1
|
Dietrich T, Aigner A, Hildebrandt A, Weber J, Meyer Günderoth M, Hohlbaum K, Keller J, Tsitsilonis S, Maleitzke T. Nesting behavior is associated with body weight and grip strength loss in mice suffering from experimental arthritis. Sci Rep 2023; 13:23087. [PMID: 38155203 PMCID: PMC10754866 DOI: 10.1038/s41598-023-49720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Objective animal health evaluation is essential to determine welfare and discomfort in preclinical in vivo research. Body condition scores, body weight, and grimace scales are commonly used to evaluate well-being in murine rheumatoid arthritis (RA) and osteoarthritis experiments. However, nest-building, a natural behavior in mice, has not yet been evaluated in wild type (WT) or genetically modified rodents suffering from collagen antibody-induced arthritis (CAIA). To address this, we analyzed nesting behavior in WT mice, calcitonin gene-related peptide alpha-deficient (αCGRP-/-) mice, and calcitonin receptor-deficient (Calcr-/-) mice suffering from experimental RA compared to healthy control (CTRL) groups of the same genotypes. CAIA was induced in 10-12-week-old male mice, and clinical parameters (body weight, grip strength, clinical arthritis score, ankle size) as well as nesting behavior were assessed over 10 or 48 days. A slight positive association between the nest score and body weight and grip strength was found for animals suffering from CAIA. For the clinical arthritis score and ankle size, no significant associations were observed. Mixed model analyses confirmed these associations. This study demonstrates that clinical effects of RA, such as loss of body weight and grip strength, might negatively affect nesting behavior in mice. Assessing nesting behavior in mice with arthritis could be an additional, non-invasive and thus valuable health parameter in future experiments to monitor welfare and discomfort in mice. During severe disease stages, pre-formed nest-building material may be provided to animals suffering from arthritis.
Collapse
Affiliation(s)
- Tamara Dietrich
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Aigner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Alexander Hildebrandt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jérôme Weber
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mara Meyer Günderoth
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Teng H, Chen S, Fan K, Wang Q, Xu B, Chen D, Zhao F, Wang T. Dexamethasone Liposomes Alleviate Osteoarthritis in miR-204/-211-Deficient Mice by Repolarizing Synovial Macrophages to M2 Phenotypes. Mol Pharm 2023; 20:3843-3853. [PMID: 37437059 DOI: 10.1021/acs.molpharmaceut.2c00979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
We undertook this study to investigate the effects and mechanisms of dexamethasone liposome (Dex-Lips) on alleviating destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) in miR-204/-211-deficient mice. Dex-Lips was prepared by the thin-film hydration method. The characterization of Dex-Lips was identified by the mean size, zeta potential, drug loading, and encapsulation efficiencies. Experimental OA was established by DMM surgery in miR-204/-211-deficient mice, and then Dex-Lips was treated once a week for 3 months. Von Frey filaments was used to perform the pain test. The inflammation level was evaluated with quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Polarization of macrophages was evaluated by immunofluorescent staining. X-ray, micro-CT scanning, and histological observations were conducted in vivo on DMM mice to describe the OA phenotype. We found that miR-204/-211-deficient mice displayed more severe OA symptoms than WT mice after DMM surgery. Dex-Lips ameliorated DMM-induced OA phenotype and suppressed pain and inflammatory cytokine expressions. Dex-Lips could attenuate pain by regulating PGE2. Dex-Lips treatments reduced the expression of TNF-α, IL-1β, and IL-6 in DRG. Moreover, Dex-Lips could reduce inflammation in the cartilage and serum. Additionally, Dex-Lips repolarize synovial macrophages to M2 phenotypes in miR-204/-211-deficient mice. In conclusion, Dex-Lips inhibited the inflammatory response and alleviated the pain symptoms of OA by affecting the polarization of macrophages.
Collapse
Affiliation(s)
- Hui Teng
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Sijia Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Kaijian Fan
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- Department of Pharmacy, Mental Health Center, Chongming District, Shanghai 202150, China
| | - Qishan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Bingxin Xu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Di Chen
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Futao Zhao
- Department of Rheumatology and Immunology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
3
|
Maleitzke T, Wiebe E, Huscher D, Spies CM, Tu J, Gaber T, Zheng Y, Buttgereit F, Seibel MJ, Zhou H. Transgenic disruption of endogenous glucocorticoid signaling in osteoblasts does not alter long-term K/BxN serum transfer-induced arthritis. Arthritis Res Ther 2023; 25:140. [PMID: 37542341 PMCID: PMC10401869 DOI: 10.1186/s13075-023-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Disruption of glucocorticoid (GC) signaling in osteoblasts results in a marked attenuation of acute antibody-induced arthritis. The role of endogenous GCs in chronic inflammatory arthritis is however not fully understood. Here, we investigated the impact of endogenous GC signaling in osteoblasts on inflammation and bone integrity under chronic inflammatory arthritis by inactivating osteoblastic GC signaling in a long-term K/BxN serum transfer-induced induced arthritis (STIA) model. METHODS Intracellular GC signaling in osteoblasts was disrupted by transgenic (tg) overexpression of 11beta-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). Inflammatory arthritis was induced in 5-week-old male tg mice and their wild type (WT) littermates by intraperitoneal (i.p.) injection of K/BxN serum while controls (CTRLs) received phosphate-buffered saline (PBS). In a first cohort, K/BxN STIA was allowed to abate until the endpoint of 42 days (STIA). To mimic rheumatic flares, a second cohort was additionally injected on days 14 and 28 with K/BxN serum (STIA boost). Arthritis severity was assessed daily by clinical scoring and ankle size measurements. Ankle joints were assessed histopathologically. Systemic effects of inflammation on long bone metabolism were analyzed in proximal tibiae by micro-computed tomography (μCT) and histomorphometry. RESULTS Acute arthritis developed in both tg and WT mice (STIA and STIA boost) and peaked around day 8. While WT STIA and tg STIA mice showed a steady decline of inflammation until day 42, WT STIA boost and tg STIA boost mice exhibited an arthritic phenotype over a period of 42 days. Clinical arthritis severity did not differ significantly between WT and tg mice, neither in the STIA nor in the STIA boost cohorts. Correspondingly, histological indices of inflammation, cartilage damage, and bone erosion showed no significant difference between WT and tg mice on day 42. Histomorphometry revealed an increased bone turnover in tg CTRL and tg STIA boost compared to WT CTRL and WT STIA boost animals, respectively. CONCLUSIONS In contrast to the previously reported modulating effects of endogenous GC signaling in osteoblasts during acute K/BxN STIA, this effect seems to perish during the chronic inflammatory and resolution phase. These findings indicate that endogenous GC signaling in osteoblasts may mainly be relevant during acute and subacute inflammatory processes.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edgar Wiebe
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Dörte Huscher
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cornelia M Spies
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jinwen Tu
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Yu Zheng
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology and Metabolism, Concord Repatriation Hospital, University of Sydney, Sydney, NSW, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Maleitzke T, Dietrich T, Hildebrandt A, Weber J, Appelt J, Jahn D, Otto E, Zocholl D, Jiang S, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. Inactivation of the gene encoding procalcitonin prevents antibody-mediated arthritis. Inflamm Res 2023; 72:1069-1081. [PMID: 37039837 DOI: 10.1007/s00011-023-01719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Procalcitonin (PCT) is applied as a sensitive biomarker to exclude bacterial infections in patients with rheumatoid arthritis (RA) flare-ups. Beyond its diagnostic value, little is known about the pathophysiological role of PCT in RA. METHODS Collagen antibody-induced arthritis (CAIA) was induced in Calca-deficient mice (Calca-/-), lacking PCT (n = 15), and wild-type (WT) mice (n = 13), while control (CTRL) animals (n = 8 for each genotype) received phosphate-buffered saline. Arthritis severity and grip strength were assessed daily for 10 or 48 days. Articular inflammation, cartilage degradation, and bone lesions were assessed by histology, gene expression analysis, and µ-computed tomography. RESULTS Serum PCT levels and intra-articular PCT expression increased following CAIA induction. While WT animals developed a full arthritic phenotype, Calca-deficient mice were protected from clinical and histological signs of arthritis and grip strength was preserved. Cartilage turnover markers and Tnfa were exclusively elevated in WT mice. Calca-deficient animals expressed increased levels of Il1b. Decreased bone surface and increased subchondral bone porosity were observed in WT mice, while Calca-deficiency preserved bone integrity. CONCLUSION The inactivation of Calca and thereby PCT provided full protection from joint inflammation and arthritic bone loss in mice exposed to CAIA. Together with our previous findings on the pathophysiological function of Calca-derived peptides, these data indicate an independent pro-inflammatory role of PCT in RA.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tamara Dietrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Jérôme Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Jessika Appelt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Denise Jahn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Ellen Otto
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Dario Zocholl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Shan Jiang
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, Hamburg, Germany
| | - Anke Baranowsky
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, Hamburg, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Johannes Keller
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, Hamburg, Germany.
| |
Collapse
|
5
|
Maleitzke T, Weber J, Hildebrandt A, Dietrich T, Zhou S, Tsitsilonis S, Keller J. Standardized protocol and outcome measurements for the collagen antibody-induced arthritis mouse model. STAR Protoc 2022; 3:101718. [PMID: 36152302 PMCID: PMC9519592 DOI: 10.1016/j.xpro.2022.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023] Open
Abstract
The murine collagen antibody-induced arthritis (CAIA) model resembles various features of human rheumatoid arthritis and is based on the intraperitoneal or intravenous injection of autoantibodies against type II collagen. Here, we present a standardized protocol for the intraperitoneal injection of arthritis-inducing autoantibodies in mice, followed by a description of daily arthritis assessments. We then detail the steps to harvest joint and bone tissues for histological, radiological, and molecular analyses. We highlight animal welfare and 3R considerations for experimental arthritis studies. For complete details on the use and execution of this protocol, please refer to Maleitzke et al. (2021, 2022).
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Jérôme Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Tamara Dietrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
6
|
Maleitzke T, Hildebrandt A, Dietrich T, Appelt J, Jahn D, Otto E, Zocholl D, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. The calcitonin receptor protects against bone loss and excessive inflammation in collagen antibody-induced arthritis. iScience 2022; 25:103689. [PMID: 35036874 PMCID: PMC8753130 DOI: 10.1016/j.isci.2021.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Pharmacological application of teleost calcitonin (CT) has been shown to exert chondroprotective and anti-resorptive effects in patients with rheumatoid arthritis (RA). However, the role of endogenous CT that signals through the calcitonin receptor (CTR) remains elusive. Collagen II antibody-induced arthritis (CAIA) was stimulated in wild type (WT) and CTR-deficient (Calcr−/−) mice. Animals were monitored over 10 or 48 days. Joint inflammation, cartilage degradation, and bone erosions were assessed by clinical arthritis score, histology, histomorphometry, gene expression analysis, and μ-computed tomography. CAIA was accompanied by elevated systemic CT levels and CTR expression in the articular cartilage. Inflammation, cartilage degradation, and systemic bone loss were more pronounced in Calcr−/− CAIA mice. Expression of various pro-inflammatory, bone resorption, and catabolic cartilage markers were exclusively increased in Calcr−/− CAIA mice. Endogenous CT signaling through the mammalian CTR has the potential to protect against joint inflammation, cartilage degradation, and excessive bone remodeling in experimental RA. CT levels are increased systemically during acute experimental RA CTR is primarily expressed in the superficial articular cartilage layer in CAIA In CAIA CTR-deficiency is associated with increased inflammation marker expression Bone architecture is impaired in experimental RA when CTR signaling is disrupted
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Alexander Hildebrandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Tamara Dietrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Jessika Appelt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Denise Jahn
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Ellen Otto
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Dario Zocholl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, 10117 Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
- Corresponding author
| |
Collapse
|
7
|
Maleitzke T, Hildebrandt A, Weber J, Dietrich T, Appelt J, Jahn D, Zocholl D, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. Proinflammatory and bone protective role of calcitonin gene-related peptide alpha in collagen antibody-induced arthritis. Rheumatology (Oxford) 2021; 60:1996-2009. [PMID: 33221885 DOI: 10.1093/rheumatology/keaa711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Calcitonin gene-related peptide alpha (αCGRP) represents an immunomodulatory neuropeptide implicated in pain perception. αCGRP also functions as a critical regulator of bone formation and is overexpressed in patients with rheumatoid arthritis (RA). In the present study, we investigated the role of αCGRP in experimental RA regarding joint inflammation and bone remodelling. METHODS Collagen II-antibody-induced arthritis (CAIA) was induced in wild type (WT) and αCGRP-deficient (αCGRP-/-) mice. Animals were monitored over 10 and 48 days with daily assessments of the semiquantitative arthritis score and grip strength test. Joint inflammation, cartilage degradation and bone erosions were assessed by histology, gene expression analysis and µCT. RESULTS CAIA was accompanied by an overexpression of αCGRP in WT joints. αCGRP-/- mice displayed reduced arthritic inflammation and cartilage degradation. Congruently, the expression of TNF-α, IL-1β, CD80 and MMP13 was induced in WT, but not αCGRP-/- animals. WT mice displayed an increased bone turnover during the acute inflammatory phase, which was not the case in αCGRP-/- mice. Interestingly, WT mice displayed a full recovery from the inflammatory bone disease, whereas αCGRP-/- mice exhibited substantial bone loss over time. CONCLUSION This study demonstrates a proinflammatory and bone protective role of αCGRP in CAIA. Our data indicate that αCGRP not only enhances joint inflammation, but also controls bone remodelling as part of arthritis resolution. As novel αCGRP inhibitors are currently introduced clinically for the treatment of migraine, their potential impact on RA progression warrants further clinical investigation.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexander Hildebrandt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jérôme Weber
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tamara Dietrich
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dario Zocholl
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Keller
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Arthritis and the role of endogenous glucocorticoids. Bone Res 2020; 8:33. [PMID: 32963891 PMCID: PMC7478967 DOI: 10.1038/s41413-020-00112-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis, the most common forms of arthritis, are chronic, painful, and disabling conditions. Although both diseases differ in etiology, they manifest in progressive joint destruction characterized by pathological changes in the articular cartilage, bone, and synovium. While the potent anti-inflammatory properties of therapeutic (i.e., exogenous) glucocorticoids have been heavily researched and are widely used in clinical practice, the role of endogenous glucocorticoids in arthritis susceptibility and disease progression remains poorly understood. Current evidence from mouse models suggests that local endogenous glucocorticoid signaling is upregulated by the pro-inflammatory microenvironment in rheumatoid arthritis and by aging-related mechanisms in osteoarthritis. Furthermore, these models indicate that endogenous glucocorticoid signaling in macrophages, mast cells, and chondrocytes has anti-inflammatory effects, while signaling in fibroblast-like synoviocytes, myocytes, osteoblasts, and osteocytes has pro-inflammatory actions in rheumatoid arthritis. Conversely, in osteoarthritis, endogenous glucocorticoid signaling in both osteoblasts and chondrocytes has destructive actions. Together these studies provide insights into the role of endogenous glucocorticoids in the pathogenesis of both inflammatory and degenerative joint disease.
Collapse
|
9
|
Wu J, Fan KJ, Wang QS, Xu BX, Cai Q, Wang TY. DMY protects the knee joints of rats with collagen-induced arthritis by inhibition of NF-κB signaling and osteoclastic bone resorption. Food Funct 2020; 11:6251-6264. [PMID: 32596704 DOI: 10.1039/d0fo00396d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Collagen-induced arthritis (CIA) is a widely used animal model for studying rheumatoid arthritis (RA), which manifests serious joint dysfunction, progressive bone erosion and articular cartilage destruction. Considering that joint damage in RA is caused by systemic inflammation and dihydromyricetin (DMY), the main flavonoid of Ampelopsis Michx, possesses anti-inflammatory properties, in the present study we have investigated the potential capability of DMY to inhibit inflammation-mediated joint damage and explore the underlying mechanisms. A rat model of RA induced by CIA was administered with DMY for 5 weeks. Prior to histological analysis, the knee joints were scanned by microcomputed tomography (μCT) to detect bone damage. Articular cartilage destruction was assessed by Alcian blue and Toluidine blue staining and the pathological alteration of osteoblasts and osteoclasts in joints was evaluated by hematoxylin-eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining, respectively. The effects of DMY on osteoblast differentiation and osteoclast formation in vitro were investigated. Consistent with the in vivo results, DMY had no significant effect on osteoblast differentiation but an inhibitory effect on osteoclast formation. Furthermore, we determined that the mechanism of the DMY-suppressed osteoclast formation was blocking the phosphorylation of I-κB kinase (IKK) so as to hinder the activation of nuclear factor-κB (NF-κB). Collectively, DMY could ameliorate knee joint damage, especially in articular cartilage, which is the weight-bearing region, by inhibiting osteoclast formation through NF-κB signaling.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
10
|
Hardy RS, Fenton C, Croft AP, Naylor AJ, Begum R, Desanti G, Buckley CD, Lavery G, Cooper MS, Raza K. 11 Beta-hydroxysteroid dehydrogenase type 1 regulates synovitis, joint destruction, and systemic bone loss in chronic polyarthritis. J Autoimmun 2018; 92:104-113. [PMID: 29891135 PMCID: PMC6066611 DOI: 10.1016/j.jaut.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVE In rheumatoid arthritis, the enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is highly expressed at sites of inflammation, where it converts inactive glucocorticoids (GC) to their active counterparts. In conditions of GC excess it has been shown to be a critical regulator of muscle wasting and bone loss. Here we examine the contribution of 11β-HSD1 to the pathology of persistent chronic inflammatory disease. METHODS To determine the contribution of 11β-HSD1 to joint inflammation, destruction and systemic bone loss associated with persistent inflammatory arthritis, we generated mice with global and mesenchymal specific 11β-HSD1 deletions in the TNF-transgenic (TNF-tg) model of chronic polyarthritis. Disease severity was determined by clinical scoring. Histology was assessed in formalin fixed sections and fluorescence-activated cell sorting (FACS) analysis of synovial tissue was performed. Local and systemic bone loss were measured by micro computed tomography (micro-CT). Measures of inflammation and bone metabolism were assessed in serum and in tibia mRNA. RESULTS Global deletion of 11β-HSD1 drove an enhanced inflammatory phenotype, characterised by florid synovitis, joint destruction and systemic bone loss. This was associated with increased pannus invasion into subchondral bone, a marked polarisation towards pro-inflammatory M1 macrophages at sites of inflammation and increased osteoclast numbers. Targeted mesenchymal deletion of 11β-HSD1 failed to recapitulate this phenotype suggesting that 11β-HSD1 within leukocytes mediate its protective actions in vivo. CONCLUSIONS We demonstrate a fundamental role for 11β-HSD1 in the suppression of synovitis, joint destruction, and systemic bone loss. Whilst a role for 11β-HSD1 inhibitors has been proposed for metabolic complications in inflammatory diseases, our study suggests that this approach would greatly exacerbate disease severity.
Collapse
Affiliation(s)
- R S Hardy
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
| | - C Fenton
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - A P Croft
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - A J Naylor
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - R Begum
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - G Desanti
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - C D Buckley
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK
| | - G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, UK
| | - M S Cooper
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - K Raza
- Institute of Inflammation and Ageing, ARUK Rheumatoid Arthritis Centre of Excellence, MRC ARUK Centre for Musculoskeletal Ageing, University of Birmingham, Birmingham, UK; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| |
Collapse
|
11
|
|
12
|
Sattler J, Tu J, Stoner S, Li J, Buttgereit F, Seibel MJ, Zhou H, Cooper MS. Role of 11β-HSD type 1 in abnormal HPA axis activity during immune-mediated arthritis. Endocr Connect 2018; 7:385-394. [PMID: 29386227 PMCID: PMC5825927 DOI: 10.1530/ec-17-0361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
Abstract
Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.
Collapse
Affiliation(s)
- Janko Sattler
- Adrenal Steroid GroupANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology and Clinical ImmunologyCharité-University Medicine, Berlin, Germany
| | - Jinwen Tu
- Adrenal Steroid GroupANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
| | - Shihani Stoner
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Jingbao Li
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité-University Medicine, Berlin, Germany
| | - Markus J Seibel
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
- Department of Endocrinology & MetabolismConcord Hospital, Sydney, Australia
| | - Hong Zhou
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
| | - Mark S Cooper
- Adrenal Steroid GroupANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
- Department of Endocrinology & MetabolismConcord Hospital, Sydney, Australia
| |
Collapse
|
13
|
Tu J, Stoner S, Fromm PD, Wang T, Chen D, Tuckermann J, Cooper MS, Seibel MJ, Zhou H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB J 2017; 32:478-487. [PMID: 28928247 DOI: 10.1096/fj.201700659r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Previous studies demonstrated that endogenous glucocorticoid signaling in osteoblasts promotes inflammation in murine immune arthritis. The current study determined whether disruption of endogenous glucocorticoid signaling in chondrocytes also modulates the course and severity of arthritis. Tamoxifen-inducible chondrocyte-targeted glucocorticoid receptor-knockout (chGRKO) mice were generated by breeding GRflox/flox mice with tamoxifen-inducible collagen 2a1 Cre (Col2a1-CreERT2) mice. Antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis (STIA) were induced in both chGRKO mice and their Cre-negative GRflox/flox littermates [wild type (WT)]. Arthritis was assessed by measurement of joint swelling and histology of joints collected at d 14. Neutrophil activity and gene expression patterns associated with cartilage damage were also evaluated. In both arthritis models clinical (joint swelling) and histologic indices of inflammatory activity were significantly greater in chGRKO than in WT mice. The STIA model was characterized by early up-regulation of CXCR2/CXCR2 ligand gene expression in ankle tissues, and significant and selective expansion of splenic CXCR2+ neutrophils in chGRKO arthritic compared to WT arthritic mice. At later stages, gene expression of enzymes involved in cartilage degradation was up-regulated in chGRKO but not WT arthritic mice. Therefore, we summarize that chondrocytes actively mitigate local joint inflammation, cartilage degradation and systemic neutrophil activity via a glucocorticoid-dependent pathway.-Tu, J., Stoner, S., Fromm, P. D., Wang, T., Chen, D., Tuckermann, J., Cooper, M. S., Seibel, M. J., Zhou, H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage.
Collapse
Affiliation(s)
- Jinwen Tu
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Shihani Stoner
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Tingyu Wang
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and
| | - Mark S Cooper
- Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Markus J Seibel
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Hong Zhou
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Kotake S, Nanke Y. Mouse Osteoblasts Play a Crucial Role in the Immune System. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1078-80. [PMID: 26993206 DOI: 10.1016/j.ajpath.2016.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
This commentary highlights the article by Tu et al describing mechanisms in immune-mediated arthritis that may propel strategies to treat diseases involving the bone and immune system.
Collapse
Affiliation(s)
- Shigeru Kotake
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yuki Nanke
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|