, dendrite arborization and spine formation via Rab11-mediated vesicle transport. Rab11, a small GTPase regulating recycling endosome trafficking, is shown to be associated with late-onset Alzheimer's disease (LOAD). In fact, genome-wide association studies identified many proteins regulating vesicle transport as risk factors for LOAD. Furthermore, LMTK1 has been reported to be a risk factor for frontotemporal dementia. Then, we hypothesized that LMTK1 contributes to AD development through vesicle transport and examined the effect of LMTK1 on the cellular localization of AD-related proteins, amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE1). The β-cleavage of APP by BACE1 is the initial and rate-limiting step in Aβ generation. We found that LMTK1 accumulated BACE1, but not APP, to the perinuclear endosomal compartment, whereas the kinase-negative (kn) mutant of LMTK1A did not. The β-C-terminal fragment was prone to increase under overexpression of LMTK1A kn. Moreover, the expression level of LMTK1A was reduced in AD brains. These results suggest the possibility that LMTK1 is involved in AD development through the regulation of the proper endosomal localization of BACE1.
Collapse
Affiliation(s)
- Keisuke Komaki
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yutaka Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shikito Ikeda
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Aoi Fukuchi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shigeo Murayama
- Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | - Fuyuki Kametani
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Chiba 279-9950, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan.,Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
8
|
Samimi N, Sharma G, Kimura T, Matsubara T, Huo A, Chiba K, Saito Y, Murayama S, Akatsu H, Hashizume Y, Hasegawa M, Farjam M, Shahpasand K, Ando K, Hisanaga SI. Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiol Aging 2021; 108:72-79. [PMID: 34536819 DOI: 10.1016/j.neurobiolaging.2021.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023]
Abstract
Tauopathies are neurodegenerative diseases that are characterized by pathological accumulation of tau protein. Tau is hyperphosphorylated in the brain of tauopathy patients, and this phosphorylation is proposed to play a role in disease development. However, it has been unclear whether phosphorylation is different among different tauopathies. Here, we investigated the phosphorylation states of tau in several tauopathies, including corticobasal degeneration, Pick's disease, progressive supranuclear palsy (PSP), argyrophilic grain dementia (AGD) and Alzheimer's disease (AD). Analysis of tau phosphorylation profiles using Phos-tag SDS-PAGE revealed distinct phosphorylation of tau in different tauopathies, whereas similar phosphorylation patterns were found within the same tauopathy. For PSP, we found 2 distinct phosphorylation patterns suggesting that PSP may consist of 2 different related diseases. Immunoblotting with anti-phospho-specific antibodies showed different site-specific phosphorylation in the temporal lobes of patients with different tauopathies. AD brains showed increased phosphorylation at Ser202, Thr231 and Ser235, Pick's disease brains showed increased phospho-Ser202, and AGD brains showed increased phospho-Ser396. The cis conformation of the peptide bond between phospho-Thr231 and Pro232 (cis ptau) was increased in AD and AGD. These results indicate that while tau is differently phosphorylated in tauopathies, a similar pathological mechanism may occur in AGD and AD patients. The present data provide useful information regarding tau pathology and diagnosis of tauopathies.
Collapse
Affiliation(s)
- Nastaran Samimi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Govinda Sharma
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Taeko Kimura
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Anni Huo
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kurumi Chiba
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Nagoya City University Graduate School of Medicine, Mizuho, Nagoya, Aichi, Japan; Institute of Neuropathology, Fukushimura Hospital, Toyohashi, Aichi, Japan
| | - Yoshio Hashizume
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi, Aichi, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.
| |
Collapse
|
9
|
Morris SL, Tsai MY, Aloe S, Bechberger K, König S, Morfini G, Brady ST. Defined Tau Phosphospecies Differentially Inhibit Fast Axonal Transport Through Activation of Two Independent Signaling Pathways. Front Mol Neurosci 2021; 13:610037. [PMID: 33568975 PMCID: PMC7868336 DOI: 10.3389/fnmol.2020.610037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Tau protein is subject to phosphorylation by multiple kinases at more than 80 different sites. Some of these sites are associated with tau pathology and neurodegeneration, but other sites are modified in normal tau as well as in pathological tau. Although phosphorylation of tau at residues in the microtubule-binding repeats is thought to reduce tau association with microtubules, the functional consequences of other sites are poorly understood. The AT8 antibody recognizes a complex phosphoepitope site on tau that is detectable in a healthy brain but significantly increased in Alzheimer's disease (AD) and other tauopathies. Previous studies showed that phosphorylation of tau at the AT8 site leads to exposure of an N-terminal sequence that promotes activation of a protein phosphatase 1 (PP1)/glycogen synthase 3 (GSK3) signaling pathway, which inhibits kinesin-1-based anterograde fast axonal transport (FAT). This finding suggests that phosphorylation may control tau conformation and function. However, the AT8 includes three distinct phosphorylated amino acids that may be differentially phosphorylated in normal and disease conditions. To evaluate the effects of specific phosphorylation sites in the AT8 epitope, recombinant, pseudophosphorylated tau proteins were perfused into the isolated squid axoplasm preparation to determine their effects on axonal signaling pathways and FAT. Results from these studies suggest a mechanism where specific phosphorylation events differentially impact tau conformation, promoting activation of independent signaling pathways that differentially affect FAT. Implications of findings here to our understanding of tau function in health and disease conditions are discussed.
Collapse
Affiliation(s)
- Sarah L. Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Ming-Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah Aloe
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Svenja König
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
10
|
Arakaki K, Uehara A, Higa-Nakamine S, Kakinohana M, Yamamoto H. Increased expression of EGR1 and KLF4 by polysulfide via activation of the ERK1/2 and ERK5 pathways in cultured intestinal epithelial cells. Biomed Res 2020; 41:119-129. [PMID: 32522929 DOI: 10.2220/biomedres.41.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sodium trisulfide (Na2S3) releases hydrogen polysulfide (H2Sn) and is useful for the investigation of the effects of H2Sn on the cell functions. In the present study, we first examined the effects of Na2S3 on the gene expression of IEC-6 cells, a rat intestinal epithelial cell line. Microarray analysis and reverse transcription-polymerase chain reaction analysis revealed that Na2S3 increased the gene expression of early growth response 1 (EGR1) and Kruppel-like transcription factor 4 (KLF4). It was interesting that U0126, an inhibitor of the activation of extracellular signal-regulated kinase 1 (ERK1), ERK2, and ERK5, inhibited the Na2S3-induced gene expression of EGR1 and KLF4. Na2S3 activated ERK1 and ERK2 (ERK1/2) within 15 min. In addition to ERK1/2, Na2S3 activated ERK5. We noticed that the electrophoretic mobility of ERK5 was decreased after Na2S3 treatment. Phos-tag analysis and in vitro dephosphorylation of the cell extracts indicated that the gel-shift of ERK5 was due to its phosphorylation. The gel-shift of ERK5 was inhibited completely by both U0126 and ERK5-IN-1, a specific inhibitor of ERK5. From these results, we concluded that the gel-shift of ERK5 was induced through autophosphorylation by activated ERK5 after Na2S3 treatment. The present study suggested that H2Sn affected various functions of intestinal epithelial cells through the activation of the ERK1/2 and ERK5 pathways.
Collapse
Affiliation(s)
- Kaoru Arakaki
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Ayako Uehara
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Sayomi Higa-Nakamine
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Manabu Kakinohana
- Departments of Anesthesiology, Graduate School of Medicine, University of the Ryukyus
| | - Hideyuki Yamamoto
- Departments of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| |
Collapse
|
11
|
Sharma G, Huo A, Kimura T, Shiozawa S, Kobayashi R, Sahara N, Ishibashi M, Ishigaki S, Saito T, Ando K, Murayama S, Hasegawa M, Sobue G, Okano H, Hisanaga SI. Tau isoform expression and phosphorylation in marmoset brains. J Biol Chem 2019; 294:11433-11444. [PMID: 31171723 DOI: 10.1074/jbc.ra119.008415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/23/2019] [Indexed: 01/07/2023] Open
Abstract
Tau is a microtubule-associated protein expressed in neuronal axons. Hyperphosphorylated tau is a major component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). Hyperphosphorylated tau aggregates are also found in many neurodegenerative diseases, collectively referred to as "tauopathies," and tau mutations are associated with familial frontotemporal lobar degeneration (FTLD). Previous studies have generated transgenic mice with mutant tau as tauopathy models, but nonhuman primates, which are more similar to humans, may be a better model to study tauopathies. For example, the common marmoset is poised as a nonhuman primate model for investigating the etiology of age-related neurodegenerative diseases. However, no biochemical studies of tau have been conducted in marmoset brains. Here, we investigated several important aspects of tau, including expression of different tau isoforms and its phosphorylation status, in the marmoset brain. We found that marmoset tau does not possess the "primate-unique motif" in its N-terminal domain. We also discovered that the tau isoform expression pattern in marmosets is more similar to that of mice than that of humans, with adult marmoset brains expressing only four-repeat tau isoforms as in adult mice but unlike in adult human brains. Of note, tau in brains of marmoset newborns was phosphorylated at several sites associated with AD pathology. However, in adult marmoset brains, much of this phosphorylation was lost, except for Ser-202 and Ser-404 phosphorylation. These results reveal key features of tau expression and phosphorylation in the marmoset brain, a potentially useful nonhuman primate model of neurodegenerative diseases.
Collapse
Affiliation(s)
- Govinda Sharma
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Anni Huo
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Taeko Kimura
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan
| | - Reona Kobayashi
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Minaka Ishibashi
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shinsuke Ishigaki
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shigeo Murayama
- Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Faculty of Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan .,Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
12
|
Teng IT, Li X, Yadikar HA, Yang Z, Li L, Lyu Y, Pan X, Wang KK, Tan W. Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 2018; 140:14314-14323. [PMID: 30277395 DOI: 10.1021/jacs.8b08645] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tau proteins are proteins that stabilize microtubules, but their hyperphosphorylation can result in the formation of protein aggregates and, over time, neurodegeneration. This phenomenon, termed tauopathy, is pathologically involved in several neurodegenerative disorders. DNA aptamers are single-stranded oligonucleotides capable of specific binding to target molecules. Using tau epitopes predisposed for phosphorylation, we identified six distinct aptamers that bind to tau at two phosphorylatable epitopes (Thr-231 and Ser-202) and to full-length Tau441 proteins with nanomolar affinity. In addition, several of these aptamers also inhibit tau phosphorylation (IT4, IT5, IT6) and tau oligomerization (IT3, IT4, IT5, IT6). This is the first report to identify tau epitope-specific aptamers. Such tau aptamers can be used to detect tau in biofluids and uncover the mechanism of tauopathy. They can be further developed into novel therapeutic agents in mitigating tauopathy-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- I-Ting Teng
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center , UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Xiaowei Li
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center , UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Hamad Ahmad Yadikar
- Department of Emergency Medicine, Department of Chemistry, Department of Neuroscience, and Department of Psychiatry , McKnight Brain Institute, University of Florida , Gainesville , Florida 32611 , United States
| | - Zhihui Yang
- Department of Emergency Medicine, Department of Chemistry, Department of Neuroscience, and Department of Psychiatry , McKnight Brain Institute, University of Florida , Gainesville , Florida 32611 , United States
| | - Long Li
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center , UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xiaoshu Pan
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center , UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Kevin K Wang
- Department of Emergency Medicine, Department of Chemistry, Department of Neuroscience, and Department of Psychiatry , McKnight Brain Institute, University of Florida , Gainesville , Florida 32611 , United States.,Brain Rehabilitation Research Center (BRRC) , Malcom Randall Veterans Affairs Medical Center , 1601 SW Archer Road , Gainesville Florida 32608 , United States
| | - Weihong Tan
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center , UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville , Florida 32611-7200 , United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| |
Collapse
|
13
|
Kimura T, Sharma G, Ishiguro K, Hisanaga SI. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front Neurosci 2018; 12:44. [PMID: 29467609 PMCID: PMC5808175 DOI: 10.3389/fnins.2018.00044] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein which regulates the assembly and stability of microtubules in the axons of neurons. Tau is also a major component of neurofibrillary tangles (NFTs), a pathological hallmark in Alzheimer's disease (AD). A characteristic of AD tau is hyperphosphorylation with more than 40 phosphorylation sites. Aggregates of hyperphosphorylated tau are also found in other neurodegenerative diseases which are collectively called tauopathies. Although a large number of studies have been performed on the phosphorylation of AD tau, it is not known if there is disease-specific phosphorylation among tauopathies. This is due to the lack of a proper method for analyzing tau phosphorylation in vivo. Most previous phosphorylation studies were conducted using a range of phosphorylation site-specific antibodies. These studies describe relative changes of different phosphorylation sites, however, it is hard to estimate total, absolute and collective changes in phosphorylation. To overcome these problems, we have recently applied the Phos-Tag technique to the analysis of tau phosphorylation in vitro and in vivo. This method separates tau into many bands during SDS-PAGE depending on its phosphorylation states, creating a bar code appearance. We propose calling this banding pattern of tau the "phospho-tau bar code." In this review article, we describe what is newly discovered regarding tau phosphorylation through the use of the Phos-Tag. We would like to propose its use for the postmortem diagnosis of tauopathy which is presently done by immunostaining diseased brains with anti-phospho-antibodies. While Phos-tag SDS-PAGE, like other biochemical assays, will lose morphological information, it could provide other types of valuable information such as disease-specific phosphorylation.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
14
|
Ahlemeyer B, Halupczok S, Rodenberg-Frank E, Valerius KP, Baumgart-Vogt E. Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. J Alzheimers Dis 2018; 61:1425-1450. [DOI: 10.3233/jad-170923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sascha Halupczok
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Elke Rodenberg-Frank
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
15
|
Tuerde D, Kimura T, Miyasaka T, Furusawa K, Shimozawa A, Hasegawa M, Ando K, Hisanaga SI. Isoform-independent and -dependent phosphorylation of microtubule-associated protein tau in mouse brain during postnatal development. J Biol Chem 2017; 293:1781-1793. [PMID: 29196605 DOI: 10.1074/jbc.m117.798918] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Tau is a microtubule (MT)-associated protein that regulates MT dynamics in the axons of neurons. Tau binds to MTs via its C-terminal MT-binding repeats. There are two types of tau, those with three (3R) or four (4R) MT-binding repeats; 4R tau has a stronger MT-stabilizing activity than 3R tau. The MT-stabilizing activity of tau is regulated by phosphorylation. Interestingly, both the isoform and phosphorylation change at the time of neuronal circuit formation during postnatal development; highly phosphorylated 3R tau is replaced with 4R tau, which is less phosphorylated. However, it is not known how the transition of the isoforms and phosphorylation are regulated. Here, we addressed this question using developing mouse brains. Detailed analysis of developing brains revealed that the switch from 3R to 4R tau occurred during postnatal day 9 (P9) to P18 under the same time course as the conversion of phosphorylation from high to low. However, hypothyroidism, which is known to delay brain development, delayed the timing of tau dephosphorylation but not the exchange of isoforms, indicating that isoform switching and phosphorylation are not necessarily linked. Furthermore, we confirmed this finding by using mouse brains that expressed a single isoform of human tau. Human tau, either 3R or 4R, reduced phosphorylation levels during development even though the isoform did not change. We also found that 3R tau and 4R tau were phosphorylated differently in vivo even at the same developmental days. These results show for the first time that the phosphorylation and isoform alteration of tau are regulated differently during mouse development.
Collapse
Affiliation(s)
- Dilina Tuerde
- From the Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397
| | - Taeko Kimura
- From the Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397
| | - Tomohiro Miyasaka
- Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, and
| | - Kotaro Furusawa
- From the Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397
| | - Aki Shimozawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Kanae Ando
- From the Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397
| | - Shin-Ichi Hisanaga
- From the Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397,
| |
Collapse
|
16
|
In vivo regulation of glycogen synthase kinase 3β activity in neurons and brains. Sci Rep 2017; 7:8602. [PMID: 28819213 PMCID: PMC5561119 DOI: 10.1038/s41598-017-09239-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) is a multifunctional protein kinase involved in many cellular activities including development, differentiation and diseases. GSK3β is thought to be constitutively activated by autophosphorylation at Tyr216 and inactivated by phosphorylation at Ser9. The GSK3β activity has previously been evaluated by inhibitory Ser9 phosphorylation, but it does not necessarily indicate the kinase activity itself. Here, we applied the Phos-tag SDS-PAGE technique to the analysis of GSK3β phosphoisotypes in cells and brains. There were three phosphoisotypes of GSK3β; double phosphorylation at Ser9 and Tyr216, single phosphorylation at Tyr216 and the nonphosphorylated isotype. Active GSK3β with phosphorylation at Tyr216 represented half or more of the total GSK3β in cultured cells. Although levels of phospho-Ser9 were increased by insulin treatment, Ser9 phosphorylation occurred only in a minor fraction of GSK3β. In mouse brains, GSK3β was principally in the active form with little Ser9 phosphorylation, and the phosphoisotypes of GSK3β changed depending on the regions of the brain, age, sex and disease conditions. These results indicate that the Phos-tag SDS-PAGE method provides a simple and appropriate measurement of active GSK3β in vivo, and the activity is regulated by the mechanism other than phosphorylation on Ser9.
Collapse
|
17
|
Vu HT, Akatsu H, Hashizume Y, Setou M, Ikegami K. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer's disease. Sci Rep 2017; 7:40205. [PMID: 28067280 PMCID: PMC5220350 DOI: 10.1038/srep40205] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegeneration includes acute changes and slow-developing alterations, both of which partly involve common cellular machinery. During neurodegeneration, neuronal processes are impaired along with dysregulated post-translational modifications (PTMs) of cytoskeletal proteins. In neuronal processes, tubulin undergoes unique PTMs including a branched form of modification called glutamylation and loss of the C-terminal tyrosine residue and the penultimate glutamic acid residue forming Δ2-tubulin. Here, we investigated the state of two PTMs, glutamylation and Δ2 form, in both acute and slow-developing neurodegenerations, using a newly generated monoclonal antibody, DTE41, which had 2-fold higher affinity to glutamylated Δ2-tubulin, than to unmodified Δ2-tubulin. DTE41 recognised glutamylated Δ2-tubulin preferentially in immunostaining than in enzyme-linked immunosorbent assay and immunoblotting. In normal mouse brain, DTE41 stained molecular layer of the cerebellum as well as synapse-rich regions in pyramidal neurons of the cerebral cortex. In kainic acid-induced epileptic seizure, DTE41-labelled signals were increased in the hippocampal CA3 region, especially in the stratum lucidum. In the hippocampi of post-mortem patients with Alzheimer's disease, intensities of DTE41 staining were increased in mossy fibres in the CA3 region as well as in apical dendrites of the pyramidal neurons. Our findings indicate that glutamylation on Δ2-tubulin is increased in both acute and slow-developing neurodegeneration.
Collapse
Affiliation(s)
- Hang Thi Vu
- Department of Cellular and Molecular Anatomy, and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Toyohashi, Japan
- Department of Medicine for Aging in Place and Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
- Division of Neural Systematics, National Institute for Physiological Sciences, Okazaki, Japan
- Riken Center for Molecular Imaging Science, Kobe, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
18
|
Kimura T, Hosokawa T, Taoka M, Tsutsumi K, Ando K, Ishiguro K, Hosokawa M, Hasegawa M, Hisanaga SI. Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants. Sci Rep 2016; 6:33479. [PMID: 27641626 PMCID: PMC5027580 DOI: 10.1038/srep33479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
Tau is hyperphosphorylated in the brains of patients with tauopathies, such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). However, neither the mechanism of hyperphosphorylation nor its contribution to pathogenesis is known. We applied Phos-tag SDS-PAGE, a phosphoaffinity electrophoresis, to the analysis of tau phosphorylation in vitro by Cdk5, in cultured cells and in mouse brain. Here, we found that Cdk5-p25 phosphorylated tau in vitro at Ser404, Ser235, Thr205 and Ser202 in this order. In contrast in cultured cells, Ser404 was preferentially phosphorylated by Cdk5-p35, whereas Thr205 was not phosphorylated. Ser202 and Ser235 were phosphorylated by endogenous kinases. Tau exhibited ~12 phosphorylation isotypes in COS-7 cells with different combinations of phosphorylation at Thr181, Ser202, Thr231, Ser235 and Ser404. These phosphorylation sites were similar to tau phosphorylated in mouse brains. FTDP-17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. In particular, it was clear that the R406W mutation causes loss of Ser404 phosphorylation. These results demonstrate the usefulness of the Phos-tag technique in the quantitative analysis of site-specific in vivo phosphorylation of tau and provide detailed information on in situ combinatory phosphorylation of tau.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tomohisa Hosokawa
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | - Masato Hosokawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Shin-ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|