1
|
Pal S, Su Y, Nwadozi E, Claesson-Welsh L, Richards M. Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions. Angiogenesis 2024; 28:7. [PMID: 39668325 PMCID: PMC11638295 DOI: 10.1007/s10456-024-09963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Neuropilin-1 (NRP1) regulates endothelial cell (EC) biology through modulation of vascular endothelial growth factor receptor 2 (VEGFR2) signalling by presenting VEGFA to VEGFR2. How NRP1 impacts VEGFA-mediated vascular hyperpermeability has however remained unresolved, described as exerting either a positive or a passive function. Using EC-specific Nrp1 knock-out mice, we discover that EC-expressed NRP1 exerts an organotypic role. In the ear skin, VEGFA/VEGFR2-mediated vascular leakage was increased following loss of EC NRP1, implicating NRP1 in negative regulation of VEGFR2 signalling. In contrast, in the back skin and trachea, loss of EC NRP1 decreased vascular leakage. In accordance, phosphorylation of vascular endothelial (VE)-cadherin was increased in the ear skin but suppressed in the back skin of Nrp1 iECKO mice. NRP1 expressed on perivascular cells has been shown to impact VEGF-mediated VEGFR2 signalling. Importantly, expression of NRP1 on perivascular cells was more abundant in the ear skin than in the back skin. Global loss of NRP1 resulted in suppressed VEGFA-induced vascular leakage in the ear skin, implicating perivascular NRP1 as a juxtacrine co-receptor of VEGFA in this compartment. Altogether, we demonstrate that perivascular NRP1 is an active participant in EC VEGFA/VEGFR2 signalling and acts as an organotypic modifier of EC biology.
Collapse
Affiliation(s)
- Sagnik Pal
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yangyang Su
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Hefni E, Menon D, Ma T, Asiedu EB, Sultan A, Meiller T, Schneider A, Sodhi A, Montaner S. Angiopoietin-like 4 induces head and neck squamous cell carcinoma cell migration through the NRP1/ABL1/PXN pathway. Cell Signal 2023; 108:110697. [PMID: 37169211 PMCID: PMC11129037 DOI: 10.1016/j.cellsig.2023.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES The molecular mechanisms whereby angiopoietin-like 4 (ANGPTL4), a pluripotent protein implicated in cancer development, contributes to head and neck squamous cell carcinoma (HNSCC) growth and dissemination are unclear. MATERIALS AND METHODS We investigated ANGPTL4 expression in human normal oral keratinocytes (NOKs), dysplastic oral keratinocytes (DOKs), oral leukoplakia cells (LEUK1), and HNSCC cell lines, as well as in tissue biopsies from patients with oral dysplasia, and primary and metastatic HNSCC. We further examined the contribution of ANGPTL4 cancer progression in an HNSCC orthotopic floor-of mouth tumor model and the signaling pathways linking ANGPTL4 to cancer cell migration. RESULTS ANGPTL4 expression was upregulated in premalignant DOKs and HNSCC cell lines compared to NOKs and was increased in tissue biopsies from patients with oral dysplasia, as well as in primary and metastatic HNSCC. We also observed that downregulation of ANGPTL4 expression inhibited primary and metastatic cancer growth in an HNSCC orthotopic tumor model. Interestingly, ANGPTL4 binding to the neuropilin1 (NRP1) receptor led to phosphorylation of the focal adhesion protein, paxillin (PXN), and tumor cell migration; this was dependent on the tyrosine kinase ABL1. Treatment with the ABL1 inhibitor, dasatinib and small interfering RNA silencing of NRP1 or ABL1 expression blocked PXN phosphorylation and tumor cell migration. CONCLUSION Our findings suggest an early, sustained, and angiogenesis-independent autocrine role for ANGPTL4 in HNSCC progression and expose ANGPTL4/NRP1/ABL1/PXN as an early molecular marker and vulnerable target for the prevention of HNSCC growth and metastasis.
Collapse
Affiliation(s)
- Eman Hefni
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Department of Basic and Clinical Oral Sciences, College of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Emmanuel B Asiedu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Ahmed Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Timothy Meiller
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Pontarollo G, Kollar B, Mann A, Khuu MP, Kiouptsi K, Bayer F, Brandão I, Zinina VV, Hahlbrock J, Malinarich F, Mimmler M, Bhushan S, Marini F, Ruf W, Belheouane M, Baines JF, Endres K, Reba SM, Raker VK, Deppermann C, Welsch C, Bosmann M, Soshnikova N, Chassaing B, Bergentall M, Sommer F, Bäckhed F, Reinhardt C. Commensal bacteria weaken the intestinal barrier by suppressing epithelial neuropilin-1 and Hedgehog signaling. Nat Metab 2023; 5:1174-1187. [PMID: 37414930 PMCID: PMC10365997 DOI: 10.1038/s42255-023-00828-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/24/2023] [Indexed: 07/08/2023]
Abstract
The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.
Collapse
Affiliation(s)
- Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bettina Kollar
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Chemistry, Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, Mainz, Germany
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Valeriya V Zinina
- Institute of Molecular Medicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jennifer Hahlbrock
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frano Malinarich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maximilian Mimmler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Chemistry, Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Federico Marini
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, Mainz, Germany
| | - Meriem Belheouane
- Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John F Baines
- Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Scott M Reba
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Verena K Raker
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, Mainz, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Natalia Soshnikova
- Institute of Molecular Medicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benoit Chassaing
- INSERM U1016, Team 'Mucosal microbiota in chronic inflammatory diseases', CNRS UMR 8104, Université de Paris, Paris, France
| | - Mattias Bergentall
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Region Västra Götland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, Mainz, Germany.
| |
Collapse
|
5
|
Altaie AM, Hamdy R, Venkatachalam T, Hamoudi R, Soliman SSM. Estimating the viral loads of SARS-CoV-2 in the oral cavity when complicated with periapical lesions. BMC Oral Health 2021; 21:567. [PMID: 34749700 PMCID: PMC8573761 DOI: 10.1186/s12903-021-01921-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background The oral cavity represents a main entrance of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and transmembrane serine protease 2 (TMPRSS2) are essential for the entry of SARS-CoV-2 to the host cells. Both ACE-2 and NRP-1 receptors and TMPRSS2 have been identified in the oral cavity. However, there is limited knowledge about the impact of periapical lesions and their metabolites on the expression of these critical genes. This study aims to measure the impact of periapical lesions and their unique fatty acids (FAs) metabolites on the expression of the aforementioned genes, in addition to interleukin 6 (IL-6) gene and hence SARS-CoV-2 infection loads can be estimated. Methods Gene expression of ACE-2, NRP-1, TMPRSS2, and IL-6 was performed in periapical lesions in comparison to healthy oral cavity. Since FAs are important immunomodulators required for the lipid synthesis essential for receptors synthesis and viral replication, comparative FAs profiling was determined in oral lesions and healthy pulp tissues using gas chromatography–mass spectrometry (GC–MS). The effect of major identified and unique FAs was tested on mammalian cells known to express ACE-2, NRP-1, and TMPRSS2 genes. Results Gene expression analysis indicated that ACE-2, NRP-1, and TMPRSS2 were significantly upregulated in healthy clinical samples compared to oral lesions, while the reverse was true with IL-6 gene expression. Saturated and monounsaturated FAs were the major identified shared and unique FAs, respectively. Major shared FAs included palmitic, stearic and myristic acids with the highest percentage in the healthy oral cavity, while unique FAs included 17-octadecynoic acid in periapical abscess, petroselinic acid and l-lactic acid in periapical granuloma, and 1-nonadecene in the radicular cyst. Computational prediction showed that the binding affinity of identified FAs to ACE-2, TMPRSS2 and S protein were insignificant. Further, FA-treated mammalian cells showed significant overexpression of ACE-2, NRP-1 and TMPRSS2 genes except with l-lactic acid and oleic acid caused downregulation of NRP-1 gene, while 17-octadecynoic acid caused insignificant effect. Conclusion Collectively, a healthy oral cavity is more susceptible to viral infection when compared to that complicated with periapical lesions. FAs play important role in viral infection and their balance can affect the viral loads. Shifting the balance towards higher levels of palmitic, stearic and 1-nonadecene caused significant upregulation of the aforementioned genes and hence higher viral loads. On the other hand, there is a reverse correlation between inflammation and expression of SARS-CoV-2 receptors. Therefore, a mouth preparation that can reduce the levels of palmitic, stearic and 1-nonadecene, while maintaining an immunomodulatory effect can be employed as a future protection strategy against viral infection.
Collapse
Affiliation(s)
- Alaa Muayad Altaie
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Rania Hamdy
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Thenmozhi Venkatachalam
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Physiology and Immunology, College of Medicine, Khalifa University, Abu Dhabi, UAE
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Sameh S M Soliman
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE. .,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
6
|
Derruau S, Bouchet J, Nassif A, Baudet A, Yasukawa K, Lorimier S, Prêcheur I, Bloch-Zupan A, Pellat B, Chardin H, Jung S, on behalf of TASK FORCE COVID-19–Collège National des EnseignantS en Biologie Orale (CNESBO)—France. COVID-19 and Dentistry in 72 Questions: An Overview of the Literature. J Clin Med 2021; 10:779. [PMID: 33669185 PMCID: PMC7919689 DOI: 10.3390/jcm10040779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has significantly affected the dental care sector. Dental professionals are at high risk of being infected, and therefore transmitting SARS-CoV-2, due to the nature of their profession, with close proximity to the patient's oropharyngeal and nasal regions and the use of aerosol-generating procedures. The aim of this article is to provide an update on different issues regarding SARS-CoV-2 and COVID-19 that may be relevant for dentists. Members of the French National College of Oral Biology Lecturers ("Collège National des EnseignantS en Biologie Orale"; CNESBO-COVID19 Task Force) answered seventy-two questions related to various topics, including epidemiology, virology, immunology, diagnosis and testing, SARS-CoV-2 transmission and oral cavity, COVID-19 clinical presentation, current treatment options, vaccine strategies, as well as infection prevention and control in dental practice. The questions were selected based on their relevance for dental practitioners. Authors independently extracted and gathered scientific data related to COVID-19, SARS-CoV-2 and the specific topics using scientific databases. With this review, the dental practitioners will have a general overview of the COVID-19 pandemic and its impact on their practice.
Collapse
Affiliation(s)
- Stéphane Derruau
- UFR Odontologie, Université de Reims Champagne-Ardenne, 51100 Reims, France; (S.D.); (S.L.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 51092 Reims, France
- BioSpecT EA-7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Jérôme Bouchet
- UFR Odontologie-Montrouge, Université de Paris, 92120 Montrouge, France; (J.B.); (B.P.); (H.C.)
- Laboratory “Orofacial Pathologies, Imaging and Biotherapies” URP 2496, University of Paris, 92120 Montrouge, France
| | - Ali Nassif
- UFR Odontologie-Garancière, Université de Paris, 75006 Paris, France;
- AP-HP, Sites hospitaliers Pitié Salpêtrière et Rothschild, Service d’Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019 Paris, France
- INSERM, UMR_S 1138, Laboratoire de Physiopathologie Orale et Moléculaire, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Alexandre Baudet
- Faculté de Chirurgie Dentaire, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France; (A.B.); (K.Y.)
- Centre Hospitalier Régional Universitaire de Nancy, 54000 Nancy, France
| | - Kazutoyo Yasukawa
- Faculté de Chirurgie Dentaire, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France; (A.B.); (K.Y.)
- Centre Hospitalier Régional Universitaire de Nancy, 54000 Nancy, France
| | - Sandrine Lorimier
- UFR Odontologie, Université de Reims Champagne-Ardenne, 51100 Reims, France; (S.D.); (S.L.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 51092 Reims, France
- Université de Reims Champagne-Ardenne, MATIM EA, UFR Sciences, 51687 Reims, France
| | - Isabelle Prêcheur
- Faculté de Chirurgie Dentaire, Université Côte d’Azur, 06000 Nice, France;
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
- Laboratoire Microbiologie Orale, Immunothérapie et Santé (MICORALIS EA 7354), Faculté de Chirurgie Dentaire, 06300 Nice, France
| | - Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France;
- Pôle de Médecine et de Chirurgie Bucco-Dentaires, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Bernard Pellat
- UFR Odontologie-Montrouge, Université de Paris, 92120 Montrouge, France; (J.B.); (B.P.); (H.C.)
- Laboratory “Orofacial Pathologies, Imaging and Biotherapies” URP 2496, University of Paris, 92120 Montrouge, France
| | - Hélène Chardin
- UFR Odontologie-Montrouge, Université de Paris, 92120 Montrouge, France; (J.B.); (B.P.); (H.C.)
- AP-HP, Hôpital Henri Mondor, 94010 Créteil, France
- ESPCI, UMR CBI 8231, 75005 Paris, France
| | - Sophie Jung
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France;
- Pôle de Médecine et de Chirurgie Bucco-Dentaires, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- INSERM UMR_S 1109 «Molecular Immuno-Rheumatology», Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Fédération hospitalo-universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | | |
Collapse
|
7
|
Rzepakowska A, Żurek M, Grzybowski J, Kotula I, Pihowicz P, Górnicka B, Demkow U, Niemczyk K. Serum and tissue expression of neuropilin 1 in precancerous and malignant vocal fold lesions. PLoS One 2020; 15:e0239550. [PMID: 33002021 PMCID: PMC7529309 DOI: 10.1371/journal.pone.0239550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives The study was designed to evaluate the tissue expression of NRP-1 and serum level of sNRP-1 in the same patients with intraepithelial laryngeal lesions or early staged laryngeal cancer to identify the clinical significance of these biomarkers in the diagnosis of laryngeal lesions. Material and methods A prospective analysis of tissue was performed on specimens and blood samples from 49 patients, who were admitted for surgical resection due to suspicious vocal fold lesions and were diagnosed as non-dysplasia, low-grade dysplasia, high-grade dysplasia and invasive cancers. Results ELISA was conducted on 48 blood samples. The minimum level of sNRP-1 was 0.15 ng/ml and maximum– 37.71 ng/ml. The Kruskal–Wallis one-way analysis of variance revealed no differences in sNRP-1 levels between different histopathological stages of vocal fold lesions (p = 0.234). IHC was conducted in 49 tissue samples. The evaluated mean scores of NRP-1 tissue expression were compared to histopathological stage of the lesion. The Kruskal–Wallis one-way analysis of variance revealed no differences in NRP-1 tissue expression between different histopathological stages of vocal fold lesions (p = 0.536). The correlation of tissue NRP-1 expression and serum levels of NRP-1 within analyzed group was insignificant. The Spearman’s rank correlation coefficient was 0.076 (p = 0.606). Conclusions The NRP-1 tissue expression and serum levels are unlikely to be a prognostic factor for identification of laryngeal dysplasia or early stage laryngeal cancer. Further studies investigating biomolecules involved in laryngeal carcinogenesis are necessary.
Collapse
Affiliation(s)
- Anna Rzepakowska
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | - Michał Żurek
- Students Scientific Research Group at the Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Grzybowski
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotula
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Pihowicz
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Górnicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Tian T, Zhang L, Tang K, Wang A, Wang J, Wang J, Wang F, Wang W, Ma X. SEMA3A Exon 9 Expression Is a Potential Prognostic Marker of Unfavorable Recurrence-Free Survival in Patients with Tongue Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:555-562. [PMID: 32074456 DOI: 10.1089/dna.2019.5109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study tried to assess the prognostic value of semaphorin (SEMA) family genes in patients with tongue squamous cell carcinoma (TSCC) and the potential epigenetic alterations of the genes. The part of third-level TSCC data in The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma (TCGA-HNSC) was extracted using the UCSC Xena browser for analysis. Among 20 SEMA genes examined, 7 were markedly upregulated, while 8 were substantially decreased in TSCC tissues compared with adjacent normal tissues. SEMA3A was the only gene with independent prognostic value in terms of recurrence-free survival (RFS) in multivariate analysis (hazard ratio [HR]: 1.697, 95% CI: 1.228-2.345, p = 0.001). Among the individual exons of SEMA3A, the exon 9 had a better prognostic value in terms of recurrence than total SEMA3A expression and its expression also independently predicted shorter RFS (HR: 2.193, 95% CI: 1.463-3.290, p < 0.001). The methylation levels of two CpG sites (cg06144675 and cg13988052) were moderately correlated with SEMA3A expression. Interestingly, cg06144675, which locates at the promoter region, showed a negative correlation with SEMA3A expression, whereas cg13988052, which is in the intron of SEMA3A gene body showed a positive correlation with SEMA3A expression. In conclusion, SEMA3A expression is aberrantly upregulated in TSCC tissues. Its exon 9 expression is a potentially valuable prognostic marker of unfavorable RFS in TSCC patients. Both promoter hypomethylation and gene body hypermethylation might contribute to the dysregulation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Lingnan Zhang
- Department of Orthodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Kailiang Tang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Aiqin Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
9
|
Li M, Ning J, Li Z, Fei Q, Zhao C, Ge Y, Wang L. Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338-3p/NRP1 axis. Biomed Pharmacother 2019; 118:109259. [PMID: 31369989 DOI: 10.1016/j.biopha.2019.109259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a novel identified long noncoding RNA (lncRNA), has been suggested to serve as oncogene in multiple cancers. However, the functional involvement of OIP5-AS1 in oral squamous cell carcinoma (OSCC) was still unknown. The aims of this study were to investigate the functional role of OIP5-AS1 in OSCC and explore its potential mechanism. We found that OIP5-AS1 was up-regulated in OSCC tissues compared with adjacent non-tumor tissues. Loss-of-function experiments revealed that OIP5-AS1 knockdown significantly inhibited OSCC cell proliferation, migration and invasion in vitro, and retarded tumor growth in vivo. Mechanistically, OIP5-AS1 serves as a competing endogenous RNA of miR-338-3p and modulates the expression of neuropilin1 (NRP1), which has been identified as a downstream target gene of miR-338-3p in OSCC. Moreover, downregulation of miR-338-3p or overexpression of NRP1 partly reversed the inhibitory effect of OIP5-AS1 depletion on cell proliferation, migration and invasion. The current results provide evidences for the role of OIP5-AS1 in promoting OSCC progression by regulating miR-338-3p/NRP1 axis and suggest OIP5-AS1 as a potential therapy target for OSCC.
Collapse
Affiliation(s)
- Minghe Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Jun Ning
- Department of Gynaecology II, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Zhihong Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Qianyi Fei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Cong Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yue Ge
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Lei Wang
- Departments of Periodontology, Hospital of Stomatology, Jilin University, Changchun, PR China.
| |
Collapse
|
10
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
11
|
Grun D, Adhikary G, Eckert RL. NRP-1 interacts with GIPC1 and α6/β4-integrins to increase YAP1/∆Np63α-dependent epidermal cancer stem cell survival. Oncogene 2018; 37:4711-4722. [PMID: 29755126 PMCID: PMC6381998 DOI: 10.1038/s41388-018-0290-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
We have identified an epidermal cancer stem (ECS) cell population that drives formation of rapidly growing and highly invasive and vascularized tumors. VEGF-A and neuropilin-1 (NRP-1) are highly expressed in ECS cell tumors and VEGF-A/NRP-1 interaction is required for ECS cell survival and tumor vascularization. We now identify a novel signaling cascade that is triggered by VEGF-A/NRP-1. We show that NRP-1 forms a complex with GIPC1 and α6/β4-integrin to activate FAK/Src signaling, which leads to stabilization of a YAP1/∆Np63α to enhance ECS cell survival, invasion, and angiogenesis. Loss of NRP-1, GIPC1, α6/β4-integrins, YAP1, or ∆Np63α reduces these responses. Moreover, restoration of constituently active YAP1 or ∆Np63α in NRP-1 null cells restores the ECS cell phenotype. Tumor xenograft experiments show that NRP-1 knockout ECS cells form small tumors characterized by reduced vascularization as compared to wild-type cells. The NRP-1 knockout tumors display signaling changes consistent with a role for the proposed signaling cascade. These studies suggest that VEGF-A interacts with NRP-1 and GIPC1 to regulate α6/β4-integrin, FAK, Src, PI3K/PDK1, LATS1 signaling to increase YAP1/∆Np63α accumulation to drive ECS cell survival, angiogenesis, and tumor formation.
Collapse
Affiliation(s)
- Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Pallaoro A, Mirsafavi RY, Culp WT, Braun GB, Meinhart CD, Moskovits M. Screening for canine transitional cell carcinoma (TCC) by SERS-based quantitative urine cytology. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1279-1287. [DOI: 10.1016/j.nano.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/17/2018] [Accepted: 03/11/2018] [Indexed: 12/25/2022]
|
13
|
Zhu H, Jiang X, Zhou X, Dong X, Xie K, Yang C, Jiang H, Sun X, Lu J. Neuropilin-1 regulated by miR-320 contributes to the growth and metastasis of cholangiocarcinoma cells. Liver Int 2018; 38:125-135. [PMID: 28618167 DOI: 10.1111/liv.13495] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Neuropilin-1 (NRP-1) activates signalling pathways as multifunctional co-receptors in cancer cells. However, its role and how it is regulated by miRNAs in cholangiocarcinoma (CCA) have not yet been investigated. METHODS The expression of NRP-1, miR-320 and key molecules involved in cell proliferation, migration and related signalling pathways were detected by immunohistochemistry, immunoblotting and qRT-PCR. Stable transfectants depleted of NRP-1 were generated. The regulatory effect of miR-320 on NRP-1 was evaluated by luciferase reporter assays. Cell proliferation, cell cycle distribution and migration were examined. Xenograft tumour models were established to assess tumourigenesis, tumour growth and lung metastasis. RESULTS Cholangiocarcinoma tissues expressed higher levels of NRP-1 than adjacent normal biliary tissues, and its expression negatively correlated with miR-320. NRP-1 depletion inhibited cell proliferation and induced cell cycle arrest in the G1/S phase by upregulating p27, and downregulating cyclin E and cyclin-dependent kinase 2; and reduced cell migration by inhibiting the phosphorylation of focal adhesion kinase. NRP-1 depletion suppressed tumourigenesis, tumour growth and lung metastasis by inhibiting cell proliferation and tumour angiogenesis in experimental animals. Depletion of NRP-1 inhibited the activation of VEGF/VEGFR2, EGF/EGFR and HGF/c-Met pathways stimulated by respective ligands. MiR-320 negatively regulated the expression of NRP-1 by binding to the 3'-UTR of NRP-1 promoter, and miR-320 mimics inhibited cell proliferation and migration, and the growth of established tumours in animals by downregulating NRP-1. CONCLUSIONS The present results indicate that NRP-1 is negatively regulated by miR-320, and both of them may be potentially therapeutic targets for CCA.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xian Jiang
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xuesong Dong
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Xie
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chuncheng Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
14
|
Neuropilin-1 contributes to esophageal squamous cancer progression via promoting P65-dependent cell proliferation. Oncogene 2017; 37:935-943. [DOI: 10.1038/onc.2017.399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
15
|
Marinho Bezerra de Oliveira Moura J, de Souza Martins Câmara AC, Weege Nonaka CF, Pinto LP, de Souza LB. Immunohistochemical comparative analysis of lymphatic vessel density and VEGF-C expression in squamous cell carcinomas of the tongue between young and old patients. Pathol Res Pract 2016; 212:1095-1101. [PMID: 27876236 DOI: 10.1016/j.prp.2016.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Squamous cell carcinoma (SCC) of the oral cavity is a malignant epithelial tumor that most commonly involves the tongue, and mainly affects men between the fifth and seventh decades of life. This study compared the lymphatic vessel density and VEGF-C expression in SCCs of the tongue between young and old patients. METHODS Thirty-four SCCs of the tongue, 17 diagnosed in young patients (≤40y) and 17 diagnosed in old patients (>50y), were evaluated by immunohistochemistry. Lymphatic microdensity was determined based on the number of vessels immunoreactive to anti-D2-40 antibody. The percentage of neoplastic cells exhibiting cytoplasmic staining for VEGF-C was established for each case. RESULTS Assessment of intratumoral lymphatic microdensity (ILMD) disclosed a median number of 6.20 lymphatic vessels in young patients and of 6.60 in old patients (p=0.809). Analysis of peritumoral lymphatic microdensity (PLMD) revealed a median number of 3.60 lymphatic vessels in young patients and of 3.40 in old patients (p=0.769). In the tumor core, analysis of the percentage of immunopositive cells for VEGF-C revealed a median number of 95.95% in young patients and of 55.48% in old patients (p<0.001). In the deep invasive front, the median number of immunopositive cells for VEGF-C was 97.93% in young patients and 66.09% in old patients (p<0.001). CONCLUSIONS The results of this study suggest that the more aggressive biological behavior of SCC of the tongue in young patients may be related to a higher expression of VEGF-C.
Collapse
Affiliation(s)
| | | | | | - Leão Pereira Pinto
- Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Postgraduate Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|