1
|
Rafikov R, de Jesus Perez V, Dekan A, Kudryashova TV, Rafikova O. Deciphering the Complexities of Pulmonary Hypertension: The Emergent Role of Single-Cell Omics. Am J Respir Cell Mol Biol 2024; 72:32-40. [PMID: 39141563 PMCID: PMC11707669 DOI: 10.1165/rcmb.2024-0145ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024] Open
Abstract
Expanding upon the critical advancements brought forth by single-cell omics in pulmonary hypertension (PH) research, this review delves deep into how these technologies have been piloted in a new era of understanding this complex disease. By leveraging the power of single cell transcriptomics (scRNA-seq), researchers can now dissect the complicated cellular ecosystem of the lungs, examining the key players such as endothelial cells, smooth muscle cells, pericytes, and immune cells, and their unique roles in the pathogenesis of PH. This more granular view is beyond the limitations of traditional bulk analysis, allowing for the identification of novel therapeutic targets previously obscured in the aggregated data. Connectome analysis based on single-cell omics of the cells involved in pathological changes can reveal a clearer picture of the cellular interactions and transitions in the cellular subtypes. Furthermore, the review acknowledges the challenges that lie ahead, including the need for enhancing the resolution of scRNA-seq to capture even finer details of cellular changes, overcoming logistical barriers in processing human tissue samples, and the necessity of integrating diverse omics approaches to fully comprehend the molecular underpinnings of PH. The promise of these single-cell technologies is immense, offering the potential for targeted drug development and the discovery of biomarkers for early diagnosis and disease monitoring. Through these advancements, the field moves closer to realizing the goal of precision medicine for patients with PH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Indiana University School of Medicine, Indianapolis, Indiana, United States;
| | | | - Aleksandr Dekan
- Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Tatiana V Kudryashova
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, United States
| | - Olga Rafikova
- Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Li J, Wang S, Yan K, Wang P, Jiao J, Wang Y, Chen M, Dong Y, Zhong J. Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages. IMETA 2024; 3:e222. [PMID: 39135690 PMCID: PMC11316932 DOI: 10.1002/imt2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in hypertension, and drug-host-microbiome interactions have drawn considerable attention. However, the influence of angiotensin receptor blocker (ARB)-shaped gut microbiota on the host is not fully understood. In this work, we assessed the alterations of blood pressure (BP), vasculatures, and intestines following ARB-modified gut microbiome treatment and evaluated the changes in the intestinal transcriptome and serum metabolome in hypertensive rats. Hypertensive patients with well-controlled BP under ARB therapy were recruited as human donors, spontaneously hypertensive rats (SHRs) receiving normal saline or valsartan were considered animal donors, and SHRs were regarded as recipients. Histological and immunofluorescence staining was used to assess the aorta and small intestine, and 16S rRNA amplicon sequencing was performed to examine gut bacteria. Transcriptome and metabonomic analyses were conducted to determine the intestinal transcriptome and serum metabolome, respectively. Notably, ARB-modified fecal microbiota transplantation (FMT), results in marked decreases in systolic BP levels, collagen deposition and reactive oxygen species accumulation in the vasculature, and alleviated intestinal structure impairments in SHRs. These changes were linked with the reconstruction of the gut microbiota in SHR recipients post-FMT, especially with a decreased abundance of Lactobacillus, Aggregatibacter, and Desulfovibrio. Moreover, ARB-treated microbes contributed to increased intestinal Ciart, Per1, Per2, Per3, and Cipc gene levels and decreased Nfil3 and Arntl expression were detected in response to ARB-treated microbes. More importantly, circulating metabolites were dramatically reduced in ARB-FMT rats, including 6beta-Hydroxytestosterone and Thromboxane B2. In conclusion, ARB-modified gut microbiota exerts protective roles in vascular remodeling and injury, metabolic abnormality and intestinal dysfunctions, suggesting a pivotal role in mitigating hypertension and providing insights into the cross-talk between antihypertensive medicines and the gut microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Si‐Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kai‐Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐Dan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mu‐Lei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiu‐Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Choudhury P, Dasgupta S, Bhattacharyya P, Roychowdhury S, Chaudhury K. Understanding pulmonary hypertension: the need for an integrative metabolomics and transcriptomics approach. Mol Omics 2024; 20:366-389. [PMID: 38853716 DOI: 10.1039/d3mo00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pulmonary hypertension (PH), characterised by mean pulmonary arterial pressure (mPAP) >20 mm Hg at rest, is a complex pathophysiological disorder associated with multiple clinical conditions. The high prevalence of the disease along with increased mortality and morbidity makes it a global health burden. Despite major advances in understanding the disease pathophysiology, much of the underlying complex molecular mechanism remains to be elucidated. Lack of a robust diagnostic test and specific therapeutic targets also poses major challenges. This review provides a comprehensive update on the dysregulated pathways and promising candidate markers identified in PH patients using the transcriptomics and metabolomics approach. The review also highlights the need of using an integrative multi-omics approach for obtaining insight into the disease at a molecular level. The integrative multi-omics/pan-omics approach envisaged to help in bridging the gap from genotype to phenotype is outlined. Finally, the challenges commonly encountered while conducting omics-driven studies are also discussed.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, West Bengal, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
5
|
Dabral S, Noh M, Werner F, Krebes L, Völker K, Maier C, Aleksic I, Novoyatleva T, Hadzic S, Schermuly RT, Perez VADJ, Kuhn M. C-type natriuretic peptide/cGMP/FoxO3 signaling attenuates hyperproliferation of pericytes from patients with pulmonary arterial hypertension. Commun Biol 2024; 7:693. [PMID: 38844781 PMCID: PMC11156916 DOI: 10.1038/s42003-024-06375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | - Minhee Noh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lisa Krebes
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christopher Maier
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Ivan Aleksic
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Hang C, Zu L, Luo X, Wang Y, Yan L, Zhang Z, Le K, Huang Y, Ye L, Ying Y, Chen K, Xu X, Lv Q, Du L. Ddx5 Targeted Epigenetic Modification of Pericytes in Pulmonary Hypertension After Intrauterine Growth Restriction. Am J Respir Cell Mol Biol 2024; 70:400-413. [PMID: 38301267 DOI: 10.1165/rcmb.2023-0244oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
Newborns with intrauterine growth restriction (IUGR) have a higher likelihood of developing pulmonary arterial hypertension (PAH) in adulthood. Although there is increasing evidence suggesting that pericytes play a role in regulating myofibroblast transdifferentiation and angiogenesis in malignant and cardiovascular diseases, their involvement in the pathogenesis of IUGR-related pulmonary hypertension and the underlying mechanisms remain incompletely understood. To address this issue, a study was conducted using a Sprague-Dawley rat model of IUGR-related pulmonary hypertension. Our investigation revealed increased proliferation and migration of pulmonary microvascular pericytes in IUGR-related pulmonary hypertension, accompanied by weakened endothelial-pericyte interactions. Through whole-transcriptome sequencing, Ddx5 (DEAD-box protein 5) was identified as one of the hub genes in pericytes. DDX5, a member of the RNA helicase family, plays a role in the regulation of ATP-dependent RNA helicase activities and cellular function. MicroRNAs have been implicated in the pathogenesis of PAH, and microRNA-205 (miR-205) regulates cell proliferation, migration, and angiogenesis. The results of dual-luciferase reporter assays confirmed the specific binding of miR-205 to Ddx5. Mechanistically, miR-205 negatively regulates Ddx5, leading to the degradation of β-catenin by inhibiting the phosphorylation of Gsk3β at serine 9. In vitro experiments showed the addition of miR-205 effectively ameliorated pericyte dysfunction. Furthermore, in vivo experiments demonstrated that miR-205 agomir could ameliorate pulmonary hypertension. Our findings indicated that the downregulation of miR-205 expression mediates pericyte dysfunction through the activation of Ddx5. Therefore, targeting the miR-205/Ddx5/p-Gsk3β/β-catenin axis could be a promising therapeutic approach for IUGR-related pulmonary hypertension.
Collapse
Affiliation(s)
| | - Lu Zu
- Department of Neonatology and
| | - Xiaofei Luo
- Department of Pediatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China; and
| | - Yu Wang
- Department of Neonatology and
| | - Lingling Yan
- Department of Pediatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China; and
| | | | - Kaixing Le
- Academy of Pediatrics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | | | | | | | | | - Xuefeng Xu
- Department of Rheumatology, Immunology, and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, People's Republic of China
| | | | | |
Collapse
|
7
|
Favoino E, Prete M, Liakouli V, Leone P, Sisto A, Navarini L, Vomero M, Ciccia F, Ruscitti P, Racanelli V, Giacomelli R, Perosa F. Idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH): Similarities, differences and the role of autoimmunity. Autoimmun Rev 2024; 23:103514. [PMID: 38181859 DOI: 10.1016/j.autrev.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Pre-capillary pulmonary arterial hypertension (PAH) is hemodynamically characterized by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg, pulmonary capillary wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) > 2. PAH is classified in six clinical subgroups, including idiopathic PAH (IPAH) and PAH associated to connective tissue diseases (CTD-PAH), that will be the main object of this review. The aim is to compare these two PAH subgroups in terms of epidemiology, histological and pathogenic findings in an attempt to define disease-specific features, including autoimmunity, that may explain the heterogeneity of response to therapy between IPAH and CTD-PAH.
Collapse
Affiliation(s)
- Elvira Favoino
- Laboratory of Cellular and Molecular Immunology, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Adriana Sisto
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Luca Navarini
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Marta Vomero
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
8
|
Maurissen TL, Spielmann AJ, Schellenberg G, Bickle M, Vieira JR, Lai SY, Pavlou G, Fauser S, Westenskow PD, Kamm RD, Ragelle H. Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip. Nat Commun 2024; 15:1372. [PMID: 38355716 PMCID: PMC10866954 DOI: 10.1038/s41467-024-45456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disorder characterized by inner blood-retinal barrier (iBRB) breakdown and irreversible vision loss. While the symptoms of DR are known, disease mechanisms including basement membrane thickening, pericyte dropout and capillary damage remain poorly understood and interventions to repair diseased iBRB microvascular networks have not been developed. In addition, current approaches using animal models and in vitro systems lack translatability and predictivity to finding new target pathways. Here, we develop a diabetic iBRB-on-a-chip that produces pathophysiological phenotypes and disease pathways in vitro that are representative of clinical diagnoses. We show that diabetic stimulation of the iBRB-on-a-chip mirrors DR features, including pericyte loss, vascular regression, ghost vessels, and production of pro-inflammatory factors. We also report transcriptomic data from diabetic iBRB microvascular networks that may reveal drug targets, and examine pericyte-endothelial cell stabilizing strategies. In summary, our model recapitulates key features of disease, and may inform future therapies for DR.
Collapse
Affiliation(s)
- Thomas L Maurissen
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alena J Spielmann
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Gabriella Schellenberg
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Bickle
- Roche Pharma Research and Early Development, Institute of Human Biology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jose Ricardo Vieira
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Si Ying Lai
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Peter D Westenskow
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
9
|
Ock J, Liu FY, Fridayana FR, Niloofar L, Vo MN, Huang Y, Piao S, Zhou T, Guonan Y. MicroRNA-148a-3p in pericyte-derived extracellular vesicles improves erectile function in diabetic mice by promoting cavernous neurovascular regeneration. BMC Urol 2023; 23:209. [PMID: 38104056 PMCID: PMC10725581 DOI: 10.1186/s12894-023-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND To investigate the regulatory role of microRNA (miR)-148a-3p in mouse corpus cavernous pericyte (MCPs)-derived extracellular vesicles (EVs) in the treatment of diabetes-induced erectile dysfunction (ED). METHODS Mouse corpus cavernous tissue was used for MCP primary culture and EV isolation. Small-RNA sequencing analysis was performed to assess the type and content of miRs in MCPs-EVs. Four groups of mice were used: control nondiabetic mice and streptozotocin-induced diabetic mice receiving two intracavernous injections (days - 3 and 0) of phosphate buffered saline, MCPs-EVs transfected with reagent control, or MCPs-EVs transfected with a miR-148a-3p inhibitor. miR-148a-3p function in MCPs-EVs was evaluated by tube-formation assay, migration assay, TUNEL assay, intracavernous pressure, immunofluorescence staining, and Western blotting. RESULTS We extracted EVs from MCPs, and small-RNA sequencing analysis showed miR-148a-3p enrichment in MCPs-EVs. Exogenous MCPs-EV administration effectively promoted mouse cavernous endothelial cell (MCECs) tube formation, migration, and proliferation, and reduced MCECs apoptosis under high-glucose conditions. These effects were significantly attenuated in miR-148a-3p-depleted MCPs-EVs, which were extracted after inhibiting miR-148a-3p expression in MCPs. Repetitive intracavernous injections of MCPs-EVs improved erectile function by inducing cavernous neurovascular regeneration in diabetic mice. Using online bioinformatics databases and luciferase report assays, we predicted that pyruvate dehydrogenase kinase-4 (PDK4) is a potential target gene of miR-148a-3p. CONCLUSIONS Our findings provide new and reliable evidence that miR-148a-3p in MCPs-EVs significantly enhances cavernous neurovascular regeneration by inhibiting PDK4 expression in diabetic mice.
Collapse
Affiliation(s)
- Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Fang-Yuan Liu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Fitri Rahma Fridayana
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Lashkari Niloofar
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Minh Nhat Vo
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Yan Huang
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Shuguang Piao
- Department of Urology, Changhai Hospital Affiliated with the Naval Medicine University, Shanghai, 200433, People's Republic of China.
| | - Tie Zhou
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, No. 1279 Sanmen Road, Shanghai, 200434, China.
| | - Yin Guonan
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, 7-206, 3rd ST, Shinheung-Dong, Jung-Gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
10
|
Breault NM, Wu D, Dasgupta A, Chen KH, Archer SL. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1105565. [PMID: 36819102 PMCID: PMC9933518 DOI: 10.3389/fcell.2023.1105565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an orphan disease of the cardiopulmonary unit that reflects an obstructive pulmonary vasculopathy and presents with hypertrophy, inflammation, fibrosis, and ultimately failure of the right ventricle (RVF). Despite treatment using pulmonary hypertension (PH)-targeted therapies, persistent functional impairment reduces the quality of life for people with PAH and death from RVF occurs in approximately 40% of patients within 5 years of diagnosis. PH-targeted therapeutics are primarily vasodilators and none, alone or in combination, are curative. This highlights a need to therapeutically explore molecular targets in other pathways that are involved in the pathogenesis of PAH. Several candidate pathways in PAH involve acquired mitochondrial dysfunction. These mitochondrial disorders include: 1) a shift in metabolism related to increased expression of pyruvate dehydrogenase kinase and pyruvate kinase, which together increase uncoupled glycolysis (Warburg metabolism); 2) disruption of oxygen-sensing related to increased expression of hypoxia-inducible factor 1α, resulting in a state of pseudohypoxia; 3) altered mitochondrial calcium homeostasis related to impaired function of the mitochondrial calcium uniporter complex, which elevates cytosolic calcium and reduces intramitochondrial calcium; and 4) abnormal mitochondrial dynamics related to increased expression of dynamin-related protein 1 and its binding partners, such as mitochondrial dynamics proteins of 49 kDa and 51 kDa, and depressed expression of mitofusin 2, resulting in increased mitotic fission. These acquired mitochondrial abnormalities increase proliferation and impair apoptosis in most pulmonary vascular cells (including endothelial cells, smooth muscle cells and fibroblasts). In the RV, Warburg metabolism and induction of glutaminolysis impairs bioenergetics and promotes hypokinesis, hypertrophy, and fibrosis. This review will explore our current knowledge of the causes and consequences of disordered mitochondrial function in PAH.
Collapse
Affiliation(s)
- Nolan M. Breault
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON, Canada,Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| |
Collapse
|
11
|
Bousseau S, Sobrano Fais R, Gu S, Frump A, Lahm T. Pathophysiology and new advances in pulmonary hypertension. BMJ MEDICINE 2023; 2:e000137. [PMID: 37051026 PMCID: PMC10083754 DOI: 10.1136/bmjmed-2022-000137] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
Pulmonary hypertension is a progressive and often fatal cardiopulmonary condition characterised by increased pulmonary arterial pressure, structural changes in the pulmonary circulation, and the formation of vaso-occlusive lesions. These changes lead to increased right ventricular afterload, which often progresses to maladaptive right ventricular remodelling and eventually death. Pulmonary arterial hypertension represents one of the most severe and best studied types of pulmonary hypertension and is consistently targeted by drug treatments. The underlying molecular pathogenesis of pulmonary hypertension is a complex and multifactorial process, but can be characterised by several hallmarks: inflammation, impaired angiogenesis, metabolic alterations, genetic or epigenetic abnormalities, influence of sex and sex hormones, and abnormalities in the right ventricle. Current treatments for pulmonary arterial hypertension and some other types of pulmonary hypertension target pathways involved in the control of pulmonary vascular tone and proliferation; however, these treatments have limited efficacy on patient outcomes. This review describes key features of pulmonary hypertension, discusses current and emerging therapeutic interventions, and points to future directions for research and patient care. Because most progress in the specialty has been made in pulmonary arterial hypertension, this review focuses on this type of pulmonary hypertension. The review highlights key pathophysiological concepts and emerging therapeutic directions, targeting inflammation, cellular metabolism, genetics and epigenetics, sex hormone signalling, bone morphogenetic protein signalling, and inhibition of tyrosine kinase receptors.
Collapse
Affiliation(s)
- Simon Bousseau
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Rafael Sobrano Fais
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Sue Gu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrea Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
12
|
Wang J, Uddin MN, Wang R, Gong YH, Wu Y. Comprehensive analysis and validation of novel immune and vascular remodeling related genes signature associated with drug interactions in pulmonary arterial hypertension. Front Genet 2022; 13:922213. [PMID: 36147486 PMCID: PMC9486302 DOI: 10.3389/fgene.2022.922213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies revealed that the gene signatures are associated with the modulation and pathogenesis of pulmonary arterial hypertension (PAH). However, identifying critical transcriptional signatures in the blood of PAH patients remains lacking. Methods: The differentially expressed transcriptional signatures in the blood of PAH patients were identified by a meta-analysis from four microarray datasets. Then we investigated the enrichment of gene ontology and KEGG pathways and identified top hub genes. Besides, we investigated the correlation of crucial hub genes with immune infiltrations, hallmark gene sets, and blood vessel remodeling genes. Furthermore, we investigated the diagnostic efficacy of essential hub genes and their expression validation in an independent cohort of PAH, and we validate the expression level of hub genes in monocrotaline (MCT) induced PAH rats' model. Finally, we have identified the FDA-approved drugs that target the hub genes and their molecular docking. Results: We found 1,216 differentially expressed genes (DEGs), including 521 up-regulated and 695 down-regulated genes, in the blood of the PAH patients. The up-regulated DEGs are significantly associated with the enrichment of KEGG pathways mainly involved with immune regulation, cellular signaling, and metabolisms. We identified 13 master transcriptional regulators targeting the dysregulated genes in PAH. The STRING-based investigation identified the function of hub genes associated with multiple immune-related pathways in PAH. The expression levels of RPS27A, MAPK1, STAT1, RPS6, FBL, RPS3, RPS2, and GART are positively correlated with ssGSEA scores of various immune cells as positively correlated with the hallmark of oxidative stress. Besides, we found that these hub genes also regulate the vascular remodeling in PAH. Furthermore, the expression levels of identified hub genes showed good diagnostic efficacy in the blood of PAH, and we validated most of the hub genes are consistently dysregulated in an independent PAH cohort. Validation of hub genes expression level in the monocrotaline (MCT)-induced lung tissue of rats with PAH revealed that 5 screened hub genes (MAPK1, STAT1, TLR4, TLR2, GART) are significantly highly expressed in PAH rats, and 4 screened hub genes (RPS6, FBL, RPS3, and RPS2) are substantially lowly expressed in rats with PAH. Finally, we analyzed the interaction of hub proteins and FDA-approved drugs and revealed their molecular docking, and the results showed that MAPK1, TLR4, and GART interact with various drugs with appropriate binding affinity. Conclusion: The identified blood-derived key transcriptional signatures significantly correlate with immune infiltrations, hypoxia, glycolysis, and blood vessel remodeling genes. These findings may provide new insight into the diagnosis and treatment of PAH patients.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Rui Wang
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue-Hong Gong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
13
|
Baek SH, Maiorino E, Kim H, Glass K, Raby BA, Yuan K. Single Cell Transcriptomic Analysis Reveals Organ Specific Pericyte Markers and Identities. Front Cardiovasc Med 2022; 9:876591. [PMID: 35722109 PMCID: PMC9199463 DOI: 10.3389/fcvm.2022.876591] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
Pericytes are mesenchymal-derived mural cells that wrap around capillaries and directly contact endothelial cells. Present throughout the body, including the cardiovascular system, pericytes are proposed to have multipotent cell-like properties and are involved in numerous biological processes, including regulation of vascular development, maturation, permeability, and homeostasis. Despite their physiological importance, the functional heterogeneity, differentiation process, and pathological roles of pericytes are not yet clearly understood, in part due to the inability to reliably distinguish them from other mural cell populations. Our study focused on identifying pericyte-specific markers by analyzing single-cell RNA sequencing data from tissue-specific mouse pericyte populations generated by the Tabula Muris Senis. We identified the mural cell cluster in murine lung, heart, kidney, and bladder that expressed either of two known pericyte markers, Cspg4 or Pdgfrb. We further defined pericytes as those cells that co-expressed both markers within this cluster. Single-cell differential expression gene analysis compared this subset with other clusters that identified potential pericyte marker candidates, including Kcnk3 (in the lung); Rgs4 (in the heart); Myh11 and Kcna5 (in the kidney); Pcp4l1 (in the bladder); and Higd1b (in lung and heart). In addition, we identified novel markers of tissue-specific pericytes and signaling pathways that may be involved in maintaining their identity. Moreover, the identified markers were further validated in Human Lung Cell Atlas and human heart single-cell RNAseq databases. Intriguingly, we found that markers of heart and lung pericytes in mice were conserved in human heart and lung pericytes. In this study, we, for the first time, identified specific pericyte markers among lung, heart, kidney, and bladder and reveal differentially expressed genes and functional relationships between mural cells.
Collapse
Affiliation(s)
- Seung-Han Baek
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Enrico Maiorino
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Hyunbum Kim
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States,*Correspondence: Benjamin A. Raby
| | - Ke Yuan
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States,Ke Yuan
| |
Collapse
|
14
|
Le Vely B, Phan C, Berrebeh N, Thuillet R, Ottaviani M, Chelgham MK, Chaumais MC, Amazit L, Humbert M, Huertas A, Guignabert C, Tu L. Loss of cAbl Tyrosine Kinase in Pulmonary Arterial Hypertension Causes Dysfunction of Vascular Endothelial Cells. Am J Respir Cell Mol Biol 2022; 67:215-226. [PMID: 35550008 DOI: 10.1165/rcmb.2021-0332oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease characterized by the dysfunction of pulmonary endothelial cells (ECs) and obstructive vascular remodeling. The non-receptor tyrosine kinase c-Abelson (cAbl) plays central roles in regulating cell-cycle arrest, apoptosis, and senescence after cellular stress. We hypothesized that cAbl is down-activated in experimental and human PAH, thus leading to reduced DNA integrity and angiogenic capacity of pulmonary ECs from PAH patients (PAH-ECs). We found cAbl and phosphorylated cAbl levels to be lower in the endothelium of remodeled pulmonary vessels in the lungs of PAH patients than controls. Similar observations were obtained for the lungs of sugen+hypoxia (SuHx) and monocrotaline (MCT) rats with established pulmonary hypertension. These in situ abnormalities were also replicated in vitro, with cultured PAH-ECs displaying lower cAbl expression and activity and an altered DNA damage response and capacity of tube formation. Downregulation of cAbl by RNA-interference in Control-ECs or its inhibition with dasatinib resulted in genomic instability and the failure to form tubes, whereas upregulation of cAbl with DPH reduced DNA damage and apoptosis in PAH-ECs. Finally, we establish the existence of crosstalk between cAbl and bone morphogenetic protein receptor type II (BMPRII). This work identifies the loss of cAbl signaling as a novel contributor to pulmonary EC dysfunction associated with PAH.
Collapse
Affiliation(s)
- Benjamin Le Vely
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Carole Phan
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Nihel Berrebeh
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Raphaël Thuillet
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Mina Ottaviani
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Mustapha Kamel Chelgham
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Marie-Camille Chaumais
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France.,Université Paris-Saclay Faculté de Pharmacie, 70620, Chatenay-Malabry, France
| | - Larbi Amazit
- Institut Biomédical de Bicêtre, 46657, UMS_44, Villejuif, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Marc Humbert
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France.,Assistance Publique - Hopitaux de Paris, 26930, Service de Pneumologie et Soins Intensifs Respiratoires, Le Kremlin-Bicêtre, France
| | - Alice Huertas
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France.,Assistance Publique - Hopitaux de Paris, 26930, Service de Pneumologie et Soins Intensifs Respiratoires, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France
| | - Ly Tu
- INSERM, 27102, UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Saclay Faculté de Médecine, 89691, UMR_S 999, Le Kremlin-Bicetre, France;
| |
Collapse
|
15
|
Leung SWS, Shi Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacol Sin 2022; 43:251-259. [PMID: 33850277 PMCID: PMC8791959 DOI: 10.1038/s41401-021-00647-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Endothelial cells play an obligatory role in regulating local vascular tone and maintaining homeostasis in vascular biology. Cell metabolism, converting food to energy in organisms, is the primary self-sustaining mechanism for cell proliferation and reproduction, structure maintenance, and fight-or-flight responses to stimuli. Four major metabolic processes take place in the energy-producing process, including glycolysis, oxidative phosphorylation, glutamine metabolism, and fatty acid oxidation. Among them, glycolysis is the primary energy-producing mechanism in endothelial cells. The present review focused on glycolysis in endothelial cells under both physiological and pathological conditions. Since the switches among metabolic processes precede the functional changes and disease developments, some prophylactic and/or therapeutic strategies concerning the role of glycolysis in cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Susan, Wai Sum Leung
- grid.194645.b0000000121742757Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Shi
- grid.8547.e0000 0001 0125 2443Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
16
|
Tobal R, Potjewijd J, van Empel VPM, Ysermans R, Schurgers LJ, Reutelingsperger CP, Damoiseaux JGMC, van Paassen P. Vascular Remodeling in Pulmonary Arterial Hypertension: The Potential Involvement of Innate and Adaptive Immunity. Front Med (Lausanne) 2022; 8:806899. [PMID: 35004784 PMCID: PMC8727487 DOI: 10.3389/fmed.2021.806899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with high morbidity and mortality. Current therapies are mainly focused on vasodilative agents to improve prognosis. However, recent literature has shown the important interaction between immune cells and stromal vascular cells in the pathogenic modifications of the pulmonary vasculature. The immunological pathogenesis of PAH is known as a complex interplay between immune cells and vascular stromal cells, via direct contacts and/or their production of extra-cellular/diffusible factors such as cytokines, chemokines, and growth factors. These include, the B-cell—mast-cell axis, endothelium mediated fibroblast activation and subsequent M2 macrophage polarization, anti-endothelial cell antibodies and the versatile role of IL-6 on vascular cells. This review aims to outline the major pathophysiological changes in vascular cells caused by immunological mechanisms, leading to vascular remodeling, increased pulmonary vascular resistance and eventually PAH. Considering the underlying immunological mechanisms, these mechanisms may be key to halt progression of disease.
Collapse
Affiliation(s)
- Rachid Tobal
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith Potjewijd
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Renee Ysermans
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Pieter van Paassen
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
17
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Rev Physiol Biochem Pharmacol 2022; 184:159-179. [PMID: 35380274 DOI: 10.1007/112_2022_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary hypertension (PH) is a disease with high pulmonary arterial pressure, pulmonary vasoconstriction, pulmonary vascular remodeling, and microthrombosis in complex plexiform lesions, but it has been unclear of the exact mechanism of PH. A new understanding of the pathogenesis of PH is occurred and focused on the role of crosstalk between the cells on pulmonary vessels and pulmonary alveoli. It was found that the crosstalks among the endothelial cells, smooth muscle cells, fibroblasts, pericytes, alveolar epithelial cells, and macrophages play important roles in cell proliferation, migration, inflammation, and so on. Therefore, the heterogeneity of multiple pulmonary blood vessels and alveolar cells and tracking the transmitters of cell communication could be conducive to the further insights into the pathogenesis of PH to discover the potential therapeutic targets for PH.
Collapse
|
19
|
He W, Su X, Chen L, Liu C, Lu W, Wang T, Wang J. Potential biomarkers and therapeutic targets of idiopathic pulmonary arterial hypertension. Physiol Rep 2022; 10:e15101. [PMID: 34981661 PMCID: PMC8724678 DOI: 10.14814/phy2.15101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Peripheral blood mononuclear cells (PBMCs) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). However, the specific roles of PBMCs in the development and progression of idiopathic PAH (IPAH) have not been fully understood. METHODS Here, differentially expressed genes (DEGs) of PBMCs or lung tissues between IPAH patients and healthy controls were identified via bioinformatics analysis of Gene Expression Omnibus (GEO) datasets GSE33463 and GSE48149, respectively. Subsequently, extensive target prediction and network analysis were performed to assess protein-protein interaction (PPI) networks, Gene Ontology (GO) terms, and pathway enrichment for DEGs. Co-expressed DEGs between PBMCs and lung tissues coupled with corresponding predicted miRNAs involved in PAH were also assessed. We identified 251 DEGs in PBMCs and 151 DEGs in lung tissue samples from IPAH. PDK4, RBPMS2, and PDE5A expression were altered in both PBMCs and lung tissues from IPAH patients compared to healthy control. RESULTS CXCL8, JUN, TLR8, IL1B, and TLR7 could be implicated as the hub genes in PBMCs, whereas ENO1, STAT1, CXCL10, GPI, and IRF1 in lung tissues. Finally, co-expressed DEGs of PDK4, RBPMS2, and PDE5A coupled with corresponding predicted miRNAs, especially miR-103a-3p, miR-185-5p, and miR-515-5p, are significantly associated with IPAH. CONCLUSION Our findings collectively suggest that the expression levels of PDK4, RBPMS2, and PDE5A in PBMCs are associated with the expression of these genes in lung tissues. Thus, these molecules may serve as potential circulating biomarkers and/or possible therapeutic targets for IPAH.
Collapse
Affiliation(s)
- Wenjun He
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Pulmonary MedicineAmsterdam University Medical CenterLocation VU University Medical CenterAmsterdamThe Netherlands
| | - Xi Su
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lingdan Chen
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chunli Liu
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenju Lu
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Tao Wang
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jian Wang
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
20
|
Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.03957-2020. [PMID: 33509961 DOI: 10.1183/13993003.03957-2020] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Colin E Evans
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas D Cober
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA .,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Lechartier B, Berrebeh N, Huertas A, Humbert M, Guignabert C, Tu L. Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy. Chest 2021; 161:219-231. [PMID: 34391758 DOI: 10.1016/j.chest.2021.08.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive incurable condition that is characterized by extensive remodelling of the pulmonary circulation, leading to severe right heart failure and death. Similar to other vascular contractile cells, pulmonary arterial smooth muscle cells (PA-SMCs) play central roles in physiological and pathological vascular remodelling due to their remarkable ability to dynamically modulate their phenotype to ensure contractile and synthetic functions. The dysfunction and molecular mechanisms underlying their contribution to the various pulmonary vascular lesions associated with PAH have been a major focus of research. The aim of this review is to describe the medial and non-medial origins of contractile cells in the pulmonary vascular wall and present evidence of how they contribute to the onset and progression of PAH. We also highlight specific potential target molecules and discuss future directions that are being explored to widen the therapeutic options for the treatment of PAH.
Collapse
Affiliation(s)
- Benoit Lechartier
- Pulmonary Division, Lausanne University Hospital, Lausanne, Switzerland; Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Nihel Berrebeh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
22
|
Yuan K, Liu Y, Zhang Y, Nathan A, Tian W, Yu J, Sweatt AJ, Shamshou EA, Condon D, Chakraborty A, Agarwal S, Auer N, Zhang S, Wu JC, Zamanian RT, Nicolls MR, de Jesus Perez VA. Mural Cell SDF1 Signaling Is Associated with the Pathogenesis of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 62:747-759. [PMID: 32084325 DOI: 10.1165/rcmb.2019-0401oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Yu Liu
- Stanford Cardiovascular Institute
| | | | - Abinaya Nathan
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Wen Tian
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and.,VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, California; and
| | - Joyce Yu
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Andrew J Sweatt
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and
| | - Elya A Shamshou
- Department of Immunology, University of Washington, Seattle, Washington
| | - David Condon
- Division of Pulmonary and Critical Care Medicine
| | - Ananya Chakraborty
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Stuti Agarwal
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Natasha Auer
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | - Serena Zhang
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine
| | | | - Roham T Zamanian
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and
| | - Mark R Nicolls
- Stanford Cardiovascular Institute.,Division of Pulmonary and Critical Care Medicine.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, and.,VA Palo Alto Health Care System, Department of Medicine, Stanford University, Stanford, California; and
| | | |
Collapse
|
23
|
Difference in pyruvic acid metabolism between neonatal and adult mouse lungs exposed to hyperoxia. PLoS One 2020; 15:e0238604. [PMID: 32881962 PMCID: PMC7470327 DOI: 10.1371/journal.pone.0238604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Objective Neonatal lungs are more tolerant to hyperoxic injury than are adult lungs. This study investigated differences in the response to hyperoxic exposure between neonatal and adult mouse lungs using metabolomics analysis with capillary electrophoresis time-of-flight mass spectrometry (CE- TOFMS). Methods Neonatal and adult mice were exposed to 21% or 95% O2 for four days. Subsequently, lung tissue samples were collected and analyzed by CE-TOFMS. Pyruvate dehydrogenase (PDH) enzyme activity was determined using a microplate assay kit. PDH kinase (Pdk) 1, Pdk2, Pdk3, and Pdk4 mRNA expression levels were determined using quantitative reverse transcription-polymerase chain reaction. Pdk4 protein expression was quantified by Western blotting and Pdk4 protein localization was evaluated by immunohistochemistry. Results Levels of 3-phosphoglyceric acid, 2-phosphoglyceric acid, phosphoenolpyruvic acid, and lactic acid were significantly elevated in the lungs of hyperoxia-exposed versus normoxia-exposed adult mice, whereas no significant differences were observed with hyperoxia exposure in neonatal mice. PDH activity was reduced in the lungs of adult mice only. Pdk4 mRNA expression levels after hyperoxic exposure were significantly elevated in adult mice compared with that in neonatal mice. Conversely, gene expression levels of Pdk1, Pdk2, and Pdk3 did not differ after hyperoxic exposure in either neonatal or adult mice. Pdk4 protein levels were also significantly increased in adult mouse lungs exposed to hyperoxia and were localized mainly to the epithelium of terminal bronchiole. Conclusions Specific metabolites associated with glycolysis and gluconeogenesis were altered after hyperoxia exposure in the lungs of adult mice, but not in neonates, which was likely a result of reduced PDH activity due to Pdk4 mRNA upregulation under hyperoxia.
Collapse
|
24
|
Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT, Archer SL. Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygen-Sensing, Metabolism, and Dynamics. Compr Physiol 2020; 10:713-765. [PMID: 32163206 DOI: 10.1002/cphy.c190027] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In lung vascular cells, mitochondria serve a canonical metabolic role, governing energy homeostasis. In addition, mitochondria exist in dynamic networks, which serve noncanonical functions, including regulation of redox signaling, cell cycle, apoptosis, and mitochondrial quality control. Mitochondria in pulmonary artery smooth muscle cells (PASMC) are oxygen sensors and initiate hypoxic pulmonary vasoconstriction. Acquired dysfunction of mitochondrial metabolism and dynamics contribute to a cancer-like phenotype in pulmonary arterial hypertension (PAH). Acquired mitochondrial abnormalities, such as increased pyruvate dehydrogenase kinase (PDK) and pyruvate kinase muscle isoform 2 (PKM2) expression, which increase uncoupled glycolysis (the Warburg phenomenon), are implicated in PAH. Warburg metabolism sustains energy homeostasis by the inhibition of oxidative metabolism that reduces mitochondrial apoptosis, allowing unchecked cell accumulation. Warburg metabolism is initiated by the induction of a pseudohypoxic state, in which DNA methyltransferase (DNMT)-mediated changes in redox signaling cause normoxic activation of HIF-1α and increase PDK expression. Furthermore, mitochondrial division is coordinated with nuclear division through a process called mitotic fission. Increased mitotic fission in PAH, driven by increased fission and reduced fusion favors rapid cell cycle progression and apoptosis resistance. Downregulation of the mitochondrial calcium uniporter complex (MCUC) occurs in PAH and is one potential unifying mechanism linking Warburg metabolism and mitochondrial fission. Mitochondrial metabolic and dynamic disorders combine to promote the hyperproliferative, apoptosis-resistant, phenotype in PAH PASMC, endothelial cells, and fibroblasts. Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH. © 2020 American Physiological Society. Compr Physiol 10:713-765, 2020.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Elahe Alizadeh
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - François Potus
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
26
|
Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, Mani V, Zeng Y, Ozen MO, Wang L, Demirci U, Tian W, Nicolls MR, de Jesus Perez VA. Loss of Endothelium-Derived Wnt5a Is Associated With Reduced Pericyte Recruitment and Small Vessel Loss in Pulmonary Arterial Hypertension. Circulation 2020; 139:1710-1724. [PMID: 30586764 DOI: 10.1161/circulationaha.118.037642] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Abinaya Nathan
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| | - Sushma Reddy
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Division of Pediatric Cardiology (S.R.), Stanford University, Palo Alto, CA
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Japan (H.H.)
| | - Vigneshwaran Mani
- Department of Radiology, Canary Center for Early Cancer Detection (V.M., M.O.O., U.D.), Stanford University, Palo Alto, CA
| | - Yitian Zeng
- Department of Materials Science and Engineering (Y.Z.), Stanford University, Palo Alto, CA
| | - Mehmet O Ozen
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Radiology, Canary Center for Early Cancer Detection (V.M., M.O.O., U.D.), Stanford University, Palo Alto, CA
| | - Lingli Wang
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Pediatrics (L.W.), Stanford University, Palo Alto, CA
| | - Utkan Demirci
- Department of Radiology, Canary Center for Early Cancer Detection (V.M., M.O.O., U.D.), Stanford University, Palo Alto, CA
| | - Wen Tian
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Medicine, VA Palo Alto Health Care System/Stanford University, CA (W.T., M.R.N.)
| | - Mark R Nicolls
- Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Department of Medicine, VA Palo Alto Health Care System/Stanford University, CA (W.T., M.R.N.)
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine (K.Y., E.A.S., M.E.O., A.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Stanford Cardiovascular Institute (K.Y., E.A.S., M.E.O., A.N., S.R., M.O.O, L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA.,Wall Center for Pulmonary Vascular Research (K.Y., E.A.S., M.E.O., A.N., L.W., W.T., M.R.N., V.A.d.J.P.), Stanford University, Palo Alto, CA
| |
Collapse
|
27
|
Bordenave J, Tu L, Berrebeh N, Thuillet R, Cumont A, Le Vely B, Fadel E, Nadaud S, Savale L, Humbert M, Huertas A, Guignabert C. Lineage Tracing Reveals the Dynamic Contribution of Pericytes to the Blood Vessel Remodeling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2020; 40:766-782. [PMID: 31969018 DOI: 10.1161/atvbaha.119.313715] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Excessive accumulation of resident cells within the pulmonary vascular wall represents the hallmark feature of the remodeling occurring in pulmonary arterial hypertension (PAH). Furthermore, we have previously demonstrated that pulmonary arterioles are excessively covered by pericytes in PAH, but this process is not fully understood. The aim of our study was to investigate the dynamic contribution of pericytes in PAH vascular remodeling. Approach and Results: In this study, we performed in situ, in vivo, and in vitro experiments. We isolated primary cultures of human pericytes from controls and PAH lung specimens then performed functional studies (cell migration, proliferation, and differentiation). In addition, to follow up pericyte number and fate, a genetic fate-mapping approach was used with an NG2CreER;mT/mG transgenic mice in a model of pulmonary arteriole muscularization occurring during chronic hypoxia. We identified phenotypic and functional abnormalities of PAH pericytes in vitro, as they overexpress CXCR (C-X-C motif chemokine receptor)-7 and TGF (transforming growth factor)-βRII and, thereby, display a higher capacity to migrate, proliferate, and differentiate into smooth muscle-like cells than controls. In an in vivo model of chronic hypoxia, we found an early increase in pericyte number in a CXCL (C-X-C motif chemokine ligand)-12-dependent manner whereas later, from day 7, activation of the canonical TGF-β signaling pathway induces pericytes to differentiate into smooth muscle-like cells. CONCLUSIONS Our findings reveal a pivotal role of pulmonary pericytes in PAH and identify CXCR-7 and TGF-βRII as 2 intrinsic abnormalities in these resident progenitor vascular cells that foster the onset and maintenance of PAH structural changes in blood lung vessels.
Collapse
Affiliation(s)
- Jennifer Bordenave
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Ly Tu
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Nihel Berrebeh
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Raphaël Thuillet
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Amélie Cumont
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Benjamin Le Vely
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Elie Fadel
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Sophie Nadaud
- Sorbonne Université, Institute of Cardiometabolism and Nutrition (ICAN), INSERM, UMR_S 1166, Facultê de mêdecine Pitiê Salpêtriêre, Paris, France (S.N.)
| | - Laurent Savale
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Marc Humbert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Alice Huertas
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Christophe Guignabert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| |
Collapse
|
28
|
Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A 2019; 116:24100-24107. [PMID: 31712411 PMCID: PMC6883845 DOI: 10.1073/pnas.1914143116] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelium and the choroid are complex tissues whose dysfunction can lead to irreversible visual loss. In this study, single-cell RNA sequencing of both of these tissues was performed to characterize gene expression patterns specific to the retinal pigment epithelium and all major choroidal cell populations. Unique gene expression signatures of arterial, venous, and choriocapillaris vascular beds within the choroid were identified. RGCC, a gene that responds to complement and has been shown to induce endothelial apoptosis, was specifically expressed in choriocapillaris endothelial cells. This study provides potential insight into the molecular mechanisms of choroidal vascular disease and its contribution to age-related macular degeneration. The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.
Collapse
|
29
|
Kurakula K, Sun XQ, Happé C, da Silva Goncalves Bos D, Szulcek R, Schalij I, Wiesmeijer KC, Lodder K, Tu L, Guignabert C, de Vries CJ, de Man FS, Vonk Noordegraaf A, ten Dijke P, Goumans MJ, Bogaard HJ. Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. Eur Respir J 2019; 54:13993003.02400-2018. [DOI: 10.1183/13993003.02400-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive fatal disease characterised by abnormal remodelling of pulmonary vessels, leading to increased vascular resistance and right ventricle failure. This abnormal vascular remodelling is associated with endothelial cell dysfunction, increased proliferation of smooth muscle cells, inflammation and impaired bone morphogenetic protein (BMP) signalling. Orphan nuclear receptor Nur77 is a key regulator of proliferation and inflammation in vascular cells, but its role in impaired BMP signalling and vascular remodelling in PAH is unknown.We hypothesised that activation of Nur77 by 6-mercaptopurine (6-MP) would improve PAH by inhibiting endothelial cell dysfunction and vascular remodelling.Nur77 expression is decreased in cultured pulmonary microvascular endothelial cells (MVECs) and lungs of PAH patients. Nur77 significantly increased BMP signalling and strongly decreased proliferation and inflammation in MVECs. In addition, conditioned medium from PAH MVECs overexpressing Nur77 inhibited the growth of healthy smooth muscle cells. Pharmacological activation of Nur77 by 6-MP markedly restored MVEC function by normalising proliferation, inflammation and BMP signalling. Finally, 6-MP prevented and reversed abnormal vascular remodelling and right ventricle hypertrophy in the Sugen/hypoxia rat model of severe angioproliferative PAH.Our data demonstrate that Nur77 is a critical modulator in PAH by inhibiting vascular remodelling and increasing BMP signalling, and activation of Nur77 could be a promising option for the treatment of PAH.
Collapse
|
30
|
Fasudil dichloroacetate (FDCA), an orally available agent with potent therapeutic efficiency on monocrotaline-induced pulmonary arterial hypertension rats. Bioorg Med Chem Lett 2019; 29:1812-1818. [DOI: 10.1016/j.bmcl.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
|
31
|
Bordenave J, Tu L, Savale L, Huertas A, Humbert M, Guignabert C. [New insights in the pathogenesis of pulmonary arterial hypertension]. Rev Mal Respir 2019; 36:433-437. [PMID: 31010759 DOI: 10.1016/j.rmr.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/26/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a severe and incurable cardiopulmonary disorder. Research from the past 10 years illustrates the complex and multifactorial aspects of PAH pathophysiology. Furthermore, latest advances in the field have led to a better understanding of the key components underlying this inadequate accumulation of pulmonary vascular cells within the pulmonary arterial walls, leading to pulmonary vascular remodelling. Among the underlying molecular and cellular mechanisms, pulmonary endothelial dysfunction, alterations of the inter-cell communications within the pulmonary arterial walls as well as defects of the inflammatory component and the loss of BMPRII activity play critical roles in the pathogenesis of the disease.
Collapse
Affiliation(s)
- J Bordenave
- Inserm UMR_S 999, hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France; Faculté de Médecine, université Paris-Sud, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - L Tu
- Inserm UMR_S 999, hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France; Faculté de Médecine, université Paris-Sud, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - L Savale
- Inserm UMR_S 999, hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France; Faculté de Médecine, université Paris-Sud, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; Service de pneumologie, centre de référence de l'hypertension pulmonaire sévère, DHU Thorax Innovation, hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - A Huertas
- Inserm UMR_S 999, hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France; Faculté de Médecine, université Paris-Sud, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; Service de pneumologie, centre de référence de l'hypertension pulmonaire sévère, DHU Thorax Innovation, hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - M Humbert
- Inserm UMR_S 999, hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France; Faculté de Médecine, université Paris-Sud, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; Service de pneumologie, centre de référence de l'hypertension pulmonaire sévère, DHU Thorax Innovation, hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - C Guignabert
- Inserm UMR_S 999, hôpital Marie Lannelongue, 133, avenue de la Résistance, 92350 Le Plessis-Robinson, France; Faculté de Médecine, université Paris-Sud, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| |
Collapse
|
32
|
Hogan SE, Rodriguez Salazar MP, Cheadle J, Glenn R, Medrano C, Petersen TH, Ilagan RM. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L723-L737. [PMID: 30652491 DOI: 10.1152/ajplung.00058.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secreted exosomes are bioactive particles that elicit profound responses in target cells. Using targeted metabolomics and global microarray analysis, we identified a role of exosomes in promoting mitochondrial function in the context of pulmonary arterial hypertension (PAH). Whereas chronic hypoxia results in a glycolytic shift in pulmonary artery smooth muscle cells (PASMCs), exosomes restore energy balance and improve O2 consumption. These results were confirmed in a hypoxia-induced mouse model and a semaxanib/hypoxia rat model of PAH wherein exosomes improved the mitochondrial dysfunction associated with disease. Importantly, exosome exposure increased PASMC expression of pyruvate dehydrogenase (PDH) and glutamate dehydrogenase 1 (GLUD1), linking exosome treatment to the TCA cycle. Furthermore, we show that although prolonged hypoxia induced sirtuin 4 expression, an upstream inhibitor of both GLUD1 and PDH, exosomes reduced its expression. These data provide direct evidence of an exosome-mediated improvement in mitochondrial function and contribute new insights into the therapeutic potential of exosomes in PAH.
Collapse
Affiliation(s)
- Sarah E Hogan
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | | | - John Cheadle
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Rachel Glenn
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Carolina Medrano
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Thomas H Petersen
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| | - Roger M Ilagan
- Department of Regenerative Medicine, United Therapeutics Corporation , Durham, North Carolina
| |
Collapse
|
33
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev 2019; 39:70-113. [PMID: 29785785 DOI: 10.1002/med.21511] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2025]
Abstract
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages, and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment (TME). Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the TME and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that TME is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including antitumor agents with those targeting stromal cell metabolism, antiangiogenic drugs, and/or immunotherapy are being developed as promising therapeutics.
Collapse
Affiliation(s)
- Ma Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
| | - Ana R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| |
Collapse
|
34
|
Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, Warner A, Chenghao Y, Wenceslau CF. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31:1067-1078. [PMID: 29788246 DOI: 10.1093/ajh/hpy083] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Morphological and physiological changes in the vasculature have been described in the evolution and maintenance of hypertension. Hypertension-induced vascular dysfunction may present itself as a contributing, or consequential factor, to vascular remodeling caused by chronically elevated systemic arterial blood pressure. Changes in all vessel layers, from the endothelium to the perivascular adipose tissue (PVAT), have been described. This mini-review focuses on the current knowledge of the structure and function of the vessel layers, specifically muscular arteries: intima, media, adventitia, PVAT, and the cell types harbored within each vessel layer. The contributions of each cell type to vessel homeostasis and pathophysiological development of hypertension will be highlighted.
Collapse
Affiliation(s)
- Patricia Martinez-Quinones
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Nicole S Klee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Amel Komic
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fabiano B Calmasini
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander Warner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yu Chenghao
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Camilla F Wenceslau
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
35
|
Crnkovic S, Marsh LM, El Agha E, Voswinckel R, Ghanim B, Klepetko W, Stacher‐Priehse E, Olschewski H, Bloch W, Bellusci S, Olschewski A, Kwapiszewska G. Resident cell lineages are preserved in pulmonary vascular remodeling. J Pathol 2018; 244:485-498. [PMID: 29359814 PMCID: PMC5903372 DOI: 10.1002/path.5044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/17/2017] [Accepted: 01/14/2018] [Indexed: 02/06/2023]
Abstract
Pulmonary vascular remodeling is the main pathological hallmark of pulmonary hypertension disease. We undertook a comprehensive and multilevel approach to investigate the origin of smooth muscle actin-expressing cells in remodeled vessels. Transgenic mice that allow for specific, inducible, and permanent labeling of endothelial (Cdh5-tdTomato), smooth muscle (Acta2-, Myh11-tdTomato), pericyte (Cspg4-tdTomato), and fibroblast (Pdgfra-tdTomato) lineages were used to delineate the cellular origins of pulmonary vascular remodeling. Mapping the fate of major lung resident cell types revealed smooth muscle cells (SMCs) as the predominant source of cells that populate remodeled pulmonary vessels in chronic hypoxia and allergen-induced murine models. Combining in vivo cell type-specific, time-controlled labeling of proliferating cells with a pulmonary artery phenotypic explant assay, we identified proliferation of SMCs as an underlying remodeling pathomechanism. Multicolor immunofluorescence analysis showed a preserved pattern of cell type marker localization in murine and human pulmonary arteries, in both donors and idiopathic pulmonary arterial hypertension (IPAH) patients. Whilst neural glial antigen 2 (chondroitin sulfate proteoglycan 4) labeled mostly vascular supportive cells with partial overlap with SMC markers, PDGFRα-expressing cells were observed in the perivascular compartment. The luminal vessel side was lined by a single cell layer expressing endothelial markers followed by an adjacent and distinct layer defined by SMC marker expression and pronounced thickening in remodeled vessels. Quantitative flow cytometric analysis of single cell digests of diverse pulmonary artery layers showed the preserved separation into two discrete cell populations expressing either endothelial cell (EC) or SMC markers in human remodeled vessels. Additionally, we found no evidence of overlap between EC and SMC ultrastructural characteristics using electron microscopy in either donor or IPAH arteries. Lineage-specific marker expression profiles are retained during pulmonary vascular remodeling without any indication of cell type conversion. The expansion of resident SMCs is the major underlying and evolutionarily conserved paradigm of pulmonary vascular disease pathogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Antigens/genetics
- Antigens/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Lineage
- Chronic Disease
- Disease Models, Animal
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/physiopathology
- Fluorescent Antibody Technique
- Genes, Reporter
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Lung/blood supply
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Respiratory Hypersensitivity/genetics
- Respiratory Hypersensitivity/metabolism
- Respiratory Hypersensitivity/pathology
- Respiratory Hypersensitivity/physiopathology
- Vascular Remodeling
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Department of PhysiologyMedical University of GrazGrazAustria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | - Elie El Agha
- Excellence Cluster Cardio‐Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC)Justus Liebig University GiessenGiessenGermany
| | | | - Bahil Ghanim
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Walter Klepetko
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Elvira Stacher‐Priehse
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Institute of PathologyMedical University of GrazGrazAustria
| | - Horst Olschewski
- Department of Internal Medicine, Division of PulmonologyMedical University of GrazGrazAustria
| | | | - Saverio Bellusci
- Excellence Cluster Cardio‐Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC)Justus Liebig University GiessenGiessenGermany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Department of PhysiologyMedical University of GrazGrazAustria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Department of PhysiologyMedical University of GrazGrazAustria
| |
Collapse
|
36
|
|