1
|
Abdeen AH, Trist BG, Nikseresht S, Harwood R, Roudeau S, Rowlands BD, Kreilaus F, Cottam V, Mor D, Richardson M, Siciliano J, Forkgen J, Schaffer G, Genoud S, Li AA, Proschogo N, Antonio B, Falkenberg G, Brueckner D, Kysenius K, Liddell JR, Fat SCM, Wu S, Fifita J, Lockwood TE, Bishop DP, Blair I, Ortega R, Crouch PJ, Double KL. Parkinson-like wild-type superoxide dismutase 1 pathology induces nigral dopamine neuron degeneration in a novel murine model. Acta Neuropathol 2025; 149:22. [PMID: 40042537 PMCID: PMC11882636 DOI: 10.1007/s00401-025-02859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
Atypical wild-type superoxide dismutase 1 (SOD1) protein misfolding and deposition occurs specifically within the degenerating substantia nigra pars compacta (SNc) in Parkinson disease. Mechanisms driving the formation of this pathology and relationship with SNc dopamine neuron health are yet to be fully understood. We applied proteomic mass spectrometry and synchrotron-based biometal quantification to post-mortem brain tissues from the SNc of Parkinson disease patients and age-matched controls to uncover key factors underlying the formation of wild-type SOD1 pathology in this disorder. We also engineered two of these factors - brain copper deficiency and upregulated SOD1 protein levels - into a novel mouse strain, termed the SOCK mouse, to verify their involvement in the development of Parkinson-like wild-type SOD1 pathology and their impact on dopamine neuron health. Soluble SOD1 protein in the degenerating Parkinson disease SNc exhibited altered post-translational modifications, which may underlie changes to the enzymatic activity and aggregation of the protein in this region. These include decreased copper binding, dysregulation of physiological glycosylation, and atypical oxidation and glycation of key SOD1 amino acid residues. We demonstrated that the biochemical profile introduced in SOCK mice promotes the same post-translational modifications and the development of Parkinson-like wild-type SOD1 pathology in the midbrain and cortex. This pathology accumulates progressively with age and is accompanied by nigrostriatal degeneration and dysfunction, which occur in the absence of α-synuclein deposition. These mice do not exhibit weight loss nor spinal cord motor neuron degeneration, distinguishing them from transgenic mutant SOD1 mouse models. This study provides the first in vivo evidence that mismetallation and altered post-translational modifications precipitates wild-type SOD1 misfolding, dysfunction, and deposition in the Parkinson disease brain, which may contribute to SNc dopamine neuron degeneration. Our data position this pathology as a novel drug target for this disorder, with a particular focus on therapies capable of correcting alterations to SOD1 post-translational modifications.
Collapse
Affiliation(s)
- Amr H Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sara Nikseresht
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Harwood
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Benjamin D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Fabian Kreilaus
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - David Mor
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Miriam Richardson
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Joel Siciliano
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Julia Forkgen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Greta Schaffer
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Anne A Li
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Nicholas Proschogo
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernadeth Antonio
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kai Kysenius
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sandrine Chan Moi Fat
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Jennifer Fifita
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Peter J Crouch
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Smith R, Hovren H, Bowser R, Bakkar N, Garruto R, Ludolph A, Ravits J, Gaertner L, Murphy D, Lebovitz R. Misfolded alpha-synuclein in amyotrophic lateral sclerosis: Implications for diagnosis and treatment. Eur J Neurol 2024; 31:e16206. [PMID: 38270442 PMCID: PMC11235862 DOI: 10.1111/ene.16206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Alpha-synuclein (α-Syn) oligomers and fibrils have been shown to augment the aggregation of TAR DNA-binding Protein 43 (TDP-43) monomers in vitro, supporting the idea that TDP-43 proteinopathies such as ALS may be modulated by the presence of toxic forms of α-Syn. Recently, parkinsonian features were reported in a study of European patients and Lewy bodies have been demonstrated pathologically in a similar series of patients. Based on these and other considerations, we sought to determine whether seed-competent α-Syn can be identified in spinal fluid of patients with ALS including familial, sporadic, and Guamanian forms of the disease. METHODS Based on the finding that α-Syn has been found to be a prion-like protein, we have utilized a validated α-Synuclein seed amplification assay to determine if seed-competent α-Syn could be detected in the spinal fluid of patients with ALS. RESULTS Toxic species of α-Syn were detected in CSF in 18 of 127 ALS patients, 5 of whom were from Guam. Two out of twenty six samples from patients with C9orf72 variant ALS had positive seed-amplification assays (SAAs). No positive tests were noted in superoxide dismutase type 1 ALS subjects (n = 14). The SAA was negative in 31 control subjects. CONCLUSIONS Our findings suggest that a sub-group of ALS occurs in which self-replicating α-Syn is detectable and likely contributes to its pathogenesis. This finding may have implications for the diagnosis and treatment of this disorder.
Collapse
Affiliation(s)
| | - Hanna Hovren
- Amprion Clinical LaboratorySan DiegoCaliforniaUSA
| | | | | | | | | | - John Ravits
- University of California, San DiegoLa JollaCaliforniaUSA
| | - Lia Gaertner
- Bay Area Lyme Disease FoundationPortola ValleyCaliforniaUSA
| | - Davan Murphy
- Center for Neurologic StudyLa JollaCaliforniaUSA
| | | |
Collapse
|
3
|
Lin M, Yu H, Xie Q, Xu Z, Shang P. Role of microglia autophagy and mitophagy in age-related neurodegenerative diseases. Front Aging Neurosci 2023; 14:1100133. [PMID: 37180741 PMCID: PMC10169626 DOI: 10.3389/fnagi.2022.1100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/16/2023] Open
Abstract
Microglia, characterized by responding to damage, regulating the secretion of soluble inflammatory mediators, and engulfing specific segments in the central nervous system (CNS), function as key immune cells in the CNS. Emerging evidence suggests that microglia coordinate the inflammatory responses in CNS system and play a pivotal role in the pathogenesis of age-related neurodegenerative diseases (NDDs). Remarkably, microglia autophagy participates in the regulation of subcellular substances, which includes the degradation of misfolded proteins and other harmful constituents produced by neurons. Therefore, microglia autophagy regulates neuronal homeostasis maintenance and process of neuroinflammation. In this review, we aimed at highlighting the pivotal role of microglia autophagy in the pathogenesis of age-related NDDs. Besides the mechanistic process and the co-interaction between microglia autophagy and different kinds of NDDs, we also emphasized potential therapeutic agents and approaches that could be utilized at the onset and progression of these diseases through modulating microglia autophagy, including promising nanomedicines. Our review provides a valuable reference for subsequent studies focusing on treatments of neurodegenerative disorders. The exploration of microglia autophagy and the development of nanomedicines greatly enhances current understanding of NDDs.
Collapse
Affiliation(s)
- Mingkai Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
5
|
Synucleinopathy in Amyotrophic Lateral Sclerosis: A Potential Avenue for Antisense Therapeutics? Int J Mol Sci 2022; 23:ijms23169364. [PMID: 36012622 PMCID: PMC9409035 DOI: 10.3390/ijms23169364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease classified as both a neurodegenerative and neuromuscular disorder. With a complex aetiology and no current cure for ALS, broadening the understanding of disease pathology and therapeutic avenues is required to progress with patient care. Alpha-synuclein (αSyn) is a hallmark for disease in neurodegenerative disorders, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. A growing body of evidence now suggests that αSyn may also play a pathological role in ALS, with αSyn-positive Lewy bodies co-aggregating alongside known ALS pathogenic proteins, such as SOD1 and TDP-43. This review endeavours to capture the scope of literature regarding the aetiology and development of ALS and its commonalities with "synucleinopathy disorders". We will discuss the involvement of αSyn in ALS and motor neuron disease pathology, and the current theories and strategies for therapeutics in ALS treatment, as well as those targeting αSyn for synucleinopathies, with a core focus on small molecule RNA technologies.
Collapse
|
6
|
Popova B, Galka D, Häffner N, Wang D, Schmitt K, Valerius O, Knop M, Braus GH. α-Synuclein Decreases the Abundance of Proteasome Subunits and Alters Ubiquitin Conjugates in Yeast. Cells 2021; 10:cells10092229. [PMID: 34571878 PMCID: PMC8468666 DOI: 10.3390/cells10092229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Parkinson’s disease (PD) is the most prevalent movement disorder characterized with loss of dopaminergic neurons in the brain. One of the pathological hallmarks of the disease is accumulation of aggregated α-synuclein (αSyn) in cytoplasmic Lewy body inclusions that indicates significant dysfunction of protein homeostasis in PD. Accumulation is accompanied with highly elevated S129 phosphorylation, suggesting that this posttranslational modification is linked to pathogenicity and altered αSyn inclusion dynamics. To address the role of S129 phosphorylation on protein dynamics further we investigated the wild type and S129A variants using yeast and a tandem fluorescent timer protein reporter approach to monitor protein turnover and stability. Overexpression of both variants leads to inhibited yeast growth. Soluble S129A is more stable and additional Y133F substitution permits αSyn degradation in a phosphorylation-independent manner. Quantitative cellular proteomics revealed significant αSyn-dependent disturbances of the cellular protein homeostasis, which are increased upon S129 phosphorylation. Disturbances are characterized by decreased abundance of the ubiquitin-dependent protein degradation machinery. Biotin proximity labelling revealed that αSyn interacts with the Rpt2 base subunit. Proteasome subunit depletion by reducing the expression of the corresponding genes enhances αSyn toxicity. Our studies demonstrate that turnover of αSyn and depletion of the proteasome pool correlate in a complex relationship between altered proteasome composition and increased αSyn toxicity.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
- Correspondence: (B.P.); (G.H.B.)
| | - Dajana Galka
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
| | - Nicola Häffner
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany;
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (D.G.); (N.H.); (D.W.); (K.S.); (O.V.)
- Correspondence: (B.P.); (G.H.B.)
| |
Collapse
|
7
|
The Impact of SNCA Variations and Its Product Alpha-Synuclein on Non-Motor Features of Parkinson's Disease. Life (Basel) 2021; 11:life11080804. [PMID: 34440548 PMCID: PMC8401994 DOI: 10.3390/life11080804] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is clinically characterized by a constellation of motor and non-motor manifestations. The latter include hyposmia, constipation, depression, pain and, in later stages, cognitive decline and dysautonomia. The main pathological features of PD are neuronal loss and consequent accumulation of Lewy bodies (LB) in the surviving neurons. Alpha-synuclein (α-syn) is the main component of LB, and α-syn aggregation and accumulation perpetuate neuronal degeneration. Mutations in the α-syn gene (SNCA) were the first genetic cause of PD to be identified. Generally, patients carrying SNCA mutations present early-onset parkinsonism with severe and early non-motor symptoms, including cognitive decline. Several SNCA polymorphisms were also identified, and some of them showed association with non-motor manifestations. The functional role of these polymorphisms is only partially understood. In this review we explore the contribution of SNCA and its product, α-syn, in predisposing to the non-motor manifestations of PD.
Collapse
|
8
|
Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A. The interplay between parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Trist BG, Hare DJ, Double KL. A Proposed Mechanism for Neurodegeneration in Movement Disorders Characterized by Metal Dyshomeostasis and Oxidative Stress. Cell Chem Biol 2018; 25:807-816. [PMID: 29861271 DOI: 10.1016/j.chembiol.2018.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Shared molecular pathologies between distinct neurodegenerative disorders offer unique opportunities to identify common mechanisms of neuron death, and apply lessons learned from one disease to another. Neurotoxic superoxide dismutase 1 (SOD1) proteinopathy in SOD1-associated familial amyotrophic lateral sclerosis (fALS) is recapitulated in idiopathic Parkinson disease (PD), suggesting that these two phenotypically distinct disorders share an etiological pathway, and tractable therapeutic target(s). Despite 25 years of research, the molecular determinants underlying SOD1 misfolding and toxicity in fALS remain poorly understood. The absence of SOD1 mutations in PD highlights mounting evidence that SOD1 mutations are not the sole cause of SOD1 protein misfolding occasioning oligomerization and toxicity, reinforcing the importance of non-genetic factors, including protein metallation and post-translational modification in determining SOD1 stability and function. We propose that these non-genetic factors underlie the misfolding and dysfunction of SOD1 and other proteins in both PD and fALS, constituting a shared and tractable pathway to neurodegeneration.
Collapse
Affiliation(s)
- Benjamin Guy Trist
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Dominic James Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kay Lorraine Double
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
10
|
Pace MC, Xu G, Fromholt S, Howard J, Giasson BI, Lewis J, Borchelt DR. Differential induction of mutant SOD1 misfolding and aggregation by tau and α-synuclein pathology. Mol Neurodegener 2018; 13:23. [PMID: 29776378 PMCID: PMC5960184 DOI: 10.1186/s13024-018-0253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prior studies in C. elegans demonstrated that the expression of aggregation-prone polyglutamine proteins in muscle wall cells compromised the folding of co-expressed temperature-sensitive proteins, prompting interest in whether the accumulation of a misfolded protein in pathologic features of human neurodegenerative disease burdens cellular proteostatic machinery in a manner that impairs the folding of other cellular proteins. METHODS Mice expressing high levels of mutant forms of tau and α-synuclein (αSyn), which develop inclusion pathologies of the mutant protein in brain and spinal cord, were crossed to mice expressing low levels of mutant superoxide dismutase 1 fused to yellow fluorescent protein (G85R-SOD1:YFP) for aging and neuropathological evaluation. RESULTS Mice expressing low levels of G85R-SOD1:YFP, alone, lived normal lifespans and were free of evidence of inclusion pathology, setting the stage to use this protein as a reporter of proteostatic function. We observed robust induction of G85R-SOD1:YFP inclusion pathology in the neuropil of spinal cord and brainstem of bigenic mice that co-express high levels of mutant tau in the spinal axis and develop robust spinal tau pathology (JNPL3 mice). In contrast, in crosses of the G85R-SOD1:YFP mice with mice that model spinal α-synucleinopathy (the M83 model of αSyn pathology), we observed no G85R-SOD1:YFP inclusion formation. Similarly, in crosses of the G85R-SOD1:YFP mice to mice that model cortical tau pathology (rTg4510 mice), we did not observe induction of G85R-SOD1:YFP inclusions. CONCLUSION Despite robust burdens of neurodegenerative pathology in M83 and rTg4510 mice, the introduction of the G85R-SOD1:YFP protein was induced to aggregate only in the context of spinal tau pathology present in the JNPL3 model. These findings suggest unexpected specificity, mediated by both the primary protein pathology and cellular context, in the induced "secondary aggregation" of a mutant form of SOD1 that could be viewed as a reporter of proteostatic function.
Collapse
Affiliation(s)
- Michael C. Pace
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Susan Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - John Howard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Benoit I. Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 1275 Center Drive, BMS Building J-491, PO Box, Gainesville, FL 32610-0244 USA
- SantaFe Healthcare Alzheimer’s Disease Center, Gainesville, FL USA
| |
Collapse
|
11
|
Villar-Piqué A, Schmitz M, Candelise N, Ventura S, Llorens F, Zerr I. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases. Mol Neurobiol 2018; 55:7588-7605. [DOI: 10.1007/s12035-018-0926-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
12
|
Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, Del-Bel E, Raisman-Vozari R, Chehin RN. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2017; 162:17-36. [PMID: 29241812 DOI: 10.1016/j.pneurobio.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.
Collapse
Affiliation(s)
- Sergio B Socias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cesar L Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cecilia Vera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina; Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France.
| | - Rosana N Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina.
| |
Collapse
|
13
|
Zhou ZD, Tan EK. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 2017; 12:75. [PMID: 29061112 PMCID: PMC5654065 DOI: 10.1186/s13024-017-0218-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
The homeostasis of iron is vital to human health, and iron dyshomeostasis can lead to various disorders. Iron homeostasis is maintained by iron regulatory proteins (IRP1 and IRP2) and the iron-responsive element (IRE) signaling pathway. IRPs can bind to RNA stem-loops containing an IRE in the untranslated region (UTR) to manipulate translation of target mRNA. However, iron can bind to IRPs, leading to the dissociation of IRPs from the IRE and altered translation of target transcripts. Recently an IRE is found in the 5′-UTR of amyloid precursor protein (APP) and α-synuclein (α-Syn) transcripts. The levels of α-Syn, APP and amyloid β-peptide (Aβ) as well as protein aggregation can be down-regulated by IRPs but are up-regulated in the presence of iron accumulation. Therefore, inhibition of the IRE-modulated expression of APP and α-Syn or chelation of iron in patient’s brains has therapeutic significance to human neurodegenerative diseases. Currently, new pre-drug IRE inhibitors with therapeutic effects have been identified and are at different stages of clinical trials for human neurodegenerative diseases. Although some promising drug candidates of chemical IRE inhibitors and iron-chelating agents have been identified and are being validated in clinical trials for neurodegenerative diseases, future studies are expected to further establish the clinical efficacy and safety of IRE inhibitors and iron-chelating agents in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
14
|
Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson's disease brain. Acta Neuropathol 2017; 134:113-127. [PMID: 28527045 DOI: 10.1007/s00401-017-1726-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
Abstract
Neuronal loss in numerous neurodegenerative disorders has been linked to protein aggregation and oxidative stress. Emerging data regarding overlapping proteinopathy in traditionally distinct neurodegenerative diseases suggest that disease-modifying treatments targeting these pathological features may exhibit efficacy across multiple disorders. Here, we describe proteinopathy distinct from classic synucleinopathy, predominantly comprised of the anti-oxidant enzyme superoxide dismutase-1 (SOD1), in the Parkinson's disease brain. Significant expression of this pathology closely reflected the regional pattern of neuronal loss. The protein composition and non-amyloid macrostructure of these novel aggregates closely resembles that of neurotoxic SOD1 deposits in SOD1-associated familial amyotrophic lateral sclerosis (fALS). Consistent with the hypothesis that deposition of protein aggregates in neurodegenerative disorders reflects upstream dysfunction, we demonstrated that SOD1 in the Parkinson's disease brain exhibits evidence of misfolding and metal deficiency, similar to that seen in mutant SOD1 in fALS. Our data suggest common mechanisms of toxic SOD1 aggregation in both disorders and a potential role for SOD1 dysfunction in neuronal loss in the Parkinson's disease brain. This shared restricted proteinopathy highlights the potential translation of therapeutic approaches targeting SOD1 toxicity, already in clinical trials for ALS, into disease-modifying treatments for Parkinson's disease.
Collapse
|
15
|
Tachu BJ, Wüsten KA, Garza MC, Wille H, Tamgüney G. An easy method for bacterial expression and purification of wild-type and mutant superoxide dismutase 1 (SOD1). Protein Expr Purif 2017; 134:63-71. [DOI: 10.1016/j.pep.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/06/2017] [Accepted: 04/01/2017] [Indexed: 12/13/2022]
|
16
|
Rcom-H'cheo-Gauthier AN, Osborne SL, Meedeniya ACB, Pountney DL. Calcium: Alpha-Synuclein Interactions in Alpha-Synucleinopathies. Front Neurosci 2016; 10:570. [PMID: 28066161 PMCID: PMC5167751 DOI: 10.3389/fnins.2016.00570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2022] Open
Abstract
Aggregation of the pre-synaptic protein, α-synuclein (α-syn), is the key etiological factor in Parkinson's disease (PD) and other alpha-synucleinopathies, such as multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB). Various triggers for pathological α-syn aggregation have been elucidated, including post-translational modifications, oxidative stress, and binding of metal ions, such as calcium. Raised neuronal calcium levels in PD may occur due to mitochondrial dysfunction and/or may relate to calcium channel dysregulation or the reduced expression of the neuronal calcium buffering protein, calbindin-D28k. Recent results on human tissue and a mouse oxidative stress model show that neuronal calbindin-D28k expression excludes α-syn inclusion bodies. Previously, cell culture model studies have shown that transient increases of intracellular free Ca(II), such as by opening of the voltage-gated plasma calcium channels, could induce cytoplasmic aggregates of α-syn. Raised intracellular free calcium and oxidative stress also act cooperatively to promote α-syn aggregation. The association between raised neuronal calcium, α-syn aggregation, oxidative stress, and neurotoxicity is reviewed in the context of neurodegenerative α-syn disease and potential mechanism-based therapies.
Collapse
Affiliation(s)
| | | | | | - Dean L. Pountney
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
17
|
Helferich AM, McLean PJ, Weishaupt JH, Danzer KM. Commentary: alpha-synuclein interacts with SOD1 and promotes its oligomerization. ACTA ACUST UNITED AC 2016; 1:28-30. [PMID: 27853754 DOI: 10.29245/2572.942x/2016/7.1065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alpha-synuclein and Cu, Zn superoxide dismutase (SOD1) are both aggregation-prone proteins that are associated with Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), respectively. Recently, we showed that alpha-synuclein interacts with SOD1 in various cell types and tissues. Using a cell culture model, we also found that alpha-synuclein nucleates the polymerization of SOD1. Here, we discuss the current literature regarding their interaction and their co-localization in aggregates of human post-mortem tissue. Furthermore we comment on the reported alpha-synuclein-induced SOD1 polymerization in terms of cross-seeding effects in neurodegeneration.
Collapse
Affiliation(s)
- Anika M Helferich
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|